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Abstract: In this work, the motion control of a robotic wheelchair to achieve safe and intelligent
movement in an unknown scenario is proposed. The primary objective is to develop a comprehensive
framework for a robotic wheelchair that combines a global path planner and a model predictive
control (MPC) local controller. The A* algorithm is employed to generate a global path. To ensure
safe and directional motion for the wheelchair user, an MPC local controller is implemented taking
into account the via points generated by an approach combined with dual quaternions and spherical
linear interpolation (SLERP). Dual quaternions are utilized for their simultaneous handling of rotation
and translation, while SLERP enables smooth and continuous rotation interpolation by generating
intermediate orientations between two specified orientations. The integration of these two methods
optimizes navigation performance. The system is built on the Robot Operating System (ROS), with an
electric wheelchair equipped with 3D-LiDAR serving as the hardware foundation. The experimental
results reveal the effectiveness of the proposed method and demonstrate the ability of the robotic
wheelchair to move safely from the initial position to the destination. This work contributes to the
development of effective motion control for robotic wheelchairs, focusing on safety and improving
the user experience when navigating in unknown environments.

Keywords: robotic wheelchair; motion control; dual quaternions; model predictive control (MPC);
safe self-driving

1. Introduction

The rapid growth of the global elderly population poses significant challenges. Stud-
ies showed that in 2022, people aged over 65 years old accounted for nearly 10% of the
world’s population, and is expected to reach 16% in 2050 [1]. In Japan, which leads
globally in the aging trend, the elderly represented 26% of its population in 2014 [2],
with forecasts estimating an increase to 38.8% by 2050 [3]. The aging process brings var-
ious mobility impairments due to musculoskeletal issues, neurological issues, chronic
conditions, medication impacts, and psychological factors. These impairments can di-
minish the life quality and daily independence of the elderly, increasing dependency on
long-term care, which adds economic strain and contributes to labor shortages. To ad-
dress these concerns and enhance the quality of life for the aging population, robotic
wheelchairs have emerged as a promising assistive innovation, offering potential solu-
tions. While advancements in robotic wheelchair technology have been notable in recent
years [4,5], ensuring the safety and autonomous operation of these devices remains a
critical challenge. Enhancing wheelchair intelligence to minimize the reliance on man-
ual control is key to improving the quality of life for the elderly who are experiencing
mobility impairments.

The early research focused on stability control systems designed for robotic wheelchairs [6].
The primary objective of a robotic wheelchair is to determine an optimal or suitable path

Robotics 2023, 12, 153. https://doi.org/10.3390/robotics12060153 https://www.mdpi.com/journal/robotics

https://doi.org/10.3390/robotics12060153
https://doi.org/10.3390/robotics12060153
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://orcid.org/0000-0001-9660-2476
https://doi.org/10.3390/robotics12060153
https://www.mdpi.com/journal/robotics
https://www.mdpi.com/article/10.3390/robotics12060153?type=check_update&version=1


Robotics 2023, 12, 153 2 of 22

between a starting point and a destination point, considering various constraints and objectives.
The navigation task is similar to the common path-planning problem in traffic management,
which requires determining the optimal path that satisfies a series of requirements [7]. Over the
years, many path-planning methods have been developed for various academic and practical
applications [8,9]. Rapidly Exploring Random Trees (RRT) is an algorithm frequently used in
dynamic and complex situations. Its primary purpose is to efficiently explore the search space
and to generate feasible paths [10]. The utility of RRT was further demonstrated in experiments
involving cooperative robotics, where it proved successful in enabling a group of robots to push
a box coordinated without collisions [11]. Similarly, the genetic algorithm (GA) has established
itself as an effective optimization tool for path planning. Studies have shown its effectiveness
in environments with stationary and mobile obstacles [12]. Although the above-mentioned
strategy has a wide search range, rapid search speed, and high computational efficiency, the
high calculation cost and slow convergence speed are two intractable shortcomings.

Additionally, the graph search algorithm is another widely used methodology for
path planning, which has proven to be effective in navigating complex environments. One
commonly used graph search algorithm is Dijkstra’s algorithm, which guarantees finding
the shortest path in terms of distance or cost [13]. Another popular algorithm is the A*
algorithm, which extends Dijkstra’s algorithm by introducing a heuristic function that
estimates the remaining cost from each node to the target. This heuristic helps guide the
search towards the target and can significantly improve the search efficiency [14]. The A*
algorithm was employed for mobile robots in indoor disaster areas, and the experimental
results demonstrated the effectiveness of the approach in enabling the robot to successfully
navigate and explore the indoor disaster area [15]. In [16], the simulation results in a Mars-
like scenario validated the applicability of the A* algorithm in minimizing the traveling
time and energy consumption, while maintaining the safety of exploration robots. In
addition to its applications in robotic path planning, Santos J et al. [17] introduced an
A*-based planning and scheduling approach designed for the management of multiple
automated guided vehicles within an industrial environment. It provided an efficient
means for planning routes and schedules, optimizing operations in complex industrial
environments. Studies indicate that the A* algorithm can be used to balance optimality
and efficiency, with its heuristic-guided search and efficient data structures making it
particularly fit for dealing with path-planning problems in extensive environments.

However, the limitation of these path-planning strategies is their inability to consider
the dynamic characteristics of the control plant. Model predictive control (MPC) is a highly
effective technique employed in motion control across various domains. By formulating an
optimization problem over a defined prediction horizon, MPC enables the determination
of an optimal sequence of control actions that minimize the given cost function, while
considering system dynamics and constraints. The existing literature has shown that MPC
is especially suitable for dynamic environments and complex robot dynamics scenarios.
Its real-time adaptability and optimality make it a powerful tool for effectively generat-
ing optimal paths and successfully navigating complex environments [18,19]. Previous
research by Rosmann C et al. [20] has demonstrated the effectiveness of an innovative
approach to online motion planning using nonlinear MPC with non-Euclidean rotation
groups in various scenarios. This method addresses the challenges posed by environments
with non-Euclidean geometry and complex robot dynamics. Farina M conducted a compre-
hensive investigation on the use of distributed MPC for motion coordination in unicycle
autonomous robots. Their research demonstrated the effectiveness of this control strategy
in enhancing the performance and efficiency of robots in various tasks and scenarios [21].
In [22], the successful application of dynamic nonlinear MPC for both path planning
and tracking control in unmanned transportation systems was highlighted. Meanwhile,
Ref. [23] introduced an MPC-based framework that emphasized the safety of robots in
unpredictable environments, demonstrating their effectiveness in navigating dynamic
obstacles and uncertainties. Bjelonic M et al. [24] also introduced an optimization-based
framework uniting offline motion libraries with online MPC to enable robots with legs and
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wheels to perform complex locomotion skills. It combined long-time horizon planning
and short-time horizon solutions, allowing smooth transitions between diverse motions
while ensuring effective feedback control and resilience to disturbances. In conclusion,
these results highlight the potential of the MPC scheme for practical applications in mo-
tion control for robotic systems. The demonstrated effectiveness of the MPC approach in
generating optimized and safe trajectories reveals its viability and applicability in various
real-world scenarios.

The development of robot control requires complex mathematical structures to de-
scribe their transformation in space. Among many mathematical tools, the dual quaternion
as a particularly effective tool has attracted much attention in the field of robotics. It has
the ability to represent rotation and translation simultaneously. In [25], the use of dual
quaternion to help robots move precisely in position and direction was explored. The study
not only introduced the mathematical principle behind this method but also validated its
control ability through experiments with real robots and confirmed that it was a promising
method for better robot control. Then, a reliable library for robot modeling and control
using dual quaternion was further developed, which was popularly used recently [26]. This
library capitalizes on the strengths of dual quaternions in representing 3D transformations,
offering a robust toolbox for modern robotic applications. A dual-quaternion-based robot
forward kinematics algorithm in the Robot Operating System (ROS) was implemented
in [27]. The proposed implementation provided an accurate and efficient solution for solv-
ing forward kinematics problems in robotic systems, thereby enhancing the capabilities of
ROS for robot control and handling. In conclusion, dual quaternions can be used in robotic
control to consider both the position and the direction of the action, thus improving the
safety of robot operation and realizing directional movement. Therefore, in this work, we
make use of the unique characteristics of dual quaternion, combined with an MPC control
scheme, to enhance the motion of robotic wheelchairs.

In this work, a robotic wheelchair system based on ROS is built first. Then, a hierar-
chical motion control strategy for the robotic wheelchair that ensures safe and directional
movement in an unknown environment is presented. The proposed strategy includes a
global path planner, which determines an optimal path in the overall environment, and an
MPC local controller, which takes into account the specific dynamics and constraints of the
robotic wheelchair. Particularly, a novel approach that combines a dual-quaternion-based
spherical linear interpolation (SLERP) technique with the MPC scheme is used in the local
controller. The dual quaternion can effectively capture the complex spatial transformations
required for robot control, which enables the robotic wheelchair to achieve reliable and di-
rectional navigation. This integration allows for smooth and continuous transitions between
different poses of the robotic wheelchair during movement. The dual-quaternion-based
SLEPP MPC local controller is employed to address disturbances in the local map, effec-
tively solving the motion control issue of local obstacle avoidance and path optimization.
Finally, the experimental results in the ROS simulation environment and real-world scenar-
ios demonstrate the effectiveness of the proposed control strategy in achieving self-driving
and safe navigation in unknown environments for robotic wheelchairs. Furthermore, the
experimental results revealed the prospective capability of our proposed control strategy
in addressing dynamic obstacle avoidance challenges that arise in the future.

The remainder of the paper proceeds as follows. In Section 2, the considered robotic
wheelchair is first introduced and formulated by the so-called unicycle model, and then
the hierarchical motion control problem is proposed. In Section 3, the comprehensive
framework is proposed. The path planning strategy using the A* algorithm to generate a
global path is first described. In the following parts, this section intends to achieve the MPC
local path planner, introducing a dual-quaternion-based SLERP technique. In Section 4, the
validation results and discussions are presented. Finally, the conclusions are summarized
in Section 5.
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2. System Model
2.1. Robotic Wheelchair Model

In this section, we introduce the kinematic model of the robotic wheelchair, specifically
focusing on the modeling of the wheelchair produced by Whill Company. The hardware
configuration of our proposed robotic wheelchair system is depicted in Figure 1. The
wheelchair’s rotation diameter is 76 cm, and its 3D dimensions are 98.5 cm in length,
55.4 cm in width, and 94.5 cm in height. The battery of the wheelchair can cover a travel
distance of up to 18 km. A 3D-LiDAR sensor (RS-Helios 5515) is mounted to the left front
of the wheelchair, enabling the environmental scanning. The laser beams of the sensor
can cover a vertical field of view of 70° with a vertical resolution of 1.33°. The vertical
scanning range is depicted on the left side of Figure 1. A battery located under the seat of
the wheelchair provides power to the 3D-LiDAR and PC.

Whill Model 

C2
3D-LiDAR

(RS-Helios 5515)

PC & Battery

Figure 1. The hardware system of the proposed robotic wheelchair.

The Whill Model C2 wheelchair has four wheels. The two rear wheels are the driving
wheels, governing both the translation and rotation movement of the wheelchair. The two
front wheels are driven wheels that support the wheelchair since the front wheels are Omni
Wheels that ensure the rotation center of the wheelchair is located on the center of the
rear axle. The motion of the wheelchair shares similarities with a unicycle-type mobile
robot. The abstract model of the wheelchair is depicted in the left subsection of Figure 2.
This comparison derives from the wheelchair’s drive mechanism and layout. The energy
storage unit, located at the center of the rear axle, provides the necessary energy for driving
the motors. It is assumed that the model is established in an absolute coordinate system
fixed to the ground. The rotation center is denoted as G, and the distance between the front
and rear axles is represented by l. The position of the wheelchair is defined as G = (x, y),
while v and ω denote the longitudinal and lateral velocities, respectively. The orientation
of the wheelchair is represented by θ.

The kinematic model of the wheeled robot establishes a relationship between its
control inputs, linear velocity v, and angular velocity ω, with the time derivatives of its
position and orientation. The center point of the axle serves as the center of rotation for
the angular velocity. The relationship to describe the robotic wheelchair can be expressed
as follows [28]: ẋ

ẏ
θ̇

 =

cos θ 0
sin θ 0

0 1

[ v
ω

]
, (1)
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In summary, the presented kinematic model provides a foundation for understanding
the motion and control of the robotic wheelchair, considering its structural configuration
and kinematic relationships.

Tire

Battery

Figure 2. The schematic of the proposed robotic wheelchair.

2.2. Environment Model Description

Accurately simulating the surrounding environment is crucial for solving the mobile
robot motion control problem of a mobile robot. With advancements in sensor and LIDAR
technologies, relevant information can be extracted from the real environment and trans-
formed into a map model. In this work, simultaneous localization and mapping (SLAM)
is used to track the robot’s position and construct a map in an unknown environment. It
plays a crucial role in enabling autonomous mobile robots to perform various tasks such as
navigation, exploration, and mapping. By utilizing sensor data such as laser range finders
and cameras, a robot employing SLAM can estimate its position within the environment
and create a map that accurately represents the surroundings.

The wheelchair utilizes LiDAR sensors to scan the surrounding environment and
gather 3D point cloud information, which is then processed using the SLAM method. This
sensor data, combined with odometry information from the wheel, is used to generate a
real-time map. The map is represented as 2D occupied grids that accurately depict the
wheelchair’s environment. Initially, the robot has no prior knowledge of the environment
or its own position and relies on the sensor data for an initial estimation. As the robot
moves, the SLAM algorithm continually refines its position estimates and updates the map
based on newly acquired sensor data. By incorporating the latest sensor measurements,
SLAM ensures that the robot’s position and the map representation remain accurate and
up-to-date throughout its operation. The constructed map using the SLAM method is
depicted in Figure 3.

Once the map is built using SLAM, it can be used for robot motion planning and
control. The robot can plan a path through the environment by considering the obstacles
and other features on the map, such as walls, doors, and furniture.
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Figure 3. The environment detected by SLAM method.

3. Self-Driving Motion Control

In this section, we present a hierarchical control strategy for ensuring safe and direc-
tional movement in unknown scenarios, as shown in Figure 4. The construction of our
hierarchical motion control system is depicted within the green-dotted box on the right
of the figure. Utilizing the point cloud data from 3d-LiDAR and odometer data from the
wheelchair, a PC generates real-time action decisions, enabling the robotic wheelchair’s
autonomous navigation. The strategy consists of two layers: the upper layer, which in-
volves a global path planner utilizing the A* algorithm to generate efficient paths and avoid
obstacles from the start position to the target, and the lower layer, which employs MPC local
controller considering wheelchair dynamic constraints to achieve safe and directional mo-
tion around obstacles. The developed dual-quaternion-based SLERP MPC local controller
serves as a vital component in our proposed system, focusing on optimizing local paths and
poses while providing effective motion control. In particular, the use of a dual-quaternion-
based SLERP technique enables the robotic wheelchair to handle translation and rotation
movement simultaneously in diverse scenarios. In terms of implementation, the output of
the global path planner serves as the input for the local path planner, enabling coordinated
and obstacle-aware navigation for the wheelchair. The implementation of the proposed
MPC local controller is able to handle disruptions within local maps, effectively address-
ing issues of local obstacle avoidance challenges in motion control. Its rapid response to
dynamic changes and disturbances in the local map reveals that our robotic wheelchair
can effectively navigate in complex environments, making real-time adjustments to path
optimization and obstacle avoidance. This capability enhances the safety and efficiency of
self-driving robotic wheelchairs, facilitating their smooth and reliable performance.

3.1. The Global Path Planner Using A* Algorithm

A* algorithm is utilized in this work to generate an optimal trajectory that avoids
obstacles and boundaries. The A* algorithm is chosen for the global path planning of our
wheelchair due to its optimal pathfinding capability, heuristic efficiency, and adaptability
to varied environments. Its deterministic nature ensures the reliable navigation of the
wheelchair in the actual environment. The A* algorithm’s ability to re-calculate routes in
dynamic settings is critical for obstacle avoidance, prioritizing user safety. Furthermore,
its scalability and resource efficiency make it practical for the computational limits of
onboard systems. It is a heuristic search algorithm that evaluates the estimated value of
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each search position using an evaluation function. The algorithm selects the position with
the best-estimated value and continues the search until it reaches the target point.

f (n) = g(n) + h(n) (2)

where f (n) represents the evaluation function of node n from the initial node to the target
node, and g(n) denotes the actual cost, indicating the total cost from the initial node to
the current node. Moreover, h(n) represents the estimated cost of the optimal path from
the current node to the target node, serving as the heuristic function in the A* algorithm.
The two terms, g(n) and h(n), play a crucial role in the A* algorithm as they determine the
evaluation and selection of nodes during the search process. Since the robot can move in all
directions, the Euclidean distance calculation algorithm is suitable for measuring distances
between nodes. This can be described as follows:

f = g(n) +
√
(x− xn)

2 + (y− yn)
2 (3)

where x and y, respectively, represent the lateral and longitudinal coordinates of the current
node position, and xn and yn, respectively, represent the corresponding coordinates of
the target node position. It is obvious that the closer the robot is to the target node, the
smaller the value of the function h will be. Consequently, this results in a relatively small
value of f . Therefore, by employing the A* algorithm with its heuristic search strategy, this
section achieves efficient and effective trajectory generating, ensuring safe and obstacle-free
navigation for the robotic wheelchair in unknown environments. The details for the use of
the A* algorithm in the ROS platform can be found in [29].

Environment

information

Robotic wheelchair

Barriers

Figure 4. The structure diagram of the MPC-based hierarchical motion control system.

3.2. MPC-Based Local Controller

In real-life scenarios, the upper global path planner is unable to consider the dynamics
of the wheelchair, resulting in an unsafe or shaking motion that leads to low driving
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comfort. To address this issue, an MPC-based local controller is introduced in this section.
The local path planner utilizes a dual-quaternion-based SLERP approach, enabling the
smooth and continuous interpolation of poses. By incorporating the MPC local controller,
real-time optimal control actions are computed using a predictive optimization scheme.

The motion control problem of robotics is formulated into a discretized optimization
problem under the MPC framework. The goal is to minimize predicted tracking errors and
control efforts while satisfying constraints on the system dynamics. The formulation of the
MPC optimization problem is as follows:

min
u(k)

J =
t+N−1

∑
k=t

λ1 J1 + λ2 J2 + βJ3 + γ1 J4 + γ2 J5 (4)

where J1 = [x(k)− xre f (k)]2 and J2 = [y(k)− yre f (k)]2 represent the deviation from the
desired path generated by the A* algorithm, J3 = v2(k) denotes the control effort, and
J4 = [x(k) − xvia(k)]2 and J5 = [y(k) − yvia(k)]2 represent the constraint of movement
direction.

With the following constraints:
x(k + 1) = p(x(k), u(k))
xmin ≤ x(k) ≤ xmax
ymin ≤ y(k) ≤ ymax
ωmin ≤ ω(k) ≤ ωmax
vmin ≤ v(k) ≤ vmax

(5)

where k = t, t + 1, . . . , t + N − 1, N is the control horizon; x(k) is the k-steps ahead state
computed based on the current state x(t); function p is defined as state function of the
robotic wheelchair dynamic in discretized form in Equation (1); xmin, ymin, xmax, and ymin
are the lower and upper bounds on the states; and vmin, ωmin, vmax, and ωmax are the lower
and upper bounds on the control inputs, respectively. λ, γ, and β are the weights. The
position (xre f , yre f ) is the reference path generated by the A* algorithm, while (xvia, yvia)
is provided by the dual-quaternion-based SLERP algorithm that will be introduced in
Section 3.3.

In this problem, the cost function incorporates three main components. Firstly, it
penalizes the difference between the pose of the robot and the desired pose at the target
point. This ensures that the robot follows the intended trajectory closely. Secondly, the cost
function includes a term that penalizes the control effort, aiming to achieve smooth and
energy-efficient motion. Thirdly, the via points serve as nodes in the graph optimization
problem, forming a close graph with the reference trajectory that constrains the movement
direction of the wheelchair. For more details, refer to [30]. The control commands generated
by the MPC local planner are then applied to the motion system of the robotic wheelchair,
resulting in safe motions and directional movements.

The efficacy of the proposed MPC controller in handling local disruptions and navi-
gating around obstacles is rooted in its predictive and optimization-centric nature. MPC is
a complex control strategy capable of handling constrained multivariable control problems.
The MPC-based controller predicts the future state of the wheelchair based on its dynamic
model, current states, and a series of upcoming control inputs. The MPC controller consid-
ers the current state, the reference path, the via points, and any potential obstacles within
its prediction horizon. It formulates an optimization problem where the control inputs
are adjusted to minimize a cost function. When it encounters disruptions or obstacles,
the MPC controller updates its predictions at each control cycle, recalculating the optimal
control actions required to navigate around the obstacles while still trying to adhere to
the constraints. The local map is continuously updated with sensor data, and the MPC
controller incorporates this information into its predictions. If an obstacle is detected within
the local map, the MPC planner evaluates the need to change the wheelchair’s trajectory
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by solving the optimization problem with the updated constraints. This ensures that the
wheelchair avoids obstacles while maintaining its path toward the destination.

3.3. Dual-Quaternion-Based SLERP Algorithm

Our proposed approach integrates the dual quaternions theory, the SLERP technique,
and MPC into the enhanced local controller by generating a control sequence constrained
by the via points and reference trajectory. The via points are extracted from the poses
generated with the dual-quaternion-based SLERP method. The reference trajectory is
generated by the global planner. In this work, a significant advantage of such combinations
is their ability to handle translation and orientation simultaneously, ensuring directional
movement for the wheelchair.

In our proposed MPC local controller, SLERP, which was first introduced by
Shoemaker [31], is effectively employed to ensure the smooth and continuous interpolation
of poses. It generates intermediate orientations between two given orientations, ensuring a
seamless transition between them. Figure 5 illustrates the schematic diagram comparing
the SLERP interpolation method with the traditional linear interpolation method. It can be
found that SLERP considers the shortest path on the unit sphere to smoothly rotate from
one orientation to another.

The dual quaternion is known for its ability to handle both translation and orientation in
a unified manner. A dual quaternion is an extension of a quaternion using the dual number
that consists of a real part and a dual part. A dual quaternion can be represented as:

D = q + εp, (6)

where q and p are quaternions, ε is the dual unit, and ε2 = 0. For rigid body transforma-
tions, q represents the rotation, and p contains the translation information. In particular, q is
a unit quaternion and p = 1

2 tq, where t is a quaternion representing the translation vector.
In our designed robotic wheelchair controller, the combination of dual quaternions and

SLERP is employed in the local path planner to achieve smooth and continuous transition
poses between the current pose Dc and the last pose Dl in the prediction horizon. This
enables the wheelchair to navigate the planned path while maintaining consistent and
continuous poses, ensuring safe and directional motion. The interpolation parameter
τ ∈ [0, 1] is used to calculate the interpolated quaternion D(τ), which represents the robot’s
orientation at a given point along the trajectory. The interpolated quaternion D(τ) by the
SLERP method can be mathematically described as follows:

D(τ) =
Dc(D−1

c Dl)
τ

‖DcD−1
c Dl‖

Dc, (7)

where ‖ · ‖ represents the norm of a dual quaternion, defined as:

‖D‖ =
√
(q + εp)(q̄ + εp̄) = ‖q‖. (8)

In the use of SLERP, we are interested in interpolating between two unit dual quater-
nions (‖Dc‖ = ‖Dl‖ = 1). Consequently, the dual-quaternion-based SLERP formula can
be simplified as:

D(τ) = Dc(D−1
c Dl)

τ . (9)

Therefore, to calculate the transition poses between the current pose Dc and the last
pose Dl in the prediction horizon, we can use the dual-quaternion-based SLERP method
described above. For the specific calculation process, please refer to the steps shown in
Appendix A. The via point (xvia, yvia) extracted from the transition pose calculated by
(9) served as a node within the graph optimization problem. With the transition poses
corresponding to the interpolations at the parameter value τ1, τ2, τ3, the via points are
utilized by the MPC scheme to calculate control commands. By solving the MPC problem
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tracking the reference trajectory while considering the via points at each time step, and
applying the resulting control inputs, the wheelchair realizes the directional movement
tracking the reference trajectory generated by the global planner and the consistent poses
generated by dual-quaternion-based SLERP, while adhering to its dynamic constraints.

Figure 5. Left side: linear interpolation between p1 and p2, where the length and arc length of the
interpolated vectors may not be equal. Right side: SLERP interpolation, where both the length and
arc length of the interpolated vectors are equal.

4. Simulation and Experimental Results

In our study, we have developed a robotic wheelchair model and the proposed control
system within the ROS platform for validation. This model serves as the basis for both
the simulation and the experiment. Through a combination of simulation and real-world
experiments, we can clearly validate the effectiveness and our strategy in navigating a
robotic wheelchair through complex scenarios. The results reveal that our proposed control
system is robust and reliable, confirming its ability to provide safe and efficient navigation
solutions for practical applications.

4.1. Experimental Setup

To validate the proposed optimal control strategy, we utilize the ROS platform, an open-
source robotics middleware, to create a simulation scenario for the robotic wheelchair. The
ROS platform provides a comprehensive set of software libraries and tools specifically for
the development of robotic systems, thus simplifying the integration and implementation
of robotic applications. It acts as a bridge between the underlying operating system and
the robot actuator, enabling communication and coordination between various software
components. ROS can serve as an intermediate platform to connect the operating system to
the robot’s controller, reducing the complexity of developing new control algorithms.

In our study, we build a robotic wheelchair model equipped with 3D-LiDAR within
the ROS environment, as illustrated in Figure 6. The simulation model of the robotic
wheelchair is constructed with a focus on dimensional accuracy, mirroring the actual size of
the physical wheelchair. The simplified model contains the essential components—wheels,
chassis, and footrest—ensuring that the virtual representation corresponds closely to its
real-world counterpart in terms of size and form factor. To replicate the sensor of the
wheelchair, a simulated 3D-LiDAR sensor is positioned in the same location as on the actual
robotic wheelchair. By maintaining consistency with the physical dimensions and sensory
setup of the actual wheelchair, the simulation model enables us to conduct experiments
that denote real-world performance. This level of detail in the simulation model is critical
for validating the proposed motion control framework and ensures that the findings of our
simulation tests are transferable to practical applications. The red (x-axis), green (y-axis),
and blue (z-axis) straight lines in this figure represent the original coordinate system of the
simulation environment. In Figure 6b, the white block represents the initial pose of the
wheelchair, the green rectangular represents the present footprint of the wheelchair, the
yellow arrows are the position vector via points, the three colored coordinates are the via
pose generated by the dual-quaternion-based SLERP, the red sphere near the coordinates
represents the end of prediction horizon of the proposed MPC controller, the blue curve
represents the local path, and the purple arrow represents the target pose. The control
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algorithms can be realized in this platform, which is shown in the right diagram in Figure 6.
This choice enables us to make use of the capabilities of ROS for simulation, control, and
analysis, ensuring a robust and realistic evaluation of the proposed control strategy.

(a) (b) 

Figure 6. The considered robotic wheelchair model and environment. (a) The simulation robotic
wheelchair model in the Gazebo. (b) The visualization of the environment in RViz

4.2. Simulation Results

In this section, the effectiveness of our designed strategy is validated in simulations.
The performance of the control strategy was evaluated based on the results of trajectory
tracking accuracy, obstacle avoidance ability, and the overall stability of the wheelchair. The
selected case study is designed to simulate real-world scenarios that are common in daily
life. The limitation constraints for the wheelchair in the optimization are determined as
follows: the five terms are set to vmin = −0.2 [m/s], vmax = 0.4 [ m/s], ωmin = −0.2 [rad/s],
and ωmax = 0.2 [rad/s]. The simulation was run on a laptop. The CPU is Ryzen 7-4800H,
the GPU is RTX 2060, and the MEMORY is 24 GB. The experiment was run with another
laptop. In our study, the solver of the optimization problem is the Interior Point Optimizer
(Ipopt), which is a popular open-source optimization library. It is a powerful optimization
solver used in ROS for solving nonlinear optimization problems.

(a) (b) 

Figure 7. The simulation environment in Gazebo under ROS. (a) The initial pose of the wheelchair.
(b) The target pose of the wheelchair.

To validate the performance of the proposed MPC local controller, which utilizes
dual-quaternion-based SLERP interpolation, we conducted a comparative simulation case
study using the ROS. In this work, we use the timed elastic band (TEB) local planner, a local
path planner for mobile robots, as a benchmark. The TEB local planner is a path-planning
algorithm for mobile robots to generate dynamically feasible trajectories. It optimizes the
robot’s path by adjusting a series of timed waypoints to navigate around obstacles while
respecting the robot’s locomotion capabilities. The TEB planner is integrated with ROS
and is one of the common methods for mobile robot trajectory planning. Furthermore,
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we use the Gazebo environment shown in Figure 7 for simulation and utilize RViz in
Figures 8 and 9 for visualization. Gazebo is a powerful robot simulation software that
integrates with the Robot Operating System (ROS). It offers the ability to accurately and
efficiently simulate populations of robots in complex indoor and outdoor environments.
RViz is an open-source 3D interactive visualization tool in ROS. It is highly configurable and
enables developers to visualize sensor inputs like 3D-LiDAR and camera feeds, robot status,
and planned trajectories in a real-time interface. Its functionality is extendable through
plugins, accommodating a broad spectrum of visualization needs in robotic development.
Rviz facilitates the display of 3D robot models and the environments they navigate, offering
interactive tools for direct manipulation and monitoring. These features make Rviz a
powerful tool for debugging and improving robotic systems, allowing for an intuitive
assessment and diagnosis of a robot’s performance and issues.

With the aim of enhancing accuracy and reliability in our simulation results, we
designed repeated comparison experiments in the same scenario. These results allow us to
conduct thorough comparisons and analyses of the outcomes, shown in Table 1. It should
be noted that the proposed method was implemented in the same simulation environment.
We implemented eight simulation tests in the same scenario, shown in Table 2. For the
TEB local planner, 4 out of 8 times the wheelchair could reach the goal pose. For the SLERP
MPC local controller, 5 of 8 times the wheelchair could reach the goal pose. Although the
success rates are almost the same, the failure states are not the same. In Figure 8a, the red
lines on the wall are the simulated lidar beams, the green line represents the global path,
the red arrow on the wheelchair represents the moving direction, the red arrow on the right
represents the target pose, and the yellow lines represent positions vectors. In Figure 8b,
the purple arrow on the right represents the target pose, and the blue line represents the
local path generated by TEB local planner. For the TEB local planner, the motion was
stopped by the wheelchair hitting the wall, shown in Figure 8b,d. However, with our
proposed dual-quaternion-based SLERP MPC local controller, the motion was stopped
because the solver failed to solve the MPC optimal problem. During the failure scenario,
the wheelchair will stop at a safe area without contacting the walls, as shown in Figure 8a,c.
With a new proper target pose published, the wheelchair will continue its motion. With
such a character, our designed controller is more suitable for real applications. In the real
application, safety is important for the wheelchair and the movement of the wheelchair can
be restarted again by publishing a new target pose.

In the following, we provide a detailed analysis and discussion of the comparative
simulation results under specific test cases.

The simulation scenario we built is shown in Figure 7, where the initial pose of the
robotic wheelchair is shown in subgraph (a), and the target pose is shown in subgraph (b).
The initial position is set as (−2.0,−0.5, 0.0), and the initial orientation is (0, 0, 0, 1). The
target position is (4.9, 0.5, 0.0), and the target orientation is (0, 0, 0, 1).

Table 1. Simulations for motion control in a specific scenario with TEB local planner.

Scenario Result Remark

Test 1 Fail Hitting the wall
Test 2 Fail Hitting the wall
Test 3 Success Reaching the target
Test 4 Success Reaching the target *
Test 5 Success Reaching the target
Test 6 Fail Hitting the wall
Test 7 Fail Hitting the wall
Test 8 Success Reaching the target

* Before reaching the target, the wheelchair rotates significantly.
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(a) (b) 

(c) (d) 

Figure 8. The failure scenarios in the simulation environment. (a) The pausing pose during navigation
with our proposed MPC local controller in RViz. (b) The pausing pose during navigation with TEB local
planner in RViz. (c) The pausing pose during navigation with our proposed MPC local controller in
Gazebo. (d) The pausing pose during navigation with TEB local planner in Gazebo.

(a) (b) 

(c) (d) 

Figure 9. The motion sequence of the wheelchair in the simulation environment with our proposed
MPC local controller in Rviz. (a) The wheelchair’s initial pose. (b) The wheelchair entering the corridor.
(c) The wheelchair approaching the target pose. (d) The wheelchair reaching the target pose successfully.

Table 2. Simulations for motion control in a specific scenario with our proposed MPC local controller.

Scenario Result Remark

Test 1 Success Reaching the target
Test 2 Success Reaching the target
Test 3 Fail Pausing at the safe area
Test 4 Success Reaching the target
Test 5 Fail Pausing at the safe area
Test 6 Success Reaching the target
Test 7 Fail Pausing at the safe area
Test 8 Success Reaching the target
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The corresponding search process is demonstrated in Figure 9, where (a) represents the
initial pose of the wheelchair in motion and the navigation process with our proposed MPC
local controller, and (b), (c), (d) shows that the wheelchair safely avoids obstacles (walls)
with the proposed MPC local controller while plotting the map with SLAM algorithm. It
should be noted that the colored lines in Figure 9 have the same meaning as in Figure
8a. Using the control system we designed, the robotic wheelchair has the ability to avoid
obstacles, turn around corners, and pass through corridors, while, most importantly,
maintaining its motion safety and realizing directional movement.

The comparative simulation results of Case 1 comparing Test 1 in Tables 1 and 2
are illustrated in Figure 10. From top to bottom, these figures represent the wheelchair’s
orientation, its position along the x-axis, its position along the y-axis during motion, and the
linear and angular velocity profiles of the robotic wheelchair. The yellow curve represents
the result without the MPC strategy, while the blue curve represents the comparison
when using the SLERP MPC local controller that we designed. It can be observed that
at the 27-second mark when the robotic wheelchair encounters an obstacle, the robotic
wheelchair is unable to realize the obstacle avoidance and pauses without our proposed
motion controller, while the wheelchair can avoid the obstacle and continue the motion
using our designed hierarchical motion controller. Furthermore, it is worth noting that
the utilization of dual-quaternion-based SLERP within the MPC controller accounts for
both rotational and translational movement simultaneously; the wheelchair realizes the
directional movement without unnecessary orientation and noticeable sharp fluctuations.
In summary, the proposed strategy enables the wheelchair to generate safe and directional
movement in a complex scenario.

Figure 11 shows the trajectory simulation comparison of the two controllers under
case 2 comparing Test 4 in Tables 1 and 2, where the arrow on the curve represents the
movement direction of the wheelchair. It can be clearly seen that the yellow trajectory curve,
representing the wheelchair using the TEB controller, has trajectory offset and unnecessary
rotation when encountering obstacles and approaching the target. In comparison, with the
same initial and target pose, the trajectory using the controller we proposed is more stable
and realizes directional movement without unnecessary rotation. Then, Figure 12 shows
the detailed simulation results for case 2. Although the robotic wheelchair using both
controllers can avoid obstacles and finally reach the target position, the wheelchair with the
MPC local controller has a smaller orientation deviation and directional movement. Since
the controller we designed utilizes the dual-quaternion-based SLERP and has the ability
to facilitate rotation and translation simultaneously, it is reasonable for the wheelchair to
approach the target more directly without unnecessary rotation.

According to the results, the proposed method can navigate the robot to the target pose
safely. Although there may be errors, the simulations have proved that the method works.
In general, the combination of dual quaternions and the SLERP method further enhances
the control capability of the MPC local controller. The simulation results demonstrate the
effectiveness and robustness of the proposed robotic wheelchair control strategy. These
results highlight the potential of this control strategy to significantly improve the safety,
stability, and overall performance of robotic wheelchairs in practical applications.

4.3. Experimental Results

To further demonstrate the application potential of the proposed control strategy in
daily life, we also conducted real-machine experiments. The experimental evaluation is
conducted using a robotic wheelchair controlled by the developed MPC-based control
system. The computer configuration is as follows, CPU is Intel Core i7-12700H, GPU is
RTX 3060, and MEMORY is 32GB. A specific real-world scenario is designed to validate the
wheelchair’s performance. To show the results clearly, the details for some moments are
demonstrated in Figure 13. To better accord with real-life scenarios, we conduct practical
experiments in a laboratory scenario. Our experiment begins indoors, as depicted in
Figure 13a. The map of the environment is unknown to the wheelchair. The wheelchair
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explores and navigates through the unknown environment with the target pose sent by
the user in RViz. After successfully navigating through a doorway, the robotic wheelchair
safely maneuvers through narrow corridors and avoids obstacles, as evidenced in (b)
and (c). Upon reaching the corridor’s end and encountering an elevator, the wheelchair
automatically executes a stable turn, as captured in (d). Subsequently, the robotic wheelchair
safely and reliably makes its way back to the laboratory, as illustrated in (e) and (f). It is
important to note that, for practical reasons, we intentionally avoid choosing a clean and
unobstructed testing environment.

The experimental results are shown in Figures 14–17. It can be seen that in Figure 14,
the initial driving origin of the robotic wheelchair is (0, 0), and the red dots are target
positions sent by the user. The blue curve is the actual path of the robotic wheelchair
with the dual-quaternion-based SLERP MPC controller. It is clearly shown that the robotic
wheelchair can drive steadily and avoid obstacles. However, it is worth noting that two
target points are outside the margin of reasonable area and have been marked by red
arrows (→). This is because the experimental scenario is too narrow, and the 3D-LiDAR
is unable to obtain the overall information. The target poses sent by the user may located
in the walls. In Figure 15, the purple curve represents the real orientation of the robotic
wheelchair during the whole movement process. The two error points we mentioned are
also indicated by arrows (→) in the figure. The real position results can be observed in
Figure 16, where the light green curve in the upper diagram is the position along the x-axis
and the result in the lower shows the position along the y-axis, respectively.
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Figure 10. The comparative simulation results of Test 1 in Tables 1 and 2, from top to bottom: the
orientation, x-axis position, y-axis position, linear velocity, and angular velocity.
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Figure 11. The comparative simulation results of trajectories with two controllers in case 2.
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Figure 12. The comparative simulation results with two controllers in case 2, from top to bottom: the
orientation, x-axis position, y-axis position, linear velocity, and angular velocity.
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(a) (b) (c) 

(d) (e) (f) 

Figure 13. Moments of the real-world experiment using a real robotic wheelchair in a narrow corridor
with obstacles with the proposed MPC-based hierarchical system. (a) Exit the lab door. (b) Encounter
trash cans. (c) Avoid obstacles and move on. (d) Turn around at the end of the corridor. (e) Avoid
obstacles. (f) Move back through the door into the lab.

In the experiment, there is a problem worthy of our observation, that is, when the
wheelchair is exiting the lab door, denoting the position in Figure 13a, the wheelchair
generates a strong bumpy feeling. In Figure 17, the linear velocity and angular velocity
change abruptly. This is mainly because the wheelchair encountered a threshold of the
door when passing through the lab door. In other words, there was interference in the
local map. This disturbance in the road surface also caused a bumpy feeling for the user
during the movement. However, after the wheelchair crosses the threshold, it returns to the
original path generated by the global path planner. This also illustrates the effectiveness of
the control strategy we proposed in dealing with interference problems.
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Figure 14. The real movement trajectory of the robotic wheelchair with the MPC-based hierarchical
system.
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Figure 15. The real orientation of the robotic wheelchair during the whole movement process.

The experimental results show the practicality of our proposed controller. From all of the
presented results, it can be observed that for both the simulation and experimental results, the
proposed control strategy demonstrated performance. The robotic wheelchair can achieve path
planning, successfully avoid obstacles, and maintain stability throughout the whole navigation
process. The experiment also shows the adaptability of the proposed control strategy to actual
environmental conditions, ensuring safe and efficient wheelchair movement.
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Figure 16. The real position of the robotic wheelchair during the whole movement process; the
distance along the x-axis is shown at the top, and the distance along the y-axis is shown at the bottom.
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Figure 17. The real velocities of the robotic wheelchair; the linear velocity is shown at the top, and
the angular velocity is shown at the bottom.

4.4. Discussion

(i). Safety and stability for practical application. The simulation and experimental
results clearly highlight that the use of dual-quaternion-based SLERP in robotic wheelchair
control with the MPC scheme shows significant advantages and advances in terms of
safety, stability, and overall performance. This method exhibits stability when tracking the
target path and handling translation and rotation simultaneously, while also being adept
at avoiding obstacles in real time. Such capabilities greatly improve the overall safety of
robotic wheelchairs. The simulation test results in Tables 1 and 2 show that although the
success rates are almost the same, the proposed MPC local controller ensures a higher safety
margin as it stops the wheelchair in a safe zone without collision in case of failure. Figure 9
shows the comparative simulation result in specific failure scenarios. It clearly shows that
without the MPC strategy, the robotic wheelchair hits the wall and gets stuck. In compari-
son, when using the proposed controller, the robotic wheelchair stops in a safe area and can
restarted by a new target pose, making it more viable for real-world applications where
safety and the ability to resume movement are vital. Furthermore, the dual-quaternion-
based SLERP approach used in the local path planner takes advantage of its feature of
handling translation and orientation simultaneously and allowing directional interpolation
to ensure consistent and continuous orientation when the wheelchair approaches the target.
This feature also enhances the stability of wheelchair driving, contributing to the safe and
directional movement for wheelchair users.

(ii). The future potential. It is important to highlight that the critical element in evalu-
ating the efficacy of our proposed control strategy lies in its potential for future applications.
Repetitive simulation comparisons show the safety of our approach: when obstacles cannot
be avoided with our controller, the robot wheelchair can stop and maintain a safe standby
distance from obstacles. Once a new target pose is given, the robotic wheelchair controlled
by our proposed controller can promptly resume self-driving. This addresses the effec-
tiveness of the MPC-based hierarchical motion control system we designed to ensure the
robot wheelchair’s safe operation. In particular, the experimental outcomes provide further
evidence of the robustness of our proposed strategy when encountering the ground surface
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of disturbance. Although the wheelchair will produce an uncomfortable fluctuation when
passing the threshold, it can immediately return to the desired trajectory after successfully
passing the threshold and can continue to perform local searches and self-drive. This
highlights the efficacy of our proposed controller in handling temporary local obstacles and
disturbance problems. It also reveals the potential of our MPC-based hierarchical motion
control system to tackle dynamic obstacle avoidance challenges in the future. Moreover,
the use of dual quaternions in the MPC scheme, while taking into account robotic kine-
matics and constraints, facilitates the real-time calculation of optimal control actions. Its
simultaneous calculation of rotation and translation optimizes the wheelchair’s navigation
performance, facilitating safe and directional self-driving in unknown environments. For
future practical applications, the robotic wheelchairs are expected to assist elderly users
with mobility issues in different scenarios, such as facing toward the table for meals or
approaching beds for sleep. The directional movement realized by the proposed controller
can give intuitive feedback to the users and improve their life quality.

5. Conclusions

In conclusion, this work presents a comprehensive framework for the motion control
of robotic wheelchairs in unknown scenarios. The proposed approach, combining global
path planning and MPC-based control with the integration of dual quaternions and SLERP,
demonstrates effective unknown environment exploration and safe obstacle avoidance. A
global path is generated by the A* algorithm and serves as the reference trajectory for the
MPC-based local path planner. Moreover, the utilization of dual-quaternion-based SLERP
in the local path planner allows for the continuous interpolation of poses, ensuring stability
and directional motion for the wheelchair. The dual-quaternion-based SLERP MPC-based
control strategy, considering the dynamics and constraints of the wheelchair, leads to safe
navigation and directional movement for the robotic wheelchair. The implementations of
the proposed framework in the simulation environment under ROS and the real world
further demonstrate its practical applicability and feasibility. This work contributes to the
advancement of assistive robotics, showing promising potential for real-world applications
and improving the mobility and quality of life of elderly individuals with mobility issues.
Currently, the system may stop movement in narrow spaces and has not incorporated
dynamic obstacles into the scenario, presenting a limitation in adaptability to environments
with moving entities. Future research will focus on enhancing the wheelchair’s interactive
capabilities, considering user preferences for a more personalized experience, and aim
to refine the system to navigate nimbly in confined spaces and to react intelligently to
dynamic obstacles.
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Appendix A

To calculate the mid-pose of two dual quaternions, we use the spherical linear interpo-
lation (SLERP) method. The mid-pose corresponds to the interpolation at the parameter
value t = 0.5. Given two dual quaternions D0 and D1, we can calculate their mid-pose
Dmid using the following steps:
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1. Compute the conjugate of D0, denoted by D−1
0 .

2. Compute the product of the conjugate and D1, denoted by Dcon = D−1
0 D1.

3. Apply the SLERP with derived formula (9) with t = 0.5, which is Dmid = D0(Dcon)0.5.
4. To compute the power of a dual quaternion, first decompose Dcon into its scalar and

vector parts: Dcon = (sr + vr) + ε(st + vt).
5. Compute the scalar and vector parts of the resulting dual quaternion: (smid + vmid) +

ε(st,mid + vt,mid) = D0(Dcon)0.5.
6. For the real part, apply the power operation to a unit quaternion using the formula:

(smid + vmid) = cos(0.5 · θ) + (sin(0.5 · θ) · vr
|vr | ), where θ is the angle between D0 and

D1.
7. For the dual part, use the formula: (st,mid + vt,mid) =

1
2 (st + vt)(smid + vmid).

8. Combine the real and dual parts to obtain the mid-pose dual quaternion: Dmid =
(smid + vmid) + ε(st,mid + vt,mid).

Now, we have the mid-pose dual quaternion Dmid of the two given dual quaternions
D0 and D1.
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