
Citation: Wijesinghe, R.D.; Tissera,

D.; Vithanage, M.K.; Xavier, A.;

Fernando, S.; Samarawickrama, J. An

Advisor-Based Architecture for a

Sample-Efficient Training of

Autonomous Navigation Agents

with Reinforcement Learning.

Robotics 2023, 12, 133. https://

doi.org/10.3390/robotics12050133

Academic Editor: Charalampos P.

Bechlioulis

Received: 23 August 2023

Revised: 18 September 2023

Accepted: 22 September 2023

Published: 28 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

robotics

Article

An Advisor-Based Architecture for a Sample-Efficient Training
of Autonomous Navigation Agents with
Reinforcement Learning
Rukshan Darshana Wijesinghe 1,2,* , Dumindu Tissera 1,2 , Mihira Kasun Vithanage 2,3, Alex Xavier 2,4,
Subha Fernando 2,3 and Jayathu Samarawickrama 1,2

1 Department of Electronic and Telecommunication Engineering, Faculty of Engineering,
University of Moratuwa, Moratuwa 10400, Sri Lanka; 188013f@uom.lk (D.T.); jayathu@ent.mrt.ac.lk (J.S.)

2 CODEGEN QBITS LAB, University of Moratuwa, Moratuwa 10400, Sri Lanka; 188104k@uom.lk (M.K.V.);
188032l@uom.lk (A.X.); subhaf@uom.lk (S.F.)

3 Department of Computational Mathematics, Faculty of Information Technology, University of Moratuwa,
Moratuwa 10400, Sri Lanka

4 Department of Computer Science and Engineering, Faculty of Engineering, University of Moratuwa,
Moratuwa 10400, Sri Lanka

* Correspondence: 188052X@uom.lk

Abstract: Recent advancements in artificial intelligence have enabled reinforcement learning (RL)
agents to exceed human-level performance in various gaming tasks. However, despite the state-
of-the-art performance demonstrated by model-free RL algorithms, they suffer from high sample
complexity. Hence, it is uncommon to find their applications in robotics, autonomous navigation, and
self-driving, as gathering many samples is impractical in real-world hardware systems. Therefore,
developing sample-efficient learning algorithms for RL agents is crucial in deploying them in real-
world tasks without sacrificing performance. This paper presents an advisor-based learning algorithm,
incorporating prior knowledge into the training by modifying the deep deterministic policy gradient
algorithm to reduce the sample complexity. Also, we propose an effective method of employing an
advisor in data collection to train autonomous navigation agents to maneuver physical platforms,
minimizing the risk of collision. We analyze the performance of our methods with the support of
simulation and physical experimental setups. Experiments reveal that incorporating an advisor into
the training phase significantly reduces the sample complexity without compromising the agent’s
performance compared to various benchmark approaches. Also, they show that the advisor’s constant
involvement in the data collection process diminishes the agent’s performance, while the limited
involvement makes training more effective.

Keywords: advisor-based architecture; autonomous agents; reinforcement learning

1. Introduction

Reinforcement learning (RL) is a trial-and-error-based learning method that learns
to execute the best action while interacting with the environment. The agent takes action
in each step, and the environment returns a scalar reward as feedback for the executed
action. RL provides a framework to solve complex problems that are challenging to address
with conventional methods. Recent advancements in RL have extended its applicability in
various fields, such as gaming [1–3], recommendation systems [4], robotics [5–8], computer
systems [9,10], and autonomous navigation [11–13]. Additionally, a number of advanced
RL algorithms have outperformed human-level performance in diverse gaming environ-
ments [3,14], revealing the effectiveness of RL-based learning algorithms in addressing
complex problems.

The penetration of RL into real-world applications began with the emergence of model-
free algorithms such as deep-Q-network (DQN) [3], deep deterministic policy gradient

Robotics 2023, 12, 133. https://doi.org/10.3390/robotics12050133 https://www.mdpi.com/journal/robotics

https://doi.org/10.3390/robotics12050133
https://doi.org/10.3390/robotics12050133
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://orcid.org/0000-0002-4003-6337
https://orcid.org/0000-0002-7461-0165
https://orcid.org/0000-0002-2621-5291
https://doi.org/10.3390/robotics12050133
https://www.mdpi.com/journal/robotics
https://www.mdpi.com/article/10.3390/robotics12050133?type=check_update&version=1

Robotics 2023, 12, 133 2 of 27

(DDPG) [15], and twin-delayed DDPG (TD3) [16]. The DQN learns to control systems with
discrete actions and continuous state variables, and the DDPG algorithm enables the agent
to handle both states and actions in the continuous domain. TD3 is a variant of DDPG,
derived from double-Q learning [17], and it utilizes two Q-value functions to minimize the
overestimation bias and the accumulation of errors associated with Q-learning [16]. Despite
the success showcased by model-free RL methods, end-to-end training demands significant
sample complexity to achieve reasonable performance, as the agent is required to learn
everything from scratch. Furthermore, the agent suffers from poor training performance
with a high risk of failure at the initial stage due to the randomness of the actions predicted
by the policy. As a result, their applications are mainly limited to simulation or virtual
environment-based tasks, and it is rare to find RL-based applications in the fields that
utilize physical platforms such as robotics, autonomous navigation, and self-driving [18].

Generally, the trial-and-error-based nature of RL makes it infeasible to use them for
training autonomous navigation tasks in real-world settings. It is impractical to run many
trials to collect a bulk of data and train an agent due to various practical issues such as
regular maintenance caused by the wear and tear of mechanical parts, the requirement of
the frequent charging and discharging of power sources, the difficulty in setting up the
experimental setup for each trial, [19] etc. Also, the random behavior at the initial training
phase introduces additional risk. Therefore, it requires safe and efficient (in terms of time,
energy consumption, and cost) training procedures to employ RL-based agents with real-
world platforms. Incorporating prior knowledge as an advisor in favor of safe and efficient
training will be a promising strategy to minimize these issues. For example, consider
the “goal reaching with obstacle avoidance” task in autonomous navigation. Despite our
previous knowledge of the task and platform, the RL agents are generally required to learn
basic navigation behaviors such as turning, driving straight, accelerating, and braking
from scratch while interacting with the environment. However, these basic navigation
behaviors are common for many tasks, and we know how to control the platform to achieve
these behaviors. Learning them adds an extra exploration cost to the training and makes
it inefficient. Also, the poor performance of the policy at the initial phase of the training
does not guarantee safe training with minimal collisions. Therefore, incorporating the prior
knowledge enhances the training performance of RL-based autonomous navigation agents.

The idea of transferring prior knowledge as an advisor during the training in the con-
tinuous domain has been introduced in [20]. It adapts the DDPG algorithm to incorporate
an advisor to expedite the training process of continuous tasks. This paper compares the
performance of transferring prior knowledge to train RL-based autonomous navigation
agents with other state-of-the-art methods. In summary, the main contributions of this
research are as follows.

• Investigate the use of prior knowledge as an advisor to reduce the sample com-
plexity of the DDPG and TD3 algorithms for autonomous navigation tasks in the
continuous domain.

• Devise an appropriate procedure to integrate the advisor role that makes the training
of an autonomous navigation agent safer and more efficient.

• Implement the proposed method with a physical experimental setup and analyze the
performance on real navigation tasks.

2. Preliminaries

In the RL paradigm, an agent in state st ∈ S at a given time step t interacts with
an environment E as follows. The agent first executes an action at ∈ A as predicted by
a policy π : S → P(A), which maps states to a probability distribution over the actions.
The agent receives an immediate scalar reward rt = r(st, at, st+1) and then transitions to the
next state st+1 according to a dynamic function f : S× A → S. p(st+1, rt|st, at) expresses
the probability of transition to state st+1 after executing action at in state st. The goal of RL
is to find a suitable policy π to maximize the expectation of the discounted future rewards

Robotics 2023, 12, 133 3 of 27

Rt = ∑∞
k=t γk−trk received at a particular time step. γ is known as the discounting factor

and 0 < γ < 1. Thus, the state value function and the action value function are,

Vπ(s) = E[Rt|st = s; π]

Qπ(s, a) = E[Rt|st = s, at = a; π]

The state value function is the expected total discounted reward of a state s, and the
action value function represents the same for an action predicted a by a particular policy π
in a given state s. The optimal policy that gives a maximum expected discounted reward
can be expressed using the optimal action-value function as

π∗(s) = argmaxaQ∗(s, a).

Similar to the above notation, V∗(s) denotes the optimal state value function. The state
value function can be written in a recursive form according to the “Bellman equations” [21]
as follows:

vπ(st) = ∑
at

π(at|st) ∑
st ,rt

p(st+1, rt|st, at)[rt + γvπ(st+1)]

Similarly, the action-value function can also be written in the recursive form of,

Qπ(st, at) = ∑
st ,rt

p(st+1, rt|st, at)[rt + γ ∑
at+1

π(at+1|st+1)qπ(st+1, at+1)]

3. Related Work

Introducing temporal difference methods in optimal control problems with trial and
error-based learning approaches has laid the foundation for modern RL [21]. However,
the applicability of RL was limited to the low dimensional discrete action and state spaces
until the emergence of the deep Q-network [3]. Later, the DDPG algorithm was developed
to handle a continuous high dimensional state and action spaces by combining DQN and a
deterministic policy gradient [15,22]. These ground-breaking RL algorithms are capable
of surpassing human-level performance in a variety of gaming environments. Integrating
DDPG with the actor–critic [23] model allows for the learning of parameterized continuous
policies, which are derived in terms of a parameterized Q-value function [15]. Double
Q-learning addresses the effect of function approximation errors in actor–critic settings [24].
T. Haarnoja et al. [25] overcome the sample inefficiency and convergence in conjunction
with maximum entropy RL used in off-policy actor–critic methods. A continuous variant
of the Q-learning algorithm was combined with learned models to address the sample
complexity in continuous domains [26]. Mehdi et al. [27] present a top-down approach
for constructing state abstractions for reinforcement learning that makes learning more
sample-efficient in the discrete domain. However, none of the above efforts are efficient
enough to perform tasks associated with real platforms due to high sample complexity.

Despite the success exhibited, the applicability of the model-free RL algorithms has
been limited in the autonomous navigation domain due to the difficulties caused by high
sample complexity. Wen et al. [28] combine model-based RL algorithms with SLAM (simul-
taneous localization and mapping) to enhance the training efficiency of path planning and
obstacle avoidance tasks. Tai et al. [29] propose a deep RL-based end-to-end asynchronous
training approach for mapless navigation. Kahn et al. [30] propose a self-supervising
generalized computational graph to enhance the sampling efficiency by subsuming the ad-
vantages of both model-free and model-based methods. Furthermore, Nagabandi et al. [31]
combine a model-predictive controller and model-free learner to reduce the number of
samples for the training. However, these methods require additional training with random
policies to identify the model. Also, the uncertainties associated with learned models do
not guarantee a safe training process.

Interactive reinforcement learning (IntRL) is an intriguing domain integrating a trainer
to guide or evaluate the behavior of a learning agent [32,33]. The trainer’s advice reinforces

Robotics 2023, 12, 133 4 of 27

the agent’s learning method and molds the exploration strategy, resulting in sample-efficient
training by reducing the search spaces of states and actions [34]. Millan-Arias et al. [35]
developed an actor–critic RL agent that trained in a disturbed environment while receiving
advice, allowing the agent to learn more robust policies. Additionally, Bignold et al. [36]
introduced a persistent rule-based approach for IntRL. This method aims to retain and
reuse provided knowledge to reduce the interaction between the learner and the trainer by
allowing trainers to give general advice for similar states. However, a rule-based advisor
may cover only a limited search space of states and actions on complex navigation tasks.

Transferring knowledge from experts is one of the most effective methods to enhance
training efficiency. Successor-feature-based RL is used in [37] to transfer knowledge across
similar navigational environments to gain higher adaptability and lower training time.
Emilio et al. [38] introduced a multitasking and transfer learning approach that allows
an autonomous agent to simultaneously learn multiple tasks and then generalize the
learned knowledge to new domains. Finding a suitable trained model to apply transfer
learning is a challenging task. Therefore, Ross et al. [39] have incorporated the DAGGER
algorithm, which uses a dataset of trajectories collected using an expert to initialize policies.
Amini et al. [40] present a data-driven simulation and training engine capable of learning
end-to-end autonomous vehicle control policies leveraged by human-collected trajectories.
Kabzan et al. [41] employ a relatively simple vehicle model, which is improved based
on measurement data and tools from machine learning, to perform autonomous racing.
Taylor et al. [42] propose a method to increase the training speed of RL by mapping the
knowledge gained in different tasks. However, leveraging the training of complex tasks
with the knowledge gained in similar tasks may not support the navigation of physical
platforms as it requires additional training. Also, employing a human as an expert may not
always be advantageous for complex navigation tasks, especially when humans and robots
perceive the environment differently.

Integrating imitation learning (IL) into RL has become a promising method of over-
coming sample complexity by collecting data with the assistance of an expert [43–45]. Self-
imitation learning in [46] reproduces the past good decisions of the agent to improve the
exploration. Nair et al. [47] overcome exploration bottlenecks of the DDPG algorithm with
Hindsight experience replay in simulated robotics tasks. Hester et al. use small demonstra-
tion data sets to accelerate deep Q learning [48]. Kahn et al. [49] present BADGR—Berkeley
autonomous driving ground robot, an end-to-end self-supervised learning-based mobile
robot navigation system that gathers data autonomously with minimal human supervi-
sion. However, the above approaches require learning everything from scratch and do not
facilitate gaining the advantage of previous knowledge related to the task or navigation
platform. In contrast, our approach incorporates prior knowledge of the task as an advisor
for both exploration and exploitation to ensure the quick and safe training of autonomous
navigation tasks.

4. Incorporating an Advisor

We propose an actor–critic model-based architecture that enables plugging an advisor
(see Figure 1) to improve the training efficiency of model-free RL algorithms such as DDPG
and TD3. In this approach, any set of rules, existing relationships, or pre-trained policies
that map the states to actions can play the advisor role. The advisor used in this approach
needs to have some knowledge related to the task, and it is not required to be capable of
completing the task successfully. Our experiments use an advisor combining conventional
goal-reaching methods with the classical Braitenberg navigation strategy [50] to maneuver
a robotic platform to a given goal while avoiding obstacles. The implementation of the
advisor and the navigation agent is explicitly described in Section 5.5.

Robotics 2023, 12, 133 5 of 27

Figure 1. Actor–critic model-based architecture with an advisor. The lowercase symbols s, a, aadv,
r, and s′ represent a single sample of state, agent’s action, advisor’s action, reward, and next state,
respectively, for a given time step. The upper case symbols S, A, Aadv, R, and S′ represent the batches
of the corresponding lowercase symbols selected randomly from the memory replay buffer.

The proposed architecture has two ways of employing an advisor in training. In the
first method, the advisor guides the agent in data collection to explore the regions of the
state and action spaces that return high rewards during the initial training phase while
ensuring fewer failures. Secondly, the advisor assists the agent in policy updating to
converge its policy toward a better policy that collects higher rewards by exploiting the
advisor’s knowledge. However, in the event of the advisor’s suggestion being unavailable
for a particular state, only the actor’s action must be considered for the data collection and
policy updating processes. To investigate how the advisor influences the training efficiency
of an RL-based autonomous navigation agent, we develop three types of agents that use
the advisor: (1) only for the data collection, (2) only for the policy updating, and (3) for both
the policy updating and data collection. We implement all these agent types by relying on
the DDPG algorithm. Also, the developed policy updating and data collection methods are
extended for TD3, a variant of DDPG, to achieve better performance.

4.1. Actor–Critic Model-Based Architecture

The architecture shown in Figure 1 is developed based on the actor–critic model [51],
which comprises two main components called actor and critic. Policy π(s) plays the
actor’s role and learns to produce the best action for a given state s at a particular time-
step t. The critic aims to improve the actor’s behavior considering the rewards received
from the environment for the action a played by the agent. The Q-value function Q(s, a)
plays the critic’s role and gets updated using the temporal difference error [23]. In our
implementation, we use neural networks to parameterize the policy and Q-value functions,
and we refer to them as “actor-network” π(s; φ) and “critic-network” Q(s, a; θ), respectively
(φ and θ represent the trainable parameters of the actor and critic networks, respectively).
Additionally, we maintain another two neural networks to stabilize the learning process,
similarly to the original DDPG algorithm [15]. They are known as “target actor-network”
πT(s; φT) and “target critic-network” QT(s, a; θT), parameterized by φT and θT , respectively.
These target networks are identical to the respective actor and critic networks in terms
of architecture but different in terms of parameter updating methods. A soft updating
method updates both target networks with the updating rate τ (0 < τ � 1). The network
architectures of the actor-network and critic-network used for the experiments are explained
in detail in Section 5.3.

The updating procedure of the actor and critic networks is similar to the original
DDPG algorithm [15] other than incorporating the advisor’s suggestions to update the
actor-network. Also, we employ an asynchronous training method [29,52,53], expecting a
quick convergence of both the actor and critic networks. Asynchronous training utilizes
two parallel processes for the data collection and parameter updating of neural networks.

Robotics 2023, 12, 133 6 of 27

4.2. Data Collection Process

The method we use to employ the advisor for the data collection of navigation tasks is
presented in Algorithm 1. As indicated by the architecture shown in Figure 1, the agent
receives actions suggested by the actor (aact) and advisor (aadv). The selector module of the
architecture compares those two actions by considering the current knowledge (Q-value
function) of the agent (Qadv and Qact represent the Q-value corresponding to the actor’s
and advisor’s actions for the current state, respectively). The advisor’s action is selected for
the execution if Qadv is greater than Qact. Otherwise, the advisor’s or actor’s suggestion
is selected for the execution with the probabilities of ε and (1− ε), respectively. We set a
higher value for the advisor’s starting execution probability εts as the advisor demonstrates
better performance than the actor at the initial stages of the training.

ε =

1 (Qact ≤ Qadv) ∩ (N ≤ NT)
εst − bN (Qact > Qadv) ∩ (N ≤ NT)
0 N > NT

(1)

We compute the advisor’s selection probability ε as given in Equation (1). N is the
current episode number, and the starting probability εst is set to a higher value to guarantee
a safe exploration with the advisor’s knowledge in the initial training stage. The selection
probability of the advisor gradually reduces at the rate of b (b is a positive constant) when
the episodes are progressing. Since (1− ε) is the selection probability of the actor’s action,
it gradually increases, and the actor’s action is selected for execution more frequently when
the actor learns a better policy than the advisor. The agent entirely neglects the advisor’s
action when episode number N exceeds the terminal episode of the advisor, NT . Then,
Ornstein–Uhlenbeck [54] process-based noise is added to the selected action before the
execution to ensure a better exploration. The agent executes the action calculated at the 14th
step and observes the next state s′ and reward r returned from the environment. Finally,
the tuple (s, a, aadv, s′, r) is stored as an experience in the memory replay buffer.

Algorithm 1 Data collection with an advisor

1: Initialize total number of training episodes Ntotal
2: Initialize terminal episode number of the advisor NT
3: Initialize advisor’s starting execution probability εst
4: for 1 : N : Ntotal do
5: Load the policy π(s; φ) (actor-network) from the policy updating process
6: Load the Q-value function Q(s, a; θ) (critic-network) from the policy updating

process
7: while episode is not terminated do
8: Observe current state s
9: Calculate advisor’s action aadv ← f (s)

10: Calculate actor’s action aact ← π(s; φ)
11: Calculate advisor’s execution probability ε
12: With probability ε, a← aadv or otherwise, a← aact
13: a← a + noise
14: Execute action a
15: Observe next state s′ and reward r
16: Store (s, a, aadv, s′, r) in the memory replay buffer

4.3. Policy Updating Process

Algorithm 2 describes how we incorporate the prior knowledge of the task into the
policy updating process as an advisor by modifying the DDPG algorithm. It describes our
method to update the actor-network (the policy), critic-network, and their respective target
networks. We take the DDPG algorithm as the base for the modifications for explanation
purposes. Also, Algorithm 2 can be easily extended to the advanced variants of DDPG, like
TD3, that perform better than the original DDPG.

Robotics 2023, 12, 133 7 of 27

Algorithm 2 Policy updating with an advisor

1: Create actor-network π(s; φ) and target actor-network πT(s; φT)
2: Create critic-network Q(s, a; θ) and target critic-network QT(s, a; θT)
3: Initialize actor and critic networks’ parameters (φ and θ) with He initialization
4: Initialize target networks’ parameters;

φT ← φ
θT ← θ

5: repeat:
6: Sample a batch of experiences B =< S, A, Aadv, R, S′ > randomly from memory

replay buffer with the size of n
7: Set Q̂← R + γQT(S′, πT(S′; φT); θT)
8: Update θ by minimizing the loss function LQ

LQ = 1
n Σ[Q̂−Q(S, A; θ)]2

9: Aact ← π(S; φ)
10: Â← Aact + β∇AQ(S, Aact; θ)
11: for 1 : i : n do
12: if Q(si, ai

adv; θ) > Q(si, âi; θ) then
13: âi ← ai

adv
14: Update φ by minimizing the loss function Lπ

Lπ = 1
n Σ[Â− π(S; φ)]2

15: Update target networks parameters
φT ← τφ + (1− τ)φT

θT ← τθ + (1− τ)θT

16: Save all the networks

The policy updating process starts with fetching a randomly selected batch of stored
tuples B = (S, A, Aadv, R, S′) with the sample size of n from the memory replay buffer. Here,
the uppercase symbols S, A, Aadv, R, and S′ represent batches of the variables s, a, aadv, r,
and s′, respectively. We incorporate the gradient ascent technique in order to improve the
current policy as given in Equation (2).

â← π(s; φ) + β∇aQ(s, a ; θ)|s=s,a=π(s) (2)

Equation (2) calculates a target prediction â for the policy function in terms of the
Q-value gradient with respect to action ∇aQ(s, a; θ). Here, the β(β > 0) represents the
updating rate of the current policy. Step 10 of Algorithm 2 computes a set of improved target
predictions Â for the selected batch using Equation (2). The individual target prediction
â ∈ Â is further improved in steps 12 and 13 by comparing it against the advisor’s actions
aadv considering the respective Q-values. For example, consider that the ith samples of S, Â,
and Aadv are si, âi, and ai

adv, respectively. If Q(si, âi; θ) < Q(si, ai
adv; θ), then âi is replaced

with ai
adv, and this comparison is made for all the samples in Â. This basically improves

the target predictions further with the help of the advisor’s knowledge related to the task.
Throughout this paper, we refer to Algorithm 2 as the adapted DDPG (ADDPG) algorithm
when the advisor’s actions are not considered during the policy updating process (without
steps 12 and 13 of Algorithm 2).

Since the target predictions set Â contains samples of an improved policy function,
we use them to update the current policy. Therefore, step 14 of Algorithm 2 updates the
actor-network parameters φ by performing a single back-propagation step across the actor-
network to minimize the loss function Lπ given in Equation (3). Lπ represents the averaged
L-2 distance between the samples of current policy and target predictions modified with
the advisor’s actions.

Lπ =
1
n ∑[Â− π(S; φ)]2 (3)

The updating method of the critic network is carried out based on the temporal
difference error similar to the original DDPG algorithm [15]. We use two parameterized

Robotics 2023, 12, 133 8 of 27

Q-value functions: critic-network Q(s, a; θ) and target critic-network QT(s, a; θT). Similarly,
there are two parameterized policy functions named actor-network (π(s; φ)) and target
actor-network πT(s; φT). Equation (4) computes a set of target values Q̂ for the critic-
network. Its parameters θ are updated by minimizing the loss function given in Equation (5).
γ represents the discount factor and is set to 0.9 in all our experiments.

Q̂ = R + γQT(S′, πT(S′; φT); θT) (4)

LQ =
1
n ∑[Q̂−Q(S, π(S; φ); θ)]2 (5)

A soft updating method [15] is used to update the parameters of both target actor and
critic networks as given in Equations (6) and (7). τ (0 < τ � 1) controls their updating
rates, and setting a smaller value (we set τ to 0.1 in our experiments) makes the learning
more stable [15].

θT = τθ + (1− τ)θT (6)

φT = τφ + (1− τ)φT (7)

5. Experiment Setup

We conduct a series of experiments to evaluate the performance of the advisor-based
architecture and check its applicability in the autonomous navigation domain. We use
both simulation and real-world navigation platforms for the evaluation. We develop three
advisor-based trainable agents that use the advisor for data collection, policy updating,
and both data collection and policy updating. Each agent is trained to navigate a mobile
robot platform to a predefined goal while avoiding obstacles. The starting and the goal
positions are assigned randomly at the beginning of each episode. Agents are not provided
with any other information related to the environment. All agents are required to learn
to perform the given navigation task while interacting with the environment. We repeat
every experiment six times to ensure the reliability of results and consider the average
performance for the analysis. In simpler terms, each data point in any table or graph in
the article is obtained by training six agents end-to-end. We used the simulation setup
to understand how the advisor influences the agent’s training process, and we used the
physical setup to verify the applicability of the proposed advisor-based architecture for
real-world navigation tasks.

5.1. Simulation Setup

The simulation platform V-rep V3.6.2 (virtual robot experimentation platform) [55]
is used to implement the simulation-based experimental setup. The Pioneer-3DX mobile
robot is deployed as the navigation platform. The V-rep remote API for Python is used
to communicate with the navigation agents. Each agent is trained to navigate the robot
toward the target position (the red color square in Figure 2). The navigation platform has
16 proximity sensors around it to sense the presence of an obstacle or boundary wall near
the robot. Two different simulation environments are used for training and validation
purposes. Each environment differs from the other in terms of the number of obstacles and
the gap between them (see Figure 2). Compared to the robot’s physical dimensions, having
obstacles with sharp edges and lower gaps between obstacles and boundary walls makes
the task more challenging. Also, having a small number of proximity sensors to observe
the environment makes learning more difficult. A personal computer (PC) system with an
Intel Core i5 CPU, and 8 Gb RAM is used to run the simulation-based experiments.

Robotics 2023, 12, 133 9 of 27

(a) Training environment. (b) Validation environment.

Figure 2. V-rep simulation environments for training and validation. The training environment is
used to train each agent, and the validation environment is used to test whether the trained agents
are generalized to unseen environments. The size of each arena is 5 m × 5 m.

5.2. Physical Setup

We modify a Remo Hobby 1035 1/10 RC car into a navigation platform shown in
Figure 3a to check the advisor-based architecture’s applicability on real navigation tasks.
The platform is equipped with an RPLIDAR A2 laser scanner to measure the distance
between obstacles and the platform. On average, the laser scanner gives 200 readings
per rotation, and they are divided into 16 zones according to the angle corresponding to
each reading. The minimum reading corresponding to a particular zone represents the
obstacle distance associated with the zone, and we obtain such 16 distance measurements
to perceive the environment. This whole process of reducing the resolution of distance
readings makes the proximity measurements taken with the actual setup similar to the
simulation. A NVIDIA Jetson TX2 developer board (NVIDIA Pascal architecture GPU
module) was installed on the platform to make necessary computations associated with
neural networks and execution of the trained policy. To estimate the platform’s position,
we used an external personal computer (a system with Intel Core i5 CPU and 8 Gb RAM)
to track the position of the red color ball fixed on the robot. We developed a blob analysis-
based image processing method [56] to track the ball position by processing images from
RGB cameras. Figure 3b shows the physical setup arranged to train agents. The robot and
the tracking system communicate through WiFi to transfer position data.

(a) (b)

Figure 3. Physical setup. (a) Modified navigation platform; (b) physical arrangement of the training
arena. The size of the complete arena is approximately 16 feet × 10 feet.

Robotics 2023, 12, 133 10 of 27

5.3. Navigation Agent

All the types of trainable agents we develop comprise two main components known as
actor-network and critic-network. They are implemented with neural networks comprising
fully connected layers (FCLs), and Figure 4 illustrates their architectures in detail. The net-
work architectures we use for the simulation and physical experiment setups are similar.
All the hidden nodes in every hidden layer are activated with the ReLu activation func-
tion [57], and weights are initialized with He initialization [58]. The actor-network consists
of 193,502 trainable parameters, and the critic-network contains 823,701. The values we set
for some critical hyper-parameters in each experiment setup are presented in Appendix B.

(a) Actor-network architecture. (b) Critic-network architecture.

Figure 4. Neural network architectures. The number labeled under each layer indicates the number
of nodes associated with the corresponding layer.

The actor-network (see Figure 4a) takes the current state as the input to produce the con-
trol signals as the output. The proximity sensor readings vector P = (p1, p2, · · · , pi, · · · , p16),
the angle between the heading and goal directions (δ), the distance to the goal (d), and the
components of the linear velocity (vx, vy) are used to represent the state. Therefore, the state
consists of 20 state variables. There are two outputs at the output layer to control the
linear and angular velocities of the platform, and they represent the action. The control
signal of the linear velocity (V) is calculated by a ‘sigmoid’ activation node, which limits
output within the 0–1 range (the robot can move only in the forward direction). The ‘tanh’
activation is used to produce the control signal for the angular velocity (ω), and it limits
the output value between −1 and 1 as the robot can turn in both the right and left di-
rections. The critic network takes state and action as the input and produces a linearly
activated output representing the Q-value. The Adam optimizer optimizes both actor and
critic networks.

5.4. Reward Function

The reward function is mainly used to evaluate the action played by an RL agent
at a given state, and a properly tuned reward always assists in converging the policy to
optimal or sub-optimal faster. Therefore, we define a reward function that evaluates the
actions executed in the terminal and intermediate states, as shown in Equation (8). Our
experiments carry three terminal states for an episode: ‘goal’, ‘collision’, and ‘time out’.
We call that the agent has reached the ‘goal’ state when the distance to the goal dt at a
particular time step t is less than a constant threshold value Tg (Tg is set to 0.15 m in all
the experiments). If the Pt is the proximity sensor reading array at time step t, we define
the minimum obstacle distance at the same time step pt as pt = min(Pt). We call it a

Robotics 2023, 12, 133 11 of 27

‘collision’ if pt is less than a constant threshold Tc (Tc = 0.1 m in the experiments). If the
number of steps of an episode (h) exceeds the maximum step count of an episode (hmax), it
is considered a ‘time out.’ We assign a constant reward for the goal and collision terminal
states, and the time out is not rewarded especially. We encourage reaching the goal with
a large positive reward c1, and the collision is discouraged with a large negative reward
−c2 (c2 > 0). All the actions played at intermediate states are rewarded, considering
whether the actions push the platform toward a goal or an obstacle. If the action reduces
d, the agent is rewarded proportionally to the distance traveled towards the goal during
the time step (dt−1 − dt). The agent is rewarded negatively if the agent moves toward an
obstacle. Therefore, we add a reward component to the intermediate step proportional
to the change in minimum proximity reading (pt − pt−1). We combine those rewarding
criteria to create the final reward function r, given in Equation (8). k1, and k2 represent two
positive proportional constants.

r =

c1 dt ≤ Tg
−c2 pt ≤ Tc
k1(dt−1 − dt) + k2(pt − pt−1) Otherwise

(8)

5.5. Advisor

The advisor used in our experiments was created by combining a target-reaching
controller and the classical Braitenberg navigation strategy [50] as illustrated in Figure 5b.
The advisor activates the target-reaching controller if the agent finds no obstacle nearby
(when pt = (min(Pt)) exceeds a threshold value To). It produces linear and angular velocity
control signals (ωadv and Vadv) as functions of dt and δt, as shown in Equations (9) and (10),
where m1 and m2 are positive constants. Equation (9) produces an angular velocity control
signal (−1 < ωadv < 1) that aligns the moving direction with the target direction. Also,
Equation (10) generates the linear velocity control signal (0 < Vadv < 1) as a function of
target distance dt. It sets the linear velocity closer to the maximum for large target distances
and slows down the robot when it approaches the target position. Finally, the advisor’s
control signals guide the platform toward the goal when no obstacle is nearby.

ωadv = tanh (m1δt) (9)

Vadv = [1− exp (−m2dt)] (10)

The advisor activates the Braitenberg strategy-based obstacle-avoiding algorithm
when it detects an obstacle nearby (if pt < To). The control signals are produced based on
the closeness of the robot to the obstacles. They slow down the robot when it approaches an
obstacle and moves away from the obstacles. However, the advisor we developed for our
experiments cannot always successfully maneuver the platform to the goal position. This
means that the advisor is capable of completing the given task to a certain extent, but it
is not perfect. The pseudo-code of the advisor developed for goal-reaching with obstacle
avoidance task and details of the implementation are presented in Appendix A.

Robotics 2023, 12, 133 12 of 27

(a) (b)

Figure 5. Illustration of advisor developed for target reaching during obstacle avoidance task.
(a) Input parameters of the advisor. Red, green, and blue arrows represent proximity sensor reading
Pt, velocity vector vt, and displacement to the target dt, respectively. (b) Decision making strategy of
the advisor. The advisor takes proximity sensor readings Pt, target distance dt, and target angle δt

as the inputs. It generates the relevant linear velocity Vadv and angular velocity ωadv control signals
as the outputs. The activator components choose which navigation strategy must be activated by
comparing the minimum proximity reading pt against a threshold value for obstacle avoidance To.

6. Experiments and Results

The agents we test in our experiments are trained to perform the “goal-reaching
with obstacle-avoiding” task. The experiments we carried out mainly focused on the
following points.

• Checking the advisor’s influence on the training efficiency when the advisor is being
used for the data collection and investigating the optimal way of employing the
advisor in the data collection process.

• Checking the performance of the advisor-based architecture and comparing it against
the other state-of-the-art methods.

• Checking the applicability of proposed advisor-based architecture on navigation tasks
performed with real-world platforms assuring safe and efficient training.

6.1. Advisor’s Influence on Data Collection Process

We conduct a series of experiments on the simulation setup to investigate how the
advisor influences training efficiency and the agent’s performance when the advisor con-
tributes to the data collection process. As described earlier, the advisor can perform the
assigned task to a certain level. We measure the performance of any trained agent or advisor
in terms of the success rate, defined as the ratio of the number of successful episodes to
the total number of testing episodes. An episode is counted as successful when it is ends
with the ‘goal’ termination state. We test the advisor’s performances for 500 episodes on
both training and validation environments, resulting in 53.6% and 50.4% success rates,
respectively. To explore the best usage of the advisor, we train a group of agents that
employ the advisor only for the data collection process by varying NT since it controls the
advisor’s involvement. Each agent is implemented based on the advisor-based architecture
that utilizes the advisor only for the data collection, and the ADDPG algorithm updates the
policy. These agents are trained for 500 episodes in the training environment and tested
for 100 episodes in both the training and validation environments. We record the success
rate gained by the agents in both environments, and Figure 6 illustrates how the advisor’s
involvement in data collection affects the final performance of the trained agents. It shows

Robotics 2023, 12, 133 13 of 27

a similar success rate variation in both training and validating environments, indicating
the trained agents are generalized for unseen environments.

When the advisor’s contribution to the data collection process increases (when NT in-
creases), the advisor influences the agent to explore more within the knowledge limit of the
advisor. Therefore, the agent’s predictions will be biased toward the advisor’s knowledge
unless the advisor’s contribution is regulated properly. This behavior can be clearly seen
in Figure 6. Since the advisor can perform the task to a certain level, we observe a perfor-
mance improvement of the agents for the lower values of NT . The performance reaches
a maximum when the advisor contributes nearly 50% of the total number of episodes.
However, a longer period of the advisor’s involvement in data collection has caused the
agent to settle in a lower sub-optima state. This is because the agent has been forced by the
advisor to limit the agent’s exploration within the range of the advisor’s knowledge.

Figure 6. Performance variation of the trained agents against the terminal episode number of the
advisor NT . In this experiment, the agent only engages the advisor in the data collection process.

To analyze the advisor’s influence on the performance of the trained agent further,
we conduct another experiment that trains a group of agents by varying the total training
episodes (Ntotal). Then, the trained agents are tested for 100 episodes in the training
environment, and the success rate of each agent is recorded. We repeat the same experiment
while changing the advisor’s contribution, which is expressed as a percentage of NT with
respect to Ntotal . Figure 7 shows the performance variation of the trained agents against the
total number of training episodes for different advisor contribution percentages.

Figure 7. Performance variation of trained agent against the total number of training episodes for
different advisor contributions.

We obtain the best performance when the advisor contributes 50% of the total training
episodes to the data collection (see the blue curve in Figure 7). The agent starts underper-
forming at higher total training episodes when the advisor’s contribution increases further
(check the red and yellow curves in Figure 7). The agents with a longer advisor contribution
move closer to the blue curve at the lower range of total training episodes since a higher
contribution of an advisor is always favorable in the early stage of the learning process.
However, the higher advisor contribution acts as a hurdle to a better exploration in the

Robotics 2023, 12, 133 14 of 27

long run as the advisor is not perfect. When the number of training episodes increases,
the agent performs better than the advisor at a certain level. The continuous involvement of
the advisor beyond that level would be a weakness that limits the agent’s exploration. That
is the reason for showing lower performance at higher total training episodes, even though
the advisor contributes significantly. Relying on these results, we use 50% as the advisor
contribution in data collection for other experiments to make best use of the advisor.

6.2. Performance of Adviser-Based Architecture

We conduct another two experiments in a simulation setup to evaluate and compare
the performance of advisor-based architecture by training various types of agents to per-
form the given navigation task. Also, we adapt the TD3 algorithm (referred to as ATD3) for
use with advisor-based architecture and develop an agent that uses the advisor for both
data collection and policy updating processes (check Appendix C for more information
about the advisor-based ATD3 agent). We set the advisor’s contribution to 50% (relying
on the results in Section 6.1, we set 250 as NT) for the agents in both experiments when
the advisor contributes to the data collection. In the first experiment, we train all types
of agents in the training environment for 500 episodes and test the success rate of the
trained agents for 100 episodes in both training and testing environments. Also, we com-
pare the performance of the trained agent against other training methods learning from
demonstration (LfD) [59] and combined approach of model predictive control (MCP) and
model-free learning [31]. Each agent type was trained and tested for six trials, and the
average performance of each agent type is recorded in Table 1.

Table 1. Performance of each agent type after training for 500 episodes in the training environment
of the simulation setup.

Environment DDPG ADDPG ADDPG +
AfD

ADDPG +
AfP

ADDPG +
AfDP

ATD3 +
AfDP LfD MCP +

Model Free

Training Environment 72.2% 78.3% 81.3% 84.5% 88.1% 90.8% 80.2% 82.3%
Validation Environment 71.3% 77.1% 79.3% 83.0% 85.2% 89.4% 80.7% 80.1%

AfD—advisor for data collection. AfP—advisor for policy updating. AfDP—advisor for both data collection and
policy updating.

Table 1 clearly indicates that all the trained agents have surpassed the adviser’s
performance after the training. Also, the advisor-based agent with the ATD3 algorithm
(ATD3 + AfDP) outperforms all other algorithms by a significant margin. Moreover, agents
that incorporate the advisor for training have demonstrated higher performances than
most of the other agents, indicating that the proper involvement of an advisor in training
is advantageous. However, the agent that incorporates the advisor for policy updating
(ADDPG + AfP) shows better performance than the agent who uses the advisor only for
data collection (ADDPG + AfD) as it does not enforce to select adviser’s suggestions during
the policy updating. It allows the agent to select the most suitable set of actions based on
the current knowledge of the agent. The agent who engages the advisor for policy updating
and data collection outperforms all the other agent types, revealing the advantage of the
regulated involvement of an advisor in the training process.

Figure 8 shows the episode-wise reward gained per step corresponding to each agent
type, and it clearly illustrates how each agent type improves its performance over the
progressing episodes. All advisor-based agent types have reached higher reward levels
more quickly than the others, and the agents that employ the advisor for both data collection
and policy updating have given the best performances. This exhibits how employing
an advisor in data collection and policy updating expedites the learning process. Also,
employing an advisor has reduced the standard deviation of the learning curve significantly.
The agents that incorporate the advisor in the data collection have demonstrated the lowest
standard deviations as the advisor highly restricts the agent’s exploration according to its
perception. Since the agents are rewarded with large positive and negative rewards for

Robotics 2023, 12, 133 15 of 27

goal-reaching and collision, respectively, having a higher standard deviation in the learning
curve indicates experiencing many successes and failures during the training. However,
the lower standard deviation and the higher reward gain of the agents who incorporate the
advisor for both processes reflect that they experience more successes than collisions.

Figure 8. The learning curves of each agent type. Solid lines represent the moving average of the
reward per step gained by each agent type in all six trials with a window size of 150 episodes, and the
shaded area represents the standard deviation.

Apart from the higher reward gain with lower standard deviation, the collision velocity
also provides a reliable safety measurement that can be used to assess the deployability of
a learning algorithm run with a physical platform. Figure 9 clearly shows that the collision
velocity and its standard deviation are significantly low when the advisor is involved in
both data collection and policy updating compared to the others. The low collision velocity
assures a low risk of damaging the physical platform at a collision against an obstacle. It
makes the proposed architecture feasible to use for training real-world navigation tasks
with a physical platform while assuring safe and expedited training.

Another observation of Figure 8 is a higher reward gain in the initial training phase by
the advisor-based agents. Experiencing a higher reward gain is obvious when the advisor
is used for policy updating as the advisor always assists in improving the existing policy
towards a better policy. Also, exhibiting a higher reward gain in the initial training phase
is explicable when the advisor is involved in the data collection as the advisor always
guides the agent to explore better regions of the state and action spaces compared to the
initial policy. However, the agent should experience a drop in the reward gain after the
advisor’s termination unless the agent entirely captures the advisor’s knowledge before the
termination. As we can see in Figure 8, the agents who use the advisor for data collection
(check the green and magenta color graphs in Figure 8) do not indicate a significant drop in
reward gain near NT (near the 250th episode).

Robotics 2023, 12, 133 16 of 27

(a) (b)

(c) (d)

Figure 9. Moving average and the standard deviation of the collision velocity with the window size
of 10 episodes. The collision speed is calculated as the average speed of the last three steps of each
episode that ends with a collision. Solid lines of each plot represent a variation of the averaged
collision velocity, and the dotted lines indicate the standard deviation of six trials corresponding to
each agent. (a) ADDPG + advisor for both data collecting and policy updating; (b) DDPG without
advisor; (c) ADDPG without advisor; and (d) MCP + model-free.

E(f rmax) = [bN + 1− εst −
b
2
(w− 1)] (11)

The firing rate of the actor’s action f ract should be lower than the expected maximum
firing rate if the agent cannot capture the advisor’s complete knowledge before the advisor’s
termination. The actor’s firing rate is defined as the ratio between the number of steps
that the actor’s action is selected for for the execution and the total number of steps in an
episode. Suppose the actor learns from the advisor properly and improves its performance
more than the advisor during the advisor’s involvement in data collection. In that case,
there is a higher probability of obtaining a larger Q-value for the actor’s actions than the
advisor’s. Then, the actor’s firing rate should be closer to the expected minimum firing
rate E(f rmax). Equation (11) represents an estimation for E(f rmax), which is derived from
Equation (1) (w is the window size of the moving average, and the derivation is presented
in Appendix D). Figure 10 clearly shows that both agents that use the advisor for data
collection demonstrate a similar firing rate to the expected maximum, proving that the
advisor has been used effectively during the training.

Robotics 2023, 12, 133 17 of 27

Figure 10. Actor’s firing rate. Green and magenta lines show the moving average (with a window
size of 30) of the actor’s firing rate for six trials corresponding to the agent types ADDPG + AfD and
ADDPG + AfDP. The shaded area represents its standard deviation. The red line shows the expected
maximum firing rate derived from Equation (1).

In the next series of experiments, we change the number of training episodes of each
agent type and record their success rate in both training and validation environments.
Figure 11 summarizes the results of this experiment, and it illustrates the performance of
each agent type in both training and validation environments. The performance variations
of individual agents in both simulation environments are similar, which implies that
each agent has learned generalized policies during the learning period. Also, once an
adviser is employed in either data collection or policy updating, the training speed is
boosted significantly and introduces a jump start for the reward gain at the initial stage.
As a result, the agent incorporating the advisor for both the data collection and policy
updating has shown the best performance compared to all the other agent types. Also,
the ADDPG algorithm-based agents always show a significant improvement in the success
rate compared to the original DDPG algorithm. Furthermore, employing an adviser with
the ATD3 algorithm has produced the best results, indicating the capability of extending
the method we developed to incorporate an advisor to the other variants of the DDPG
algorithm and extracting the adviser’s knowledge effectively.

(a) Success rate in training environment.

Figure 11. Cont.

Robotics 2023, 12, 133 18 of 27

(b) Success rate in validation environment.

Figure 11. Success rate variation of trained agents with the number of training episodes.

6.3. Performance with the Physical Platform

We use the physical setup described in Section 5.2 to investigate the applicability of
the proposed advisor-based architecture in a real-world navigation task. According to the
results we gained with simulation-based experiments, to obtain the best performance, we
select the agent that uses the advisor for both data collection and policy updating processes
with the advisor contribution of 50% in the data collection. The algorithm we used to
develop the advisor for the physical setup is similar to the simulation setup, and it can
reach the goal position with a success rate of 32%. We change the total number of training
episodes corresponding to each agent and test the performance of each trained agent for
100 episodes in the same environment. The average performance of each agent type for
different total training episodes is shown in Table 2, and a set of paths followed by the
trained ATD3 + AfDP and DDPG agent in a few test trials is shown in Appendix E.

Table 2. Performance of the trained-agents with the physical platform.

Agent Type
Total Number of Episodes

100 150 200

DDPG 30.7% 39.0% 45.0%
ADDPG 33.0% 43.3% 48.3%
ADDPG + AfDP 45.0% 59.3% 70.3%
ATD3 + AfDP 48.3% 69.3% 75.3%
LfD 37.0% 48.3% 60.7%
MCP + Model-free 34.7% 45.3% 53.3%

As we see in Table 2, the agent with the advisors outperforms the other agent types as
we expected, establishing the applicability of the advisor-based architecture in real-world
navigation tasks. Also, the advisor-based agent with the ATD3 algorithm (ATD3 + AfDP)
has shown the best performance, similar to the experiments conducted with the simulation
setup. Although the performances of the advisor-based agents do not reach a higher success
rate similar to the simulation setup, the significant improvement over the other agent types
reveals the advantage of incorporating an advisor for the training. This indicates that the
proposed advisor-based architectures have expedited the training process to a significant
level by transferring the previous knowledge through the advisor.

Furthermore, the collision velocities of the advisor and agents trained for 200 episodes
are recorded during the testing phase. Table 3 shows the average collision velocities and

Robotics 2023, 12, 133 19 of 27

their standard deviations. The table clearly indicates that the advisor’s involvement in
training reduces the collision velocity significantly, assuring safe training compared to the
other agents. The ATD3 agent incorporating the advisor for data collection and policy
updating has achieved the lowest collision velocity, making it more suitable to train for
navigation tasks with physical platforms.

Table 3. Average collision velocities and standard deviation of the trained agents with the physical
platform for 200 episodes.

Agent Type Collision Velocity (ms−1)

Advisor 0.36± 0.24
DDPG 0.43± 0.26
ADDPG 0.38± 0.21
ADDPG + AfDP 0.21± 0.16
ATD3 + AfDP 0.15 ± 0.13
LfD 0.19± 0.21
MCP + model-free 0.35± 0.25

7. Conclusions

In this research, we adapt the DDPG algorithm to incorporate previous knowledge
into the training process of autonomous navigation agents to reduce the sample complexity.
Also, we propose an architecture to facilitate using an advisor in policy updating and data
collection processes to guarantee expedited learning. We present a method of using the
advisor for data collection to train autonomous navigation agents to maneuver navigation
platforms with a low risk of collision. We test the performance of the modified algorithm
with the support of simulation and physical experimental setups and compare it to the
existing state-of-the-art training approaches. The results gained with both simulation and
physical experimental setups reveal that the agent that employs the advisor for both the
data collection and policy updating process with a regulated advisor’s involvement in data
collection guarantees the best performance in training. Also, the lower standard deviation
introduced by the advisor to the learning curve and lower collision velocity guarantees
safe training with minimum damages, which is highly favorable in training an agent that
controls a physical platform.

Finding the optimal way of employing the advisor is highly challenging as it depends
on numerous factors, such as on the nature of the task and on the advisor’s performance.
Therefore, it is necessary to develop a generalized method for regulating the advisor’s
contribution across various navigation tasks as our future goal. Furthermore, it is important
to acknowledge that the advisor-based architecture may not lead the agent to acquire the
optimal policy for the given task. Therefore, it is interesting to find methods to develop a
productive advisor for a given task that guarantees guidance toward the optimal policy
for a given navigation task. A detailed analysis of the influence of ill-posed advisors on
training will be useful in quantifying the overall efficiency of the proposed method. Also,
employing multiple advisors, each specialized in various sub-tasks, is worth investigating
as it is a much more convenient approach to addressing complex navigation tasks than
developing a single advisor.

Author Contributions: Conceptualization, R.D.W., D.T. and J.S.; Methodology, R.D.W., M.K.V. and
A.X.; Software, R.D.W.; Formal analysis, R.D.W.; Investigation, D.T.; Writing—original draft, D.T.,
M.K.V., A.X. and S.F.; Writing—review and editing, M.K.V. and J.S.; Visualization, A.X., S.F. and J.S.;
Supervision, S.F. and J.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research is funded by the University of Moratuwa and CodeGen International (Pvt)
Ltd under the Q-Bits Scholar grant.

Data Availability Statement: Not applicable.

Robotics 2023, 12, 133 20 of 27

Acknowledgments: We thank Sanath Jayasena and Ranga Rodrigo for arranging insightful discus-
sions supporting this work.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

RL Reinforcement learning
DQN Deep-Q-network
DDPG Deep deterministic policy gradient
TD3 Twin-delayed DDPG
SLAM Simultaneous localisation and mapping
IntRL Interactive reinforcement learning
IL Integrating imitation learning
BADGR Berkeley autonomous driving ground robot
V-rep Virtual robot experimentation platform
API Application programming interface
RGB Red green blue
PC Personal computer
GPU Graphical processing unit
CPU Central processing unit
RAM Random access memory
FCL Fully connected layers
ADDPG Adapted deep deterministic policy gradient
ATD3 Adapted twin-delayed DDPG
LfD Learning from demonstration
MCP Model predictive control
AfD Advisor for data collection
AfP Advisor for policy updating
AfDP Advisor for both data collection and policy updating

Appendix A. Implementation of the Advisor

Algorithm A1 describes the method we used to develop the advisor employed in our
experiments. Based on prior knowledge, the advisor aims to produce angular and linear
velocity control signals (ωadv and Vadv) relevant to the given task. It has two main functions
responsible for generating control signals for target reaching and obstacle avoidance. Each
time step in a running episode; it measures 16 (Nsen = 16) proximity sensor values P, target
angle δ, and target distance d. Depending on the minimum proximity sensor measurement
pmin, it activates the relevant function. The threshold value for obstacle avoidance To
represents the limit for the pmin to decide whether an obstacle is nearby. To is set to 0.5
m and 0.6 m for the experiments we carried out with the simulation and physical setups,
respectively. If pmin < To, it identifies that the robot has moved closer to an obstacle and
activates the Braitenberg strategy-based obstacle-avoiding function. It calculates the control
signals based on the normalized closeness of the sensor readings det (see step 19 of the
Algorithm A1). Otherwise, the advisor produces the control signals to guide the robot
toward the target position based on δ and d. Additionally, the other parameters in the
algorithm are set to the values given in Table A1 for both simulation and physical setups.

The advisor uses only the front eight proximity sensor readings (p1, . . . , p8) to make
the calculations as the experiments are designed to move the robot in the forward direction
only. Therefore, the last sets of elements of bR and bL are set to 0 to eliminate the effect of
rear sensor readings.

Robotics 2023, 12, 133 21 of 27

Table A1. Values of the parameters in advisor algorithm.

Parameter Value

No detect distance (dnd) 0.6 m
Maximum detect distance (ddmax) 0.2 m
Left Braitenberg array (bL) [−0.1,−0.2,−0.3,−0.4,−0.5,−0.6,−0.7,−0.8, 0, 0, 0, 0, 0, 0, 0, 0]
Right Braitenberg array (bR) [−0.8,−0.7,−0.6,−0.5,−0.4,−0.3,−0.2,−0.1, 0, 0, 0, 0, 0, 0, 0, 0]
Maximum linear velocity (Vmax) 1.0 ms−1

m1 1.0
m2 5.0
m3 1.0

Algorithm A1 Advisor for goal reaching with obstacle avoiding

1: Initialize number of proximity sensors nsen
2: Initialize no detect distance dnd
3: Initialize maximum detect distance ddmax
4: Initialize the detect array to zeros det← nsen × [0]
5: Initialize left and right Braitenberg arrays,

bR ← [r1, r2, . . . , rnsen]
bL ← [l1, l2, . . . , lnsen]

6: Initialize maximum linear velocity Vmax
7: while episode is not terminated do
8: Obtain input sensor readings

Obtain proximity sensor readings P . P = [p1, p2, . . . , pnsen]
Obtain current target distance d and target angle δ

9: Obtain proximity sensor reading pmin ← min(P)
10: if pmin > To then . Activate target reaching
11: ωadv ← tanh (m1δ) . m1 is a proportional constant (m1 > 0)
12: Vadv ← [1− exp (−m2d)] . m2 is a proportional constant (m2 > 0)
13: else . Activate the Braitenberg obstacles avoiding
14: for 1 : i : nsen do
15: if p[i] < dnd then
16: if p[i] < ddmax then
17: p[i]← ddmax

18: det[i]← 1.0− [p[i]−ddmax
dnd−ddmax

] . 0 ≤ det[i] ≤ 1
19: else
20: det[i]← 0
21: Vadv ← Vmax +

1
2 [bR + bL] · det

22: ωadv ← m3
2 [bL − bR] · det . m3 > 0

23: ωadv ← clip(ωadv,−1.0, 1.0)
24: Vadv ← clip(Vadv, 0.0, 1.0)

Appendix B. Parameter Values Used in the Implementation of the Advisor-Based
Navigation Agent

Table A2. Values set for hyper-parameters of ADDPG-based agents in simulation and physical setup.

Hyper-Parameter Simulation Setup Physical Setup

Memory replay buffer size 100,000 50,000
Batch size (n) 1000 500
Discount rate (γ) 0.9 0.9
Soft updating rate (τ) 0.1 0.1
Policy updating rate (β) 0.01 0.01
Actor learning rate (αactor) 1× 10−5 1× 10−4

Robotics 2023, 12, 133 22 of 27

Table A2. Cont.

Hyper-Parameter Simulation Setup Physical Setup

Critic learning rate (αcritic) 1× 10−3 1× 10−3

Starting advisor selection probability (εst) 0.85 0.9
Selection probability rate (b) 0.15 0.001
Maximum number of steps per episode (hmax) 300 150

Table A3. Values of the parameters in the reward function used for experimental and physical setups.

Parameter Value

Threshold of target distance for goal reaching Tg 0.15 m
Threshold of the minimum proximity reading for collision Tc 0.1 m
c1 10.0
c2 10.0
k1 5.0
k2 5.0

Table A4. Values set for hyper-parameters specified only for ATD3 base agents.

Hyper-Parameter Simulation Setup Physical Setup

µ 0 0
σ 0.1 0.05
c 0.2 0.1
d 4 3

Note—Values of the parameters common for ADDPG and ATD3 algorithms are similar to the values present in
Table A2.

Appendix C. Adapt the TD3 Algorithm to Incorporate an Advisor

Algorithm A2 Data collection with an advisor
1: Initialize total number of training episodes Ntotal
2: Initialize terminal episode number of the advisor NT
3: Initialize advisor’s starting execution probability εst
4: for 1 : N : Ntotal do
5: Load the policy π(s; φ) from the policy updating

process
6: Load the Q-value functions Q1(s, a; θ1) and

Q1(s, a; θ2) (critic-networks) from the policy
updating process

7: while episode is not terminated do
8: Observe current state s
9: Calculate advisor’s action aadv ← f (s)

10: Calculate actor’s action aact ← π(s; φ)
11: Qact ← min(Q1(s, aact; θ1), Q2(s, aact; θ2))
12: Qadv ← min(Q1(s, aadv; θ1), Q2(s, aadv; θ2))
13: Calculate advisor’s execution probability ε using

Equation (A1)
14: With probability ε, a← aadv or otherwise,

a← aact
15: a← a + noise
16: Execute action a
17: Observe next state s′ and reward r
18: Store (s, a, s′, r) in the memory replay buffer

Robotics 2023, 12, 133 23 of 27

ε =

1 (Qact ≤ Qadv) ∩ (N ≤ NT)
εst − bN (Qact > Qadv) ∩ (N ≤ NT)
0 N > NT

(A1)

Algorithm A3 Policy updating with an advisor

1: Create actor-network π(s; φ) and target actor-network πT(s; φT)
2: Create critic-networks Q1(s, a; θ1) and Q2(s, a; θ2)
3: Create target critic-networks QT

1 (s, a; θT
1) and QT

2 (s, a; θT
2)

4: Initialize actor and critic networks parameters (φ, θ1 and θ2) with He initialization
5: Initialize target networks’ parameters;

φT ← φ
θT

1 ← θ1
θT

2 ← θ2
6: Initialize time-step t to 0
7: repeat:
8: t← t + 1
9: Sample a batch of experiences

B =< S, A, Aadv, R, S′ > randomly from memory
replay buffer with the size of n

10: ∆A ∼ clip(N (µ, σ),−c, c)
11: A′ ← πT(S′; φT) + ∆A
12: Q̂← R + γmin(QT

1 (S
′, A′; θT

1), QT
2 (S
′, A′; θT

2))
13: Update θ1 by minimizing the loss function LQ1

LQ1 = 1
n Σ[Q̂−Q1(S, A; θ1)]

2

14: Update θ2 by minimizing the loss function LQ1

LQ1 = 1
n Σ[Q̂−Q2(S, A; θ2)]

2

15: if t mod d then
16: Aact ← π(S; φ)
17: Â← Aact + β∇AQ1(S, Aact; θ)
18: for 1 : i : n do
19: if Q1(si, ai

adv; θ) > Q1(si, âi; θ) then
20: âi ← ai

adv
21: Update φ by minimizing the loss function Lπ

Lπ = 1
n Σ[Â− π(S; φ)]2

22: Update target networks parameters
φT ← τφ + (1− τ)φT

θT
1 ← τθ1 + (1− τ)θT

1
θT

2 ← τθ2 + (1− τ)θT
2

23: Store all the networks

Appendix D. Actor’s Expected Maximum Firing Rate

By considering Equation (1), we can find the actor’s execution probability εact before
the advisor’s termination (N < NT) as follows:

εact = 1− εadv

εact =

{
0 (Qact ≤ Qadv) ∩ (N ≤ NT)
bN + 1− εst (Qact > Qadv) ∩ (N ≤ NT)

The expected actor’s firing rate E(f ract) at the Nth episode can be expressed as

E(f ract) =
1

hmax
E(hact) hact—Number of steps fired by the actor in an episode

=
1

hmax

hmax

∑
h=1

εact h—Step count in an episode

Robotics 2023, 12, 133 24 of 27

Therefore, we can find an upper bound for the expected actor’s firing rate E(f rub) at
the Nth episode if Qact > Qadv in every step of an episode (when the actor learned a better
policy than the advisor).

E(f rub) =
1

hmax

hmax

∑
h=1

[bN + 1− εst])

=
1

hmax
[bN + 1− εst]hmax

= bN + 1− εst

The moving average of the expected maximum firing rate E(f rmax) at the Nth episode
can be derived as follows:

E(f rmax) =
1
w

N

∑
i=N−w+1

E(f rub) i—Episode count

=
1
w

N

∑
i=N−w+1

[bN + 1− εst]

=
1
w
[
w
2
(N + N − w + 1) + w(1− εst)]

= Nb + 1− εst −
b
2
(w− 1)

Appendix E. Paths Followed by the Trained Agents with and without the Advisor

Figure A1. Paths followed by the trained ATD3+AfDP and DDPG agent in six trials. The blue line
represents the path followed by the ATD3+AfDP agent, and the magenta line shows the DDPG
agent’s path.

Robotics 2023, 12, 133 25 of 27

References
1. Yang, Y.; Wang, J. An overview of multi-agent reinforcement learning from game theoretical perspective. arXiv 2020, arXiv:2011.00583.
2. Lample, G.; Chaplot, D.S. Playing FPS games with deep reinforcement learning. In Proceedings of the AAAI Conference on

Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31.
3. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;

Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]
4. Afsar, M.M.; Crump, T.; Far, B. Reinforcement learning based recommender systems: A survey. ACM Comput. Surv. 2022, 55, 1–38.

[CrossRef]
5. Kober, J.; Bagnell, J.A.; Peters, J. Reinforcement learning in robotics: A survey. Int. J. Robot. Res. 2013, 32, 1238–1274. [CrossRef]
6. Ni, P.; Zhang, W.; Zhang, H.; Cao, Q. Learning efficient push and grasp policy in a tote box from simulation. Adv. Robot. 2020,

34, 873–887. [CrossRef]
7. Shi, J.; Dear, T.; Kelly, S.D. Deep reinforcement learning for snake robot locomotion. IFAC-PapersOnLine 2020, 53, 9688–9695.

[CrossRef]
8. Wiedemann, T.; Vlaicu, C.; Josifovski, J.; Viseras, A. Robotic information gathering with reinforcement learning assisted by

domain knowledge: An application to gas source localization. IEEE Access 2021, 9, 13159–13172. [CrossRef]
9. Martinez, J.F.; Ipek, E. Dynamic multicore resource management: A machine learning approach. IEEE Micro 2009, 29, 8–17.

[CrossRef]
10. Ipek, E.; Mutlu, O.; Martínez, J.F.; Caruana, R. Self-optimizing memory controllers: A reinforcement learning approach. ACM

SIGARCH Comput. Archit. News 2008, 36, 39–50. [CrossRef]
11. Wang, C.; Wang, J.; Shen, Y.; Zhang, X. Autonomous navigation of UAVs in large-scale complex environments: A deep

reinforcement learning approach. IEEE Trans. Veh. Technol. 2019, 68, 2124–2136. [CrossRef]
12. Blum, T.; Paillet, G.; Masawat, W.; Yoshida, K. SegVisRL: Development of a robot’s neural visuomotor and planning system for

lunar exploration. Adv. Robot. 2021, 35, 1359–1373. [CrossRef]
13. Xue, W.; Liu, P.; Miao, R.; Gong, Z.; Wen, F.; Ying, R. Navigation system with SLAM-based trajectory topological map and

reinforcement learning-based local planner. Adv. Robot. 2021, 35, 939–960. [CrossRef]
14. Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam,

V.; Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484–489. [CrossRef]
15. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep

reinforcement learning. In Proceedings of the International Conference on Learning Representations (ICLR), San Juan, PR, USA,
2–4 May 2016.

16. Fujimoto, S.; Hoof, H.; Meger, D. Addressing function approximation error in actor–critic methods. In Proceedings of the
International Conference on Machine Learning, PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 1587–1596.

17. Hasselt, H. Double Q-learning. In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS), Vancouver,
BC, Canada, 6–8 December 2010.

18. Liu, R.; Nageotte, F.; Zanne, P.; de Mathelin, M.; Dresp-Langley, B. Deep reinforcement learning for the control of robotic
manipulation: A focussed mini-review. Robotics 2021, 10, 22. [CrossRef]

19. Kormushev, P.; Calinon, S.; Caldwell, D.G. Reinforcement learning in robotics: Applications and real-world challenges. Robotics
2013, 2, 122–148. [CrossRef]

20. Wijesinghe, R.; Vithanage, K.; Tissera, D.; Xavier, A.; Fernando, S.; Samarawickrama, J. Transferring Domain Knowledge with an
Adviser in Continuous Tasks. In Pacific-Asia Conference on Knowledge Discovery and Data Mining; Springer: Cham, Switzerland,
2021; pp. 194–205.

21. Sutton, R.S.; Barto, A.G. Introduction to Reinforcement Learning; MIT Press: Cambridge, UK, 1998; Volume 2.
22. Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; Riedmiller, M. Deterministic policy gradient algorithms. In Proceedings of

the International Conference Machine Learning (ICML), Beijing, China, 21–26 June 2014.
23. Peters, J.; Schaal, S. Natural actor–critic. Neurocomputing 2008, 71, 1180–1190. [CrossRef]
24. Van Hasselt, H.; Guez, A.; Silver, D. Deep reinforcement learning with double q-learning. In Proceedings of the AAAI Conference

on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; Volume 30.
25. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft actor–critic: Off-policy maximum entropy deep reinforcement learning with a

stochastic actor. arXiv 2018, arXiv:1801.01290.
26. Gu, S.; Lillicrap, T.; Sutskever, I.; Levine, S. Continuous deep q-learning with model-based acceleration. In Proceedings of the

International Conference on Machine Learning, New York, NY, USA, 19–21 June 2016; pp. 2829–2838.
27. Dadvar, M.; Nayyar, R.K.; Srivastava, S. Learning Dynamic Abstract Representations for Sample-Efficient Reinforcement Learning.

arXiv 2022, arXiv:2210.01955.
28. Wen, S.; Zhao, Y.; Yuan, X.; Wang, Z.; Zhang, D.; Manfredi, L. Path planning for active SLAM based on deep reinforcement

learning under unknown environments. Intell. Serv. Robot. 2020, 13, 263–272. [CrossRef]
29. Tai, L.; Paolo, G.; Liu, M. Virtual-to-real deep reinforcement learning: Continuous control of mobile robots for mapless navigation.

In Proceedings of the International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28
September 2017; pp. 31–36.

http://doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://dx.doi.org/10.1145/3543846
http://dx.doi.org/10.1177/0278364913495721
http://dx.doi.org/10.1080/01691864.2020.1757504
http://dx.doi.org/10.1016/j.ifacol.2020.12.2619
http://dx.doi.org/10.1109/ACCESS.2021.3052024
http://dx.doi.org/10.1109/MM.2009.77
http://dx.doi.org/10.1145/1394608.1382172
http://dx.doi.org/10.1109/TVT.2018.2890773
http://dx.doi.org/10.1080/01691864.2021.1977696
http://dx.doi.org/10.1080/01691864.2021.1938671
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.3390/robotics10010022
http://dx.doi.org/10.3390/robotics2030122
http://dx.doi.org/10.1016/j.neucom.2007.11.026
http://dx.doi.org/10.1007/s11370-019-00310-w

Robotics 2023, 12, 133 26 of 27

30. Kahn, G.; Villaflor, A.; Ding, B.; Abbeel, P.; Levine, S. Self-supervised deep reinforcement learning with generalized computation
graphs for robot navigation. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Brisbane,
Australia, 21–25 May 2018; pp. 1–8.

31. Nagabandi, A.; Kahn, G.; Fearing, R.S.; Levine, S. Neural network dynamics for model-based deep reinforcement learning with
model-free fine-tuning. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Brisbane,
Australia, 21–25 May 2018; pp. 7559–7566.

32. Arzate Cruz, C.; Igarashi, T. A survey on interactive reinforcement learning: Design principles and open challenges. In Proceed-
ings of the 2020 ACM Designing Interactive Systems Conference, Virtual, 6–10 July 2020; pp. 1195–1209.

33. Lin, J.; Ma, Z.; Gomez, R.; Nakamura, K.; He, B.; Li, G. A review on interactive reinforcement learning from human social
feedback. IEEE Access 2020, 8, 120757–120765. [CrossRef]

34. Bignold, A.; Cruz, F.; Dazeley, R.; Vamplew, P.; Foale, C. Human engagement providing evaluative and informative advice for
interactive reinforcement learning. Neural Comput. Appl. 2022, 35, 18215–18230. [CrossRef]

35. Millan-Arias, C.C.; Fernandes, B.J.; Cruz, F.; Dazeley, R.; Fernandes, S. A robust approach for continuous interactive actor–critic
algorithms. IEEE Access 2021, 9, 104242–104260. [CrossRef]

36. Bignold, A.; Cruz, F.; Dazeley, R.; Vamplew, P.; Foale, C. Persistent rule-based interactive reinforcement learning. Neural Comput.
Appl. 2021, 1–18. [CrossRef]

37. Zhang, J.; Springenberg, J.T.; Boedecker, J.; Burgard, W. Deep reinforcement learning with successor features for navigation across
similar environments. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2017),
Vancouver, BC, Canada, 24–28 September 2017; pp. 2371–2378.

38. Parisotto, E.; Ba, J.L.; Salakhutdinov, R. Actor-mimic: Deep multitask and transfer reinforcement learning. arXiv 2015,
arXiv:1511.06342.

39. Ross, S.; Gordon, G.; Bagnell, D. A reduction of imitation learning and structured prediction to no-regret online learning.
In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, Lauderdale, FL, USA, 11–13
April 2011; pp. 627–635.

40. Amini, A.; Gilitschenski, I.; Phillips, J.; Moseyko, J.; Banerjee, R.; Karaman, S.; Rus, D. Learning robust control policies for
end-to-end autonomous driving from data-driven simulation. IEEE Robot. Autom. Lett. 2020, 5, 1143–1150. [CrossRef]

41. Kabzan, J.; Hewing, L.; Liniger, A.; Zeilinger, M.N. Learning-based model predictive control for autonomous racing. IEEE Robot.
Autom. Lett. 2019, 4, 3363–3370. [CrossRef]

42. Taylor, M.E.; Kuhlmann, G.; Stone, P. Autonomous transfer for reinforcement learning. In Proceedings of the International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2008)-Volume 1, Estoril, Portugal, 12–16 May 2008;
pp. 283–290.

43. Kinose, A.; Taniguchi, T. Integration of imitation learning using GAIL and reinforcement learning using task-achievement
rewards via probabilistic graphical model. Adv. Robot. 2020, 34, 1055–1067. [CrossRef]

44. Qian, K.; Liu, H.; Valls Miro, J.; Jing, X.; Zhou, B. Hierarchical and parameterized learning of pick-and-place manipulation from
under-specified human demonstrations. Adv. Robot. 2020, 34, 858–872. [CrossRef]

45. Sosa-Ceron, A.D.; Gonzalez-Hernandez, H.G.; Reyes-Avendaño, J.A. Learning from Demonstrations in Human–Robot Collabora-
tive Scenarios: A Survey. Robotics 2022, 11, 126. [CrossRef]

46. Oh, J.; Guo, Y.; Singh, S.; Lee, H. Self-imitation learning. arXiv 2018, arXiv:1806.05635.
47. Nair, A.; McGrew, B.; Andrychowicz, M.; Zaremba, W.; Abbeel, P. Overcoming exploration in reinforcement learning with

demonstrations. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2018), Brisbane,
Australia, 21–25 May 2018; pp. 6292–6299.

48. Hester, T.; Vecerik, M.; Pietquin, O.; Lanctot, M.; Schaul, T.; Piot, B.; Horgan, D.; Quan, J.; Sendonaris, A.; Osband, I.; et al. Deep
q-learning from demonstrations. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans,
LA, USA, 2–7 February 2018.

49. Kahn, G.; Abbeel, P.; Levine, S. Badgr: An autonomous self-supervised learning-based navigation system. IEEE Robot. Autom.
Lett. 2021, 6, 1312–1319. [CrossRef]

50. Yang, X.; Patel, R.V.; Moallem, M. A fuzzy–braitenberg navigation strategy for differential drive mobile robots. J. Intell. Robot.
Syst. 2006, 47, 101–124. [CrossRef]

51. Konda, V.R.; Tsitsiklis, J.N. Actor–critic algorithms. In Proceedings of the Advances in Neural Information Processing Systems,
Denver, CO, USA, 4–9 December 2000; pp. 1008–1014.

52. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous methods for deep
reinforcement learning. In Proceedings of the International Conference on Machine Learning (ICML), New York, NY, USA, 19–24
June 2016; pp. 1928–1937.

53. Gu, S.; Holly, E.; Lillicrap, T.; Levine, S. Deep reinforcement learning for robotic manipulation with asynchronous off-policy
updates. In Proceedings of the International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017;
pp. 3389–3396.

54. Uhlenbeck, G.E.; Ornstein, L.S. On the theory of the Brownian motion. Phys. Rev. 1930, 36, 823. [CrossRef]
55. Rohmer, E.; Singh, S.P.; Freese, M. V-REP: A versatile and scalable robot simulation framework. In Proceedings of the International

Conference Intelligent Robots and Systems (IROS), Tokyo, Japan, 3–7 December 2013; pp. 1321–1326.

http://dx.doi.org/10.1109/ACCESS.2020.3006254
http://dx.doi.org/10.1007/s00521-021-06850-6
http://dx.doi.org/10.1109/ACCESS.2021.3099071
http://dx.doi.org/10.1007/s00521-021-06466-w
http://dx.doi.org/10.1109/LRA.2020.2966414
http://dx.doi.org/10.1109/LRA.2019.2926677
http://dx.doi.org/10.1080/01691864.2020.1778521
http://dx.doi.org/10.1080/01691864.2020.1778523
http://dx.doi.org/10.3390/robotics11060126
http://dx.doi.org/10.1109/LRA.2021.3057023
http://dx.doi.org/10.1007/s10846-006-9055-3
http://dx.doi.org/10.1103/PhysRev.36.823

Robotics 2023, 12, 133 27 of 27

56. Jia, T.; Sun, N.L.; Cao, M.Y. Moving object detection based on blob analysis. In Proceedings of the 2008 IEEE International
Conference on Automation and Logistics, Qingdao, China, 1–3 September 2008; pp. 322–325.

57. Li, Y.; Yuan, Y. Convergence analysis of two-layer neural networks with relu activation. In Proceedings of the Advances in Neural
Information Processing Systems (NeurIPS), Long Beach, CA, USA, 4–9 December 2017; Volume 30.

58. Kumar, S.K. On weight initialization in deep neural networks. arXiv 2017, arXiv:1704.08863.
59. Pfeiffer, M.; Shukla, S.; Turchetta, M.; Cadena, C.; Krause, A.; Siegwart, R.; Nieto, J. Reinforced imitation: Sample efficient deep

reinforcement learning for mapless navigation by leveraging prior demonstrations. IEEE Robot. Autom. Lett. 2018, 3, 4423–4430.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/LRA.2018.2869644

	Introduction
	Preliminaries
	Related Work
	Incorporating an Advisor
	Actor–Critic Model-Based Architecture
	Data Collection Process
	Policy Updating Process

	Experiment Setup
	Simulation Setup
	Physical Setup
	Navigation Agent
	Reward Function
	Advisor

	Experiments and Results
	Advisor's Influence on Data Collection Process
	Performance of Adviser-Based Architecture
	Performance with the Physical Platform

	Conclusions
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	References

