
Citation: Cirelli, G.; Tamantini, C.;

Cordella, L.P.; Cordella, F. A

Semiautonomous Control Strategy

Based on Computer Vision for a

Hand–Wrist Prosthesis. Robotics 2023,

12, 152. https://doi.org/10.3390/

robotics12060152

Academic Editor: Claudio Loconsole

Received: 9 October 2023

Revised: 3 November 2023

Accepted: 11 November 2023

Published: 13 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

robotics

Article

A Semiautonomous Control Strategy Based on Computer Vision
for a Hand–Wrist Prosthesis
Gianmarco Cirelli 1 , Christian Tamantini 1 , Luigi Pietro Cordella 2 and Francesca Cordella 1,*

1 Research Unit of Advanced Robotics and Human-Centred Technologies, Universitá Campus Bio-Medico di
Roma, 00128 Rome, Italy; gianmarco.cirelli@alcampus.it (G.C.); c.tamantini@unicampus.it (C.T.)

2 Universitá di Napoli Federico II, 80125 Naples, Italy; cordel@unina.it
* Correspondence: f.cordella@unicampus.it

Abstract: Alleviating the burden on amputees in terms of high-level control of their prosthetic
devices is an open research challenge. EMG-based intention detection presents some limitations due
to movement artifacts, fatigue, and stability. The integration of exteroceptive sensing can provide a
valuable solution to overcome such limitations. In this paper, a novel semiautonomous control system
(SCS) for wrist–hand prostheses using a computer vision system (CVS) is proposed and validated.
The SCS integrates object detection, grasp selection, and wrist orientation estimation algorithms.
By combining CVS with a simulated EMG-based intention detection module, the SCS guarantees
reliable prosthesis control. Results show high accuracy in grasping and object classification (≥97%)
at a fast frame analysis frequency (2.07 FPS). The SCS achieves an average angular estimation error
≤18° and stability ≤0.8° for the proposed application. Operative tests demonstrate the capabilities
of the proposed approach to handle complex real-world scenarios and pave the way for future
implementation on a real prosthetic device.

Keywords: hand–wrist prosthesis; artificial vision; semiautonomous control

1. Introduction

The loss of an upper limb has profound physical, psychological, and social conse-
quences [1]. It significantly impacts an individual’s ability to perform activities of daily
living and work-related tasks [2], limiting their independence and overall quality of life.
Despite advancements in prosthetic technology, statistics show that less than half of am-
putees (44.7%) use their prosthetic device for more than eight hours per day. Additionally,
the majority of amputees (76.9%) use their prostheses for cosmetic purposes rather than
for functional ones. This highlights the challenges faced by amputees, where functional
limitations and discomfort still influence their decision to utilize the prosthesis [3,4].

To address these issues, alleviating the burden on amputees regarding the control
of prostheses is crucial. Hence, researchers are actively developing new strategies to
intuitively control multiple degrees of freedom (DoFs) [5].

Traditionally, myoelectric prostheses rely on recognizing user motion intention through
electromyographic (EMG) signals [6]. Various strategies based on pattern recognition [7]
have been proposed to classify different muscle activation patterns, improving prosthesis
control performance with respect to simple threshold-based methods. However, sequential
control of different DoFs is still mainly adopted, limiting the naturalness, intuitiveness,
reliability, and performance of the prosthesis control [8]. More recent and sophisticated ap-
proaches enable parallel control of multiple DoFs to naturally control prosthetic devices [9].
Nevertheless, their performance, as that of all the EMG-based systems, is heavily dependent
on a trade-off between the number of possible outputs, i.e., the number of possible classes,
and the system robustness: the higher the number of classes, the lower the performance
and robustness of the system. Specifically, the classification accuracy drops to 90–95% when
the number of motion classes is increased by more than 10, compared to the initial accuracy
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of 99% achieved when only four classes are considered [10]. This effect can be observed as
a limitation arising from both the utilized algorithms, as well as from the inherent difficulty
faced by upper-limb amputees in generating precise and consistent contractions. They
also exhibit noticeable performance degradation over time, which can be attributed to
various factors such as repositioning of the prosthetic socket, sweating, and muscle fatigue
resulting from prolonged use or physical exertion [11]. These inaccuracies in detecting user
intentions may significantly affect the performance and reliability of the prosthesis control.

To ensure significant improvements in the accuracy, naturalness, and intuitiveness
of prosthesis control, and therefore to reduce users’ cognitive burden, Semiautonomous
Control Strategies (SCS) [12] were introduced to combine user inputs with automated
or intelligent systems to control the prosthetic device [13]. Specifically, Computer Vision
systems (CVS) can be exploited to predict the grasping configuration from the geometric
properties of the framed object, allowing the accomplishment of the task.

The first CVS-based SCS did not consider any user input but only relied on the
information retrieved from exteroceptive sensors. For instance, in [14], an RGB camera
with an ultrasonic sensor was mounted on the back of a prosthetic hand to control its
motion. Geometrical features of the object were extracted from the gray-scale image
(320 × 240 pixels) acquired by the camera, using a threshold segmentation method. Wrist
rotation, grasp type, and hand opening were determined based on visual and distance
information [15]. More specifically, four types of grasp were considered, while the size
of the aperture was determined based on the estimated size of the object. The control
was run on a standard personal computer, using a DAQ board for communication with
sensors. Another approach relies on an RGB-D camera for preshaping the robotic hand
and estimating grasp type, size, and wrist orientation [16]. However, in both approaches,
the cameras were not integrated into the hand–wrist prosthesis due to their weight and size.
Moreover, this approach is based on the estimation of the desired prosthesis configuration
by considering the properties of the segmented object, retrieved from the fitting model
which well-approximates its shape. Specifically, only three geometrical models were taken
into account, i.e., three different grasp types: sphere, cylinder, and cuboid.

Further approaches introduced EMG signals to activate the movement of the prosthe-
sis, and left the identification of the gestures to be performed to the exteroceptive sensors.

In [17], EMG signals were used only to trigger the grasp phase, while Convolutional
Neural Networks (CNNs) [18] were trained to categorize the objects framed by an RGB
camera into four different hand gestures. All offline and real-time tests were implemented
on a personal computer, leaving the integration of the system onto prostheses among future
developments. In [19], a similar approach was proposed, where EMG signals recorded
from two electrodes were used only to initialize the control strategy and to confirm hand
gestures identified by the CNN-based control. Furthermore, the prosthesis user can receive
feedback and decide whether to reset, adjust, or continue the movement.

The CNN-based approaches proposed in the literature present an important limitation:
a shift towards object detection strategies results in relinquishing the autonomous and fine
control of prosthetic hand orientation, i.e., pronation/supination (P/S) rotation, resorting
to coarse control solutions or leaving the manual management of the prosthetic hand
orientation to the user, significantly impacting user-side control.

Recent studies explored the use of a multimodal system with EMG and CVS in pros-
thetic control [20,21], proposing a strategy for combining these two types of information to
improve the accuracy with respect to an EMG classifier. The hand gesture determined based
on information gathered from an environmental CVS was used as an additional feature
alongside those extracted from EMG signals to infer the final grasp to be executed [22],
neglecting wrist orientation. From the state-of-the-art analysis, the need for a novel SCS
that manages both hand and wrist configuration by simultaneously taking into account
the user’s motion intention is therefore evident. It will foster the inclusion of the user in
the prosthesis control loop enhancing the prosthesis embodiment and the naturalness of
the control. The objective of this paper is to fill this gap by proposing a novel SCS based
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on a CVS embedded in a wrist–hand prosthesis and integrating user motion intention,
derived from a simulated EMG classifier, and exteroceptive information about the type and
orientation of the object to grasp.

The proposed approach compares the output of the EMG classifier with that of the
vision system to obtain the optimal grasp to be executed and the corresponding wrist orien-
tation. More specifically, it starts with a limited set of grasp classes, identified by the EMG
classifier, to determine object-specific sub-classes, ensuring the appropriate grasp execution.
In the vision-based control strategies currently proposed in the literature, the user may
feel estranged from controlling the prosthesis, because he/she only triggers the control via
EMG sensors, while the grasp to be performed is autonomously determined by the control
strategy. The proposed approach addresses this limitation, since the user can decide the
grasp to be performed through EMG signals, and the SCS is responsible for determining the
most appropriate wrist orientation and for confirming the recognized motion intention or
suggesting corrections. More specifically, the EMG classifier is responsible for determining
four grasp macro-categories, and the vision-based control strategy enables the assignment
of grasp configurations belonging to that macro-category, but object-specific, considering
object geometrical characteristics [23]. Furthermore, the implemented control strategy has
the capability to handle real-life scenarios, enhancing the overall usability of the system in
practical situations.

The proposed approach was validated in two different experimental settings. The first
one is a structured environment to quantify the computational burden of the algorithm and
its performance in accurately detecting the framed objects and their orientation. The out-
come of this phase also guided the choice of the vision system’s characteristics, i.e., the
camera model to be used and the image resolution. The second experimental setting repro-
duces a realistic operative scenario. Once the optimal CVS positioning on the hand–wrist
prosthesis was determined, the camera was mounted on the corresponding location of a
human subject hand to assess the algorithm’s capability for handling coherence between the
user intention and the vision system, and for properly identifying approaching conditions
with the object to be grasped.

The paper is structured as follows: Section 2 details the proposed approach and
describes the methodological steps used for validation. Section 3 presents and discusses
the results obtained in the different experiments. Lastly, Section 4 draws the conclusion of
this work and provides possible future works.

2. Materials and Methods

An overview of the proposed approach is shown in Figure 1. The vision-based
hand–wrist control strategy (blue box in Figure 1) takes as input an RGB image of the
environment the hand has to interact with, captured from the CVS integrated into the
prosthesis, and the user’s intention, obtained from an EMG classifier, in terms of desired
hand gesture. The combination of these two pieces of information makes it possible to si-
multaneously cope with coherent and non-coherent situations and accurately estimate wrist
orientation to optimize hand preshaping, i.e., to output the hand gesture to be performed
by the prosthesis and the wrist orientation (in terms of P/S angles) most appropriate to the
object’s geometric properties. Specifically, the proposed SCS is composed of 3 sequential
processing steps: Object Detection, Grasp Selection, and Orientation Estimation. Visual
feedback, based on the output of the control algorithm, is provided to the prosthesis user
through two colored LEDs to report whether an object has been detected in the scene and
any non-coherence with the output from the EMG classifier. Each block shown in Figure 1
is detailed in the following.
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Figure 1. Block scheme of the proposed approach: the control strategy is outlined by the blue box.

2.1. Proposed Approach
2.1.1. EMG Signal Classifier

User motion intention about the grasp to be performed is retrieved by the EMG
signal classifier. It is a simulated classifier that, considering the hand gestures commonly
performed by commercial prostheses, is able to classify 4 grasp macro-categories in addition
to the Rest, i.e., Power, Lateral, Precision, and Pointing.

2.1.2. Computer Vision System (CVS)

A CVS was introduced to recognize the objects to be grasped and their properties,
as explained in Section 2.1.3, with the aim of estimating the most appropriate hand and
wrist configuration. The system must be such that it can be integrated into one prosthetic
hand. Therefore, the camera sensor and the electronic components should be miniaturized
in order not to add weight and bulk to the prosthetic hand. To achieve this goal, a single-
board computer (SBC) has been exploited to host the proposed algorithm and perform
preliminary tests.

2.1.3. Vision-Based Hand–Wrist Control Strategy

The image of the scene retrieved by the CVS is the input for the Object Detection
module. It is responsible for detecting any objects in the scene and associating them with
a bounding box (x-coordinate and y-coordinate, width and height of the bounding box),
a class label, and a classification confidence level, i.e., the probability the object was correctly
classified, organized into an (N, 6) tensor, where N is the number of objects detected and
6 is the computed information. The objects are sorted with descending confidence levels.

To detect the object in the scene, among the several CNN models in the literature, such
as VGG16, ResNet50, YOLO, and MobileNet [24], YOLOv5 (You Only Look Once) [25,26]
in its small version was chosen. Compared to other models, YOLOv5 provides a favorable
trade-off between classification accuracy and processing speed, making it highly suitable
for real-time object detection applications. The model was trained on the Microsoft COCO
(Common Objects in Context, [27]) dataset, a large-scale image recognition dataset for
object detection and segmentation.

Starting from the macro-categories of grasp that can be obtained from the EMG clas-
sifier, the vision-based control strategy enables the assignment of grasp configurations
belonging to that macro-class, but object-specific, identified on the basis of the Feix tax-
onomy [28]. Thus, the EMG classifier maintains a high classification performance, as the
number of considered classes is limited, while, at the same time, the grasping capabilities of
the prosthesis are enhanced, as the implemented control strategy takes into account object-
specific grasping sub-classes. Figure 2 shows the list of gesture sub-categories considered
in the proposed control strategy and the objects associated with them.
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Figure 2. Diagram of all the hand gestures considered and objects associated with them: the
symbols indicate the grasps the EMG classifier (red) and the developed SCS (blue) are able to
recognize, respectively.

This information is then provided as input to the Grasp Selection module, which
compares the hand gesture, obtained from the EMG classifier, with the one estimated by
the vision system. The module identifies coherence or non-coherence between the two
proposed grasps and the object that the user is most likely intending to grasp. Specifically,
a decisional tree is proposed to autonomously respond to all cases that may occur in
the scene:

• If there are no objects detected in the scene, then the control algorithm returns the Rest
gesture. This information is given back to the user via visual feedback, as explained in
Section 2.1.4.

• If there is non-coherence between the output from the EMG classifier and the hand
gestures associated with the detected objects, then priority is given to the visual
information. It means that the output of the Grasp Selection module is the hand gesture
corresponding to the object with the highest confidence level. The correspondence
between the object and the grasp is shown in Figure 2.

• If there is coherence between the output of the EMG classifier and the grasp associated
with an object in the scene, then the object is taken into account, and the other objects
not belonging to the class recognized by the EMG classifier are removed from the
list of detections. In this case, the number of objects is variable and depends on how
many of them can be grasped with the hand gesture obtained from the EMG classifier.
In particular, If there are multiple objects that can be grasped with the class obtained
from the user EMG classifier, then only objects framed in the central portion of the
scene are considered. It is assumed that the object the user wants to grab is framed in
the central region of the image [29], thus the one towards which the prosthetic hand
will move. Even in this case, the number of objects is variable and depends on how
many of them are in the central portion of the acquired image. If there are multiple
objects in the central portion of the image, then the one that was recognized with a
higher confidence level is selected.

The Orientation Estimation module is responsible for continuously estimating the
wrist P/S angle by segmenting the Region of Interest (ROI) of the selected object and by
applying Principal Component Analysis (PCA).

Selecting only the ROI is crucial, since it improves segmentation accuracy by focusing
solely on the target object, eliminating noise areas in the image, and it reduces compu-
tational burden by analyzing only the bounding box, thereby increasing analysis speed.
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The ROI is transformed from RGB to gray-scale and subjected to threshold segmentation
using Otzu’s method [30]. It allows for determining the optimal threshold by analyz-
ing the intensity histogram to separate the foreground, i.e., the selected object, from the
background. The resulting binary image undergoes the closure morphological operation
involving dilation and erosion procedures to remove residual noise in the binary mask.

Contours are detected after segmenting the image, and only contours within the 5–95%
area range of the ROI are considered to ensure a single region for the PCA. A method based
on PCA has been chosen to retrieve the optimal wrist P/S angle, since PCA reduces the
dataset’s dimensionality while preserving maximum information and variance. PCA is
specifically designed to capture the directions along which the data exhibit the highest
variance, making it a valuable method for identifying the principal direction of variability
within a segmented region, i.e., the detected object. The proposed method relies on some
constraints the camera placement should satisfy: the image plane must be perpendicular to
the wrist P/S rotation axis and the y-axis of the image reference system must be aligned with
the longitudinal axis of the long fingers, while the x-axis must be perpendicular to it. If the
aforementioned constraints are met, the P/S angle α the hand–wrist prosthesis has to reach
is determined as the angle between the first Principal Component (PC) of the segmented
region in the ROI and the x-axis of the image plane [31]. In this configuration, the first PC
is perpendicular to the long finger’s longitudinal axis, enabling grasping along the object’s
smallest dimension. However, some objects require a different procedure. For example,
the ones without a principal axis, like spheres, cannot have their wrist orientation estimated.
In this case, the optimal P/S angle is the one that allows the palm of the prosthetic hand
to be parallel to the plane on which the object is located, which is an angle of 90°. For
objects like the mouse, where the pointing hand configuration is required, the first PC
should be parallel to the long finger’s longitudinal axis, resulting in a rotation angle that
complements α.

The approach works continuously and is capable of recognizing the reaching phase.
Once the reaching occurs, the hand–wrist prosthesis shapes itself in the configuration
estimated by the proposed approach. Specifically, the ROI area is tracked among subsequent
frames and, if a 50% area increase is computed with respect to the initial value, the hand
gesture obtained with the proposed strategy is actuated.

2.1.4. Visual Feedback

The developed system includes a feedback module that provides visual feedback to
the prosthetic user about the detection of an object in the scene. Specifically, it consists
of a pair of LEDs, one green and one red, connected to the SBC. The green one indicates
the successful detection of an object in the scene. The red one is turned on for a fixed
time whenever a mismatch between the user motion intention, obtained by the EMG
classifier, and the gesture class, computed by the vision-based hand–wrist control strategy,
occurs. This real-time visual feedback aims at improving user confidence, facilitating error
detection and enabling effective control of the prosthetic device. More specifically, with the
green LED, the user is informed that at least one object in the scene has been recognized by
the control algorithm, whereas the red LED indicates a non-coherent condition that might
lead to issues in the interaction with the object. This approach allows the user to opt for
repeating the muscle contraction to correct the output from the EMG classifier, rather than
proceeding with the grasping task solely relying on the information from the CVS.

2.2. Experimental Validation

Extensive tests of the proposed approach performance have been carried out. The ex-
perimental setup and protocol, and the key performance indicators used for the system
validation are detailed in the following.
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2.2.1. Experimental Setup

The vision-based control algorithm was executed on the Raspberry Pi 4 Model B, which
was chosen as a single-board computer (SBC) due to its compact size (88 × 58 × 19.5 mm)
and computing power, making it an ideal choice for small-scale system development.
Moreover, the 64-bit OS Raspbian provides support for Python, the high-level program-
ming language selected for writing the control algorithm. The SBC desktop was remotely
controlled via virtual network computing (VNC) and a power bank was used as an energy
supply (5V DC and 3A via a USB-C port) to make the system portable.

To develop the CVS, the following requirements were considered for the camera
selection: (i) integration capability into a hand–wrist prosthesis, which imposes the use
of a miniaturized RGB camera; (ii) high native resolution to ensure optimal algorithm
performance; (iii) compatibility with the selected SBC for communication purposes; (iv) cost-
effectiveness to not raise the prosthesis cost. After evaluating commercial options, two
cameras were selected: the Arducam 16MP High-Resolution camera, with 16 MP resolution
and autofocus capabilities, and the Joy-it Wide Angle camera, with 160° wide field of view.
The technical specifications of the two cameras are reported in Table 1.

Table 1. Cameras technical specifications.

Camera Model Arducam 16 MP Joy-It Wide Angle

Sensor Sony IMX519 OV5647

Resolution [pixels]
(Static Images) 16 MP (4656 × 3496) 5 MP (2952 × 1944)

Resolution [pixels] (Video) 1080p30, 720p60,
640 × 480p90

1080p30, 960p 45,
720p60, 640 × 480p90

Field of View(FoV) 80° 160°

Autofocus X N.A.

Dimension [mm] 25 × 23.86 × 9 25 × 24 × 18

Weights [g] 3 5

Cost 33.95 e 20.17 e

Figure 3 shows the scheme of the connections that characterize the CVS, with both the
identified cameras.

Figure 3. Connections scheme of the CVS.

The PiCamera2 and OpenCV libraries in Python were used to obtain images from
the vision sensors. PiCamera2 facilitates communication with the camera and parameter
configuration, while OpenCV is used to perform the image processing pipeline described
in Section 2.1.3. Specifically, both cameras are configured at their best native resolution,
which means an initial frequency of 10 FPS and 15.63 FPS, respectively.
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In order to ensure a good compromise between speed and performance, the algorithm
was tested by taking as input different image resolutions, i.e., 640 × 480 pixels [32,33],
which are commonly used and the largest, and 320 × 240 pixels [14,15], which are widely
employed and provide a 50% reduction in size compared to the former option. In this way,
it was possible to quantify whether the input image size could affect computational burden
and performance.

The Vicon VERO system was introduced for evaluating the orientation estimation
of the proposed control strategy. It is an optoelectronic system gold standard in motion
capture applications, capable of tracking the movement of objects and/or subjects in a 3D
environment; specifically, Vicon is composed of 8 cameras called VERO; they are compact
and super-wide infrared cameras with a resolution of 2.2 MP. The acquisition frequency
was set to 100 Hz. Cameras are placed in the environment to optimally frame the scene
and record the movement of reflective markers attached to the monitored objects. After the
acquisition, raw data are used for kinematic reconstruction, giving back the 3D markers’
position with respect to a reference frame defined at the beginning.

2.2.2. Experimental Protocol

To evaluate the performance of the proposed control strategy, the experimental proto-
col was divided into three sessions called Classification Performance, Orientation Estima-
tion Validation, and Operative Tests.

The first session of the experimental protocol aimed at characterizing the performance
of the proposed control algorithm, specifically of the Object Detection module, in correctly
classifying the various objects shown individually, considering different setup configura-
tions, i.e., various combinations of camera and input image resolution. The environment
was structured with the camera framing the objects from above, not perfectly parallel to the
image plane: in fact, the camera was held at a pre-defined angle to the plane on which the
objects were standing, simulating a real context. In this part of the protocol, 16 objects were
taken into account, divided among the 10 considered hand gestures: fork and spoon for
Lateral; keyboard and mouse for Pointing; sports ball for Spherical (Precision); book and
cup for 2-digits (Precision); scissors and wine glass for 3-digits (Precision); cell phone and
remote for Prismatic (Power); bottle for Thumb Adducted (Power); umbrella for Thumb
Abducted (Power); knife for Index Finger Extension (Power); backpack and suitcase for
Fixed Hook (Power). Five trials were performed for each object per setup configuration,
and in each of them, the object was framed for 25 frames for a total of 125 samples. To also
verify if the position of the objects with respect to the camera influences the algorithm
performance in associating the grasp class to the framed object, the objects were moved
within the workspace to predefined positions.

The second session aimed at characterizing the performance of the algorithm in wrist
orientation estimation and evaluating its computational burden, i.e., of the Orientation
Estimation module, for each of the aforementioned setup configurations. Even in this case,
the environment was structured as shown in Figure 4a and the camera was located in a
fixed position and framed the scene in which the objects were placed one by one. Moreover,
2 markers were placed on each of the 8 considered objects, 2 per grasp macro-category
(shown in Figure 4b) along their largest dimension, to have information on both object
orientation, and 3 on the camera module to obtain the image plane.

For each object, 5 trials were performed for each configuration. In each test, the object
was rotated by an angular displacement previously fixed to make the results comparable
across different configurations. To evaluate the capability of the proposed control algo-
rithm in estimating wrist orientation, the angular displacement obtained from the control
algorithm was compared with the one calculated from the Vicon system’s data processing.
Markers’ positions were elaborated on MATLAB and used to compute the camera plane
and the Principal Component of the object.

The results obtained from the first two experimental sessions led us to identify the
best setup (in terms of camera model and image resolution) among the four considered
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for obtaining the best algorithm performance. Once the best setup was found, the third
part of the experimental protocol focused on finding the best position for the CVS in a
hand–wrist prosthesis and evaluating the performance of the proposed control strategy,
more specifically of the Grasp Selection module, in 3 more complex operative conditions
(i.e., in a less structured environment) named Grasp selection test: Coherent Condition,
Grasp selection test: Non-Coherent Condition, and Approaching Condition.

(a)

(b)

Figure 4. Experimental setup for Control Validation phase; VERO v2.2 cameras are shown in red
circles (a). Objects used in the second session of the experimental protocol (b).

Firstly, the optimal camera placement was evaluated by positioning it in 4 different
anatomical locations on the upper limb of 10 healthy subjects and assessing the different
levels of hand occlusion. The test was conducted in an operational scenario with 5 men and
5 women (average age = 33.4± 13.6 years) of different anthropometric features, in order
to characterize the level of occlusion with different wrist and hand sizes. The camera was
placed at the wrist level, respecting all the positioning constraints defined in Section 2.1.3.
Secondly, considering the so-obtained optimal camera placement, the CVS was placed on
the upper limb of a healthy subject, as shown in Figure 5a, and the 3 operative tests were
conducted considering the setup in Figure 5b.

(a) (b)

Figure 5. Positioning of CVS on the arm of the subject (a) and experimental setup for operative test (b).

In the first test, the performance of the control algorithm was analyzed whenever more
than one object was detected and the user’s intention changed. Four distinct items were
displayed, each associated with a particular hand gesture, and the system was evaluated to
see if it could select the proper object based on the EMG classifier input. This test aims at
validating the capability of the proposed approach to identify the proper object according
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to the user’s intention in a real-life scenario, where multiple tools/objects are often found
close together.

The algorithm’s ability to determine the proper hand gesture even when there was a
discrepancy between the EMG-based user’s intention and the hand gesture linked with
the framed object was evaluated in the second test. Four items were provided, each
representing a distinct grasp type, and the ability to accurately identify the hand gesture
when the output from the EMG classifier was constant (Pointing) was tested.

The last test assessed the algorithm’s capacity to detect when the prosthetic hand was
approaching an object and required to shape the hand to grab it. The goal of this test was to
use only information prior to the reaching phase for hand-shaping. Again, 4 objects were
considered and the test was repeated twice for each.

In accordance with ethical guidelines and regulations governing research involving
human subjects, this study has been determined to be exempt from obtaining approval
from a relevant review board since the research poses minimal risk to the participants.
The study primarily involves observations and does not involve any invasive or potentially
harmful procedures. Participants have not been exposed to any physical, psychological,
or social harm.

2.2.3. Key Performance Indicators (KPIs)

As explained in Section 2.2.2, each phase of the experimental protocol aims at assessing
different aspects of the proposed control strategy. In order to assess the capability of the
proposed pipeline to accurately detect the framed objects, the classification accuracies
were quantified during the Classification Performance validation phase. In particular,
the following accuracies were computed: (i) The Accuracy in Object Classification (AOC)
assesses the correspondence between the real object and the predicted one, returned by the
Object Detection module. (ii) The Accuracy in Grasp Classification (AGC) measures the
correspondence between the true hand gesture and the predicted one.

During the Orientation Estimation Validation, the performance of the proposed control
strategy in estimating object orientation and the computational burden of the implemented
algorithm were characterized. The computed performance indicators were: (i) The Angular
error (AE), which assesses the accuracy of the proposed system in estimating the object
angular displacement and can be computed as

AE = |∆θV − ∆θP|, (1)

where ∆θV and ∆θP represent the angular displacement obtained from Vicon VERO and
that computed by the proposed SCS, respectively. (ii) The Angular Estimation Stability
(AES), which was analyzed considering the standard deviations of angles computed by the
proposed algorithm and those obtained by the Vicon VERO data elaboration. The higher
the value of the total standard deviations, computed per setup configuration, the lower
the stability. These two KPIs were used in the first session of the protocol. (iv) The
Analysis Frequency (AF), which quantifies, in frames per second (FPS), the approach
to computational burden, i.e., the frequency at which the control algorithm analyzes
the images.

Lastly, during the Operative Tests, the following performance indicators were com-
puted: (i) The Occlusion Area (OA) , which is the area of the hand that occludes the scene
and it is expressed as

OA =
NH
Ntot
· 100, (2)

where NH and Ntot are the number of pixels in which the hand is present and the total
number of pixels, respectively. (ii) The Success Rate (SR), which is the success rate obtained
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in the Approaching Condition test, defined as the ratio between the number of trials in
which the approaching phase (n) was recognized and the total trials N. It is expressed as

SR =
n
N
· 100. (3)

2.2.4. Statistical Analysis

The mean values and standard deviations of the above-mentioned KPIs were com-
puted, specifically for AE and AF. Moreover, the Wilcoxon paired-sample test was per-
formed for AE to analyze the differences between the two input sizes and the two camera
sensors. In this way, identifying the best configuration among the four possible ones by
comparing the angular errors for each object and each setup configuration was possible.
Since all the performed tests are carried out on a couple of datasets, the significance level
was set at p-value = 0.05.

3. Results and Discussions

Figure 6 shows the outputs of the proposed SCS for the same object, from Object Detec-
tion to Orientation Estimation, for both resolutions. As evident, the proposed approach was
capable of (i) correctly detecting the framed spoon, (ii) segmenting it from the background,
and (iii) estimating its orientation in the image plane.

(a) (b)

Figure 6. Example of Output in the first session of the experimental protocol for the 240p (a) and
480p (b) resolution and the same object.

Table 2 summarized the KPIs computed during the experimental validation of the
proposed approach.

Table 2. Results obtained for each setup configuration in the first two sessions of experimental protocol.

KPI 1 KPI 2 KPI 3 KPI 4

AOC AGC AE [deg] AES [deg] AF [FPS]

5 MP 240p 97.80% 98.15% 14.17 ± 10.53 0.70 2.02 ± 0.13
5 MP 480p 97.35% 97.55% 11.40 ± 8.12 0.38 0.87 ± 0.13

16 MP 240p 97.85% 99.80% 16.26 ± 8.62 0.20 2.07 ± 0.15
16 MP 480p 99.35% 99.55% 17.35 ± 8.80 0.34 0.88 ± 0.17

As emerged from Table 2, each setup configuration obtained both AOC and AGC > 97%.
Misclassification errors for the 5 MP camera were due to fish-eye lens distortion and low
confidence in detected objects. The majority of the errors were encountered for objects
with spherical surfaces since fish-eye lens distortion modifies the shape of the objects and
they were not detected with high confidence in many frames. On the contrary, the 16 MP
camera sensor correctly classified spherical objects since the fish-eye lens distortion is
absent. Since the autofocus of this camera requires 3 frames to properly focus the object,
the algorithm was not capable of providing stable classification in the initial framing
phase. Moreover, it emerged that AGC ≥ AOC objects associated with a certain hand
gesture category are misclassified with another that can be manipulated with the same
hand gesture. This highlights how the proposed approach is not significantly affected by
object misclassification.
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During the Orientation Estimation session, the average AE of the proposed system
in estimating the object orientation did not exceed 18° and the AES was ≤0.8°. The box
plots of the AE for each object are divided with respect to the hand gestures and per setup
configuration (Figure 7). It is worth observing that the median AE does not exceed 20°,
except for the mouse and phone, considering the 16 MP camera with 480p resolution.

Figure 7. Box plot of angular errors for each object and setup configuration. The * denotes comparison
in which p-value < 0.05.

Moreover, the statistical analysis highlights significant differences between the 16 MP
camera module with two different resolutions only for the book (p-value = 0.032), remote
(p-value = 0.008), and mouse (p-value = 0.032), with a higher AE for 240p resolution only in
the first case. Considering 480p resolution for both cameras, the AE is lower for 5 MP one
than the 16 MP in the case of the remote (p-value = 0.008), and keyboard (p-value = 0.008),
whereas the phone is at the limit of statistical significance (p-value = 0.057). Furthermore,
there is a statistical difference between the AE of the two different cameras at 240p resolution
only for the keyboard.

Lastly, considering the computational burden of the proposed SCS, as expected, the ex-
ecution time of the entire control cycle strongly depends on the chosen input image reso-
lution rather than on the camera. AF is 2.02± 0.13 FPS and 0.87± 0.13 FPS for 240p and
480p resolutions, respectively, for the 5 MP camera sensor. Similarly, AF is 2.07± 0.15 FPS
and 0.88± 0.17 FPS for 240p and 480p resolutions, respectively, for the 16 MP camera.
The lower the resolution, the higher the AF of the proposed control algorithm. Regardless
of the selected resolution, the Object Detection module takes three orders of magnitude
longer than other parts, resulting in being the bottleneck of the control algorithm. In fact,
the time required for Object Detection in the scene is >97% of the cycle time.

The comparative analysis highlighted that the 240p resolution outperformed the 480p
one. It resulted in having a lower computational burden without affecting the AOC,
AGC, AE, and AES. If the camera dimensions are taken into account, the 16 MP one
can be considered the best choice since it can be more easily integrated into a prosthesis
due to the absence of the fish-eye lens. Furthermore, the 16 MP camera module has the
capability of automatically regulating focus: when integrating a camera into a prosthesis
that is continuously in movement, automatic focus adjustment reduces the burden on the
algorithm, which will always have to work under the condition where the objects of interest
are in focus. Thus, the best configuration among the tested ones is the 16 MP Arducam
High-Resolution Camera with a 320 × 240 pixels (240p) resolution. This configuration was
employed for the last validation phase.

Moreover, the accuracy values in grasp classification are higher than or generally
consistent with what has been observed in the literature [17,19], despite a substantial
increase in the number of grasps [20,34] and the management of the prosthetic wrist
orientation [21,22].

Figure 8a displays the average OA scores obtained for male and female subjects in all
the four examined camera positions shown in Figure 8b. It emerged that the ventral position
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obtained the lowest OA (<15%). Furthermore, in this position, an object is framed until the
moment it should be grasped, ensuring a more robust control of hand and wrist preshaping.
The Operative tests were carried out by exploiting this camera positioning.

(a)

(b)

Figure 8. Spider plot of the average OA obtained (a). Positioning of the CVS on one subject for all the
positions considered, with an example of a frame acquired at each of the four positions (b).

In the coherent condition, the proposed algorithm was able to select only the object
whose hand gesture matches the EMG classifier output. Figure 9 shows the capability
of the proposed SCS to change its output instantly. This occurs because the algorithm
always identifies an object in the scene that is graspable with the gesture the user wants
to perform. Furthermore, since an object of the user’s motion intention class was always
present, the red LED never turned on, i.e., the green LED never turned off. Consequently,
the orientation estimation was smoothly aligned with the desired object.

(a) (b)

Figure 9. (a) Output from the Grasp selection test: coherent condition. (b) Frames acquired in four
different time instants are reported on the right.

The non-coherent condition results are shown in Figure 10: starting from the initial
output of the EMG classifier (dashed line), the SCS associates each object framed in the
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scene with the correct hand gesture (in orange) to return the correct selected grasp (in red).
These discrepancies were fed back to the user by turning on the red LED.

(a) (b)

Figure 10. (a) Output from the Grasp selection test: non-coherent condition. (b) Four frames acquired
by the camera are shown on the right.

The SR for the approaching condition test was 100%. The proposed algorithm was
always capable of detecting the approach of the tested objects. Figure 11 shows a represen-
tative test conducted with the fork: the value of Area in pixels along with its variation at
each frame is plotted.

(a) (b)

Figure 11. Output from Approaching condition test for the trial with a fork. (a) ROI area and its
variation over time. (b) frames of the acquired video.

A preliminary analysis of the ease of use and the need to perform non-natural move-
ments was carried out on one healthy subject wearing the system. As shown in Figure 5b,
the user was asked to position himself in front of the objects in a natural way. In this
configuration, the objects are recognized by the proposed algorithm without requiring the
user to make non-natural or compensatory movements.

4. Conclusions

In this paper, a semiautonomous control system based on a computer vision system for
wrist–hand prostheses was developed and tested. The SCS integrates a CNN-based object
detection module, a grasp selection module, and an automatic thresholding algorithm for
wrist orientation estimation. By combining exteroceptive information from the CVS with the
user’s intention via simulated EMG signals, the SCS aims at enhancing prosthesis control
performance. The proposed SCS incorporates object detection, selective segmentation of
the image, and dynamic thresholding. The results show promising outcomes, including
high levels of accuracy in grasping and object classification (above 97%) and an average
frame analysis frequency of 2.07 FPS. The developed SCS allows for the recognition of
additional grasps beyond those detected by the EMG, ensuring the appropriate grasp for
the specific object. The average angular error and angular estimation stability are below
18◦ and 0.8◦, respectively, for all setup configurations. The proposed control strategy is
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capable of handling more complex situations as demonstrated by the conducted operative
tests, reporting a success rate of 100% in recognizing the object approaching phase. Overall,
the developed SCS grounded on CVS shows promising results in terms of accuracy, speed,
angular estimation, and handling complex situations. Moreover, the proposed approach
can be easily applied on different prosthetic hands [35] and robotic grippers [36], as long
as they allow a range of hand gestures to be replicated. Indeed, in the design of the
proposed solution, particular attention has been paid to build a CVS of reduced dimension
to guarantee its portability and interoperability.

In the design of the proposed solution, particular attention has been paid to building a
CVS of reduced dimension to guarantee its portability and interoperability.

Future efforts will be devoted to integrating the proposed CVS into a prosthetic
hand and testing the developed SCS user-comfort, accuracy, and effectiveness in reducing
the cognitive burden on a population of users. Moreover, the implemented SCS will be
thoroughly characterized in the use case scenario, to quantify usability aspects in terms of
acceptability, ease of use, and performance, i.e., grasp execution times, success rate, and
compensatory movements.
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CNN Convolutional Neural Network
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SBC Single-Board Computer
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PCA Principal Component Analysis
PC Principal Component
VNC Virtual Network Computing
KPI Key Performance Indicator
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AGC Accuracy in Grasp Classification
AE Angular Error
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AF Analysis Frequency
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