
Citation: Costanzo, M.; De Simone,

M.; Federico, S.; Natale, C.

Non-Prehensile Manipulation

Actions and Visual 6D Pose

Estimation for Fruit Grasping Based

on Tactile Sensing. Robotics 2023, 12,

92. https://doi.org/10.3390/

robotics12040092

Academic Editor: Giulio Reina

Received: 29 May 2023

Revised: 19 June 2023

Accepted: 23 June 2023

Published: 25 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

robotics

Article

Non-Prehensile Manipulation Actions and Visual 6D Pose
Estimation for Fruit Grasping Based on Tactile Sensing †

Marco Costanzo , Marco De Simone, Sara Federico and Ciro Natale *

Dipartimento di Ingegneria, Università degli Studi della Campania Luigi Vanvitelli, Via Roma 29,
81031 Aversa, Italy; marco.costanzo@unicampania.it (M.C.);
marco.desimone1@studenti.unicampania.it (M.D.S.); sara.federico@studenti.unicampania.it (S.F.)
* Correspondence: ciro.natale@unicampania.it; Tel.: +39-081-5010-343
† This paper is an extended version of our paper published in CODIT 2023, Rome, Italy, 3–6 July 2023.

Abstract: Robotic manipulation in cluttered environments is one of the challenges roboticists are
currently facing. When the objects to handle are delicate fresh fruits, grasping is even more challeng-
ing. Detecting and localizing fruits with the accuracy necessary to grasp them is very difficult due
to the large variability in the aspect and dimensions of each item. This paper proposes a solution
that exploits a state-of-the-art neural network and a novel enhanced 6D pose estimation method
that integrates the depth map with the neural network output. Even with an accurate localization,
grasping fruits with a suitable force to avoid slippage and damage at the same time is another
challenge. This work solves this issue by resorting to a grasp controller based on tactile sensing.
Depending on the specific application scenario, grasping a fruit might be impossible without col-
liding with other objects or other fruits. Therefore, a non-prehensile manipulation action is here
proposed to push items hindering the grasp of a detected fruit. The pushing from an initial location
to a target one is performed by a model predictive controller taking into account the unavoidable
delay in the perception and computing pipeline of the robotic system. Experiments with real fresh
fruits demonstrate that the overall proposed approach allows a robot to successfully grasp apples in
various situations.

Keywords: non-prehensile manipulation; grasping; visual control; tactile sensing

1. Introduction

One of the most important human skills that robots try to emulate is the capability
to manipulate objects with great agility and ease. In fact, a classic robotic task consists in
moving an object from one place to another, also in a cluttered environment. To do this,
typically, a pick-and-place approach is adopted: the robotic manipulator is equipped with
a sensorized gripper used by the robot to grasp the object, lift it and move it to another
location [1]. However, this solution is not versatile enough to be used in all contexts.
Depending on the gripper design, if the object is too large or too small or too heavy, it
can be unsuitable. Moreover, if the environment is cluttered and the object is occluded by
others, the grasp may fail. But observing how humans interact with objects, it is the same:
if we have to move a heavy object, we prefer to use a non-prehensile manipulation, such as
pushing, rather than grasping and lifting it. And if we have to pick an object in a cluttered
box, we push all the obstacles that make it difficult for us to grasp the desired object before
grasping it. In fact, for humans using both prehensile and non-prehensile manipulation
actions is natural and, depending on the context, the latter can even be preferred to the
former. Therefore, a robot manipulator might use both prehensile and non-prehensile
manipulations to come close to the same human dexterity. This paper focuses on pushing,
a non-prehensile solution that expands the robotic skills in the manipulation field. The
dynamics of pushing is highly nonlinear and it is dominated by the frictional forces, which

Robotics 2023, 12, 92. https://doi.org/10.3390/robotics12040092 https://www.mdpi.com/journal/robotics

https://doi.org/10.3390/robotics12040092
https://doi.org/10.3390/robotics12040092
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://orcid.org/0000-0001-8364-6728
https://orcid.org/0000-0001-6550-0573
https://doi.org/10.3390/robotics12040092
https://www.mdpi.com/journal/robotics
https://www.mdpi.com/article/10.3390/robotics12040092?type=check_update&version=3

Robotics 2023, 12, 92 2 of 29

are typically difficult to measure, making predicting the motion of the pushed object on
an arbitrary surface hard. In fact, the result of a physical interaction between a robot
and an object, i.e., pushing through a contact point, depends on physical laws, which are
challenging to model. For example, depending on the physical parameters, a pushed object
may rotate or translate or both, with a motion difficult to predict. Nevertheless, the pushing
primitive can be used to resolve many problems [2]: positioning and orienting objects in
the plane, facilitating their grasping, estimating their pose and their shape [3], identifying
some inertial parameters, such as the friction coefficient [4].

This work, in particular, studies the problem of pushing an object from an arbitrary
start position to a target one on a flat surface with a robotic arm. Technically, it deals with
the so-called planar pushing with one contact point under the quasi-static assumption [5].
Several researchers have solved this problem by generating open-loop plans, which do
not require feedback sensing, as in [6]. However, the unpredictable behavior of a sliding
object on a surface and most of all the impossibility to know exactly the system parameters,
such as coefficients of friction (between the object and the support surface and between
the pusher and the object), require the use of feedback. In fact, like for humans, for robotic
manipulators processing information from sensing is the only way to recover and correct
their motion. Typically, the pushing control system is based on visual feedback used to the
pose of the pushed object, or on tactile feedback, as in [7], in which force measurements are
used to control the interaction between the slider and the pusher. Anyway, the design of
feedback controllers for the pusher–slider system based on frictional contact interactions
is made more difficult by two characteristic challenges of robotic manipulation tasks: the
hybridness and the underactuation [8]. The former arises from the multiple contact modes
between the pusher and the pushed object (e.g., sticking and sliding): switching from
one mode to another results in a discontinuity in the dynamics, making the controller
design more difficult. The latter arises from nonholonomic constraints, i.e., not integrable
constraints on the velocity of the pushed object, caused by the limitation on the force
direction applicable by the pusher [1]. A model predictive control approach seems to be the
most suitable to model the dynamic constraints as well as the hybrid nature of the contact.
Among the several solutions, this paper is inspired to the approach proposed in [9], in
which a model predictive control approach is mixed with an integer programming and
optimized with the so-called Family of Modes (FOM) concept to achieve a real-time control.

The paper is organized as follows. We begin by reviewing the main approaches used
to realize robotic pushing (Section 1.1) and the state-of-the-art methods for the 6D pose
estimation (Section 1.2). In Section 2, we briefly describe the approach used to recover the
6D pose from visual information, as developed in [10]. We then proceed with the description
of the pushing control system proposed in [9], highlighting the proposed improvements
to their solution (Section 3). Section 4.1 summarizes the overall pick-and-place pipeline
already developed in [10] and here extended with a non-prehensile manipulation. Finally,
in Section 5, we describe several experiments to validate the enhanced pushing approach
described in the previous section. In detail, the experiments presented in the paper
show how a non-prehensile manipulation can be used as pre-grasp operation to pick a
fruit occluded by another object that cannot be directly grasped due to scene constraints,
i.e., gripper design, object shape, and further obstacles. Indeed, the problem of fruit
manipulation, already addressed in [10], is placed in a more complex context, in which
other robotic manipulations are required to successfully complete the proposed task of
picking a fruit without damaging it.

1.1. Related Work on Robotic Pushing

The problem of planar pushing has always been a very active research topic in robotics
for its importance as part of robotic manipulation. It was analyzed for the first time in
1986 by Mason under the quasi-static hypothesis [5]. This assumption is typical for robotic
manipulation actions and consists of assuming that pusher motions are slow enough

Robotics 2023, 12, 92 3 of 29

that inertial forces are negligible compared to frictional forces. Full descriptions of the
interaction forces are rarely considered.

Mason approached the problem analytically, and relying on the relevant theory of
sliding friction and classical mechanics, he developed analytical tools to plan a pushing
manipulation to achieve the desired outcome. In [5], Mason derived the voting theorem, a
rule for determining the sense of rotation of a pushed object depending on its centre-of-
mass, without an explicit knowledge of the pressure distribution between the object and its
support surface. This is a very important result, considering that the distribution of pressure
at the contact between the object and the supporting surface is difficult to estimate, and
consequently, the frictional forces arising at the contact are indeterminate [11]. Following
that, an important contribution was offered by Goyal et al.: in [12], they studied the resultant
of the frictional contact forces when the support forces are given and they introduced the
limit surface (LS) concept to provide a geometric description of the net frictional force and
moment between the rigid body and a planar surface on which it slides. Although the limit
surface has been successfully used in feedback control applications under the quasi-static
assumption, it was computationally expensive due to the lack of a convenient form to
construct it. To reduce the computational time needed to compute it, Lee and Cutkosky
in [13] generalized the concept of the limit surface for irregular pressure distribution
and, relying on the knowledge of pressure distribution, derived the so-called ellipsoidal
approximation. It provides an invertible relationship between motions and forces. Then, it
was used by Lynch et al. [7] to develop a model of the motion of a pushed object, which
can be used in the design of a pushing controller. Under the assumption of quasi-static
interactions, they derived an analytical mapping between pusher and object velocities.

These results have been used for planning and controlling the pushing operation with
a robotic manipulator. Among the most famous works, Lynch and Mason in [1] analyzed
three issues in pushing, i.e., mechanics, controllability, and planning, to develop planning
algorithms to automatically find stable pushing paths among obstacles.

However, due to the high complexity of the problem, the analytical approach, used to
derive a model of the physical contact between the object pushed and the pusher, relies
on some modeling assumptions that are not always verified in reality, e.g., the uniform
distribution of friction on a surface. The mismatch between the modeling and the real-
world conditions affects the proper behavior of the system. For these reasons, in recent
years, researchers have extended the analytic approach with data-driven methods, i.e.,
the interaction between the objects is still described with an analytical model, but some
critical parameters are estimated by experiments and learned by a large amount of collected
data. This allows to avoid strong or minor hypothesis on the involved physical parameters.
In [14], the authors try to better capture frictional interactions with a data-driven approach:
they use a Gaussian regression to learn the model and show that the resulting system can be
controlled through a model predictive control. In [15], the authors use a density estimation
model with a data-driven approach to predict the motion of a rigid object resulting from a
robotic push.

Although data-driven approaches enjoy high flexibility with less restrictive assump-
tions, they require a large amount of data and their recording is very time-consuming.
Both analytical and data-driven approaches described so far are model-based, but recently
there has been a growing interest in reinforcement learning, thanks to which a model-free
approach can be used to overcome all the problems aforementioned. In [16], a deep neu-
ral network is used to model the motion of a rigid object pushed by a robot on a surface
through raw point cloud data. They try to learn dynamics from a visual stream: the network
takes depth images as input, splits point clouds into pieces of the object, and predicts their
motion in terms of SE(3) transformations. In [17], a model-free reinforcement learning is
used to discover and learn the utility of pushes combined with the grasp. The authors focus
on the benefits for robotic manipulation coming from the synergies between non-prehensile
and prehensile actions. They trained two fully convolutional networks, one for pushing
and the other for grasping, in a Q-learning framework, self-supervised by trial and error.

Robotics 2023, 12, 92 4 of 29

With picking experiments they show that their method achieves a higher grasping success
rate, thanks to the use of pushing when deemed necessary by the learning framework.

Although these latter and more advanced methods appear to be promising, planar
pushing remains challenging for learning-based control approaches, as much as for the
model-based ones. This paper exploits a model-based approach to design a model predic-
tive controller that, differently from existing solutions based on the same strategy, explicitly
takes into account the communication delay of the digital implementation and exploits
a novel perception pipeline to detect, localize and track the pushed object. Furthermore,
the method has been generalized to allow the robot to push a given object along a generic
trajectory rather than a straight line only, while ensuring a smooth motion.

With reference to the literature reviewed so far on the non-prehensile manipulation,
the key aspects of our improvements of the state-of-the-art model-based approach for
robotic pushing, proposed in [9], are:

• A compensation delay strategy to make the control system able to reach the desired
goal with the expected performance despite the delays arising from a digital imple-
mentation of the perception and communication pipeline;

• A chattering avoidance strategy to reduce as much as possible the oscillations in high
frequency arising from the hybrid nature of the considered system;

• A novel trajectory generation approach to make the control system design independent
of the particular trajectory to be tracked.

1.2. Related Work on Object Detection

One of the main challenges that must be addressed in the realization of a robotic
food-handling solution is the estimation of the position and orientation of the objects in the
space, i.e., their 6D pose. Indeed, the success of the robotic solution first depends on its
ability to detect and localize foods in the surrounding environment, independently from
their wide variability in appearance, dimension, and shape.

The approaches to the 6D pose estimation problem can be categorized in several ways;
commonly accepted classifications are the instance level and category level methods.

Instance-level methods assume an exact 3D CAD model is available during training
and they expect to work on the same instance object during inference. They can be
further divided into template-based and regression-based methods. Template-based methods
use a set of template images of the object instance captured from different views and
then compare them to the input image at run-time. They have demonstrated impressive
results in terms of accuracy and speed, working well also for texture-less objects, but often
performance degrades when the objects are partially occluded [18–20]. Regression-based
methods can directly estimate the 6D pose, as PoseCNN [21], or predict 2D projected
key-points, which are then used by the PnP algorithm to solve the 6D pose as in DOPE [22]
and MobilePose [23]. Both the approaches cited above work well when the inference
is performed on the same instance on which they have been trained, but performance
deteriorates when the target object little differs from the 3D model, so they suffer from
a lack of scalability, e.g., if one is trained on a brand of a fruit juice it will not recognize
the fruit juice of another brand. Convolutional neural networks, as for many problems
of computer vision, are a widespread solution for 6D pose estimation problems. In this
case, the instance level methods can use to their advantage the knowledge of the 3D CAD
model to easily generate a large synthetic dataset for the training. Indeed, the realization
of a dataset for 3D object detection with real-world images manually labeled is very time-
consuming, labor-intensive and error-prone. On the other hand, networks trained only on
synthetic data degrade when used on real data due to the so-called reality-gap problem.

Category-level methods instead focus on object recognition within a specific category
and so do not require a 3D CAD model. In CenterPose [24], Tremblay et al. propose a single-
stage, keypoint-based approach for object pose estimation that operates on unknown object
instances within a known category using a single RGB image as input. In [25], semantic
keypoints predicted by a convolutional network are combined with a deformable shape

Robotics 2023, 12, 92 5 of 29

model to recover the 6D pose, making no distinction between textured and texture-less
objects. The main drawback of these methods is the need of large datasets realized with
real-world images, due to the absence of a 3D model. Some more recent works try to
overcome this shortcoming as in NOCS [26], where a mixed reality method to automatically
generate large amounts of data for category level recognition is proposed, or CPS++ [27]
and Self6D [28], which proposes the idea of synthetic-to-real domain transfer for class-level
6D poses through self-supervised learning.

To recognize fruits and vegetables, category-level methods would be more suitable
due to the great intra-class variability of the target objects. Nevertheless, the collection of
a rich dataset with real images for each class, including as many as possible variations in
lights, environments, and viewpoints, for each object in the specific category, is not feasible,
and, to the best of our knowledge, the category level methods that try to merge synthetics
data and class recognition are still too young. Therefore, to take the great advantage of
synthetic data generation, the instance level method DOPE [22] has been chosen for the
recognition step of the robotic picking system, enhanced with the method presented in [10]
and briefly recalled in Section 2.

Owing to the accurate localization offered by the proposed method, the grasp is likely
to be successful as proved by the results discussed in the next section. Nevertheless, real-
world fruits and vegetables vary in shape, size, weight, and friction, hence the handling
phase of each actual item is non-trivial. This issue can be tackled by resorting to tactile
sensing in combination with a state-of-the-art grasp force control algorithm. Specifically,
we adopt the SunTouch tactile sensors [29] and the model-based slipping control algorithm
originally presented in [30] and extended in [31]. The main idea behind this approach is
to estimate the slipping velocity by means of a nonlinear observer and regulate it to zero.
This way it is possible to automatically modulate the grasping force without knowing the
weight of the handled item while also reacting to external disturbances, e.g., unforeseen
collisions with obstacles that might cause fruit drops.

With respect to the detection and 6D localization methods reviewed so far, for the
detection of fresh fruits, we adopt here a method, originally presented in [10], enhancing
a state-of-the-art neural network that cannot deal with the significant variability of fruits
of the same species and provides a 6D pose of the fruit with an accuracy not sufficient
to perform a correct picking. Our method is such that the estimated pose accuracy is
independent of the fruit dimensions, which can vary significantly even for given species
of fruit.

2. Object Recognition and 6D Localization

The proposed object recognition and 6D localization algorithm is based on a state-
of-the-art deep neural network for 6D pose estimation, i.e., DOPE [22], followed by the
pose refinement algorithm that addresses the problem of dimensions variability of the target
objects, proposed in [10].

The adopted deep neural network, DOPE, belongs to the instance-level and regression-
based category. It infers, in near real-time, the poses of known rigid objects in a cluttered
environment from a single RGB image without requiring post-alignment. The authors
showed how their network, trained only on synthetic data without fine-tuning, achieves
state-of-the-art performance on 6D object pose estimation, promising a great solution to
speed up the training process of such networks.

The algorithm first regresses the nine keypoints of a cuboid enclosing the recognized
object, i.e., its eight vertices and centroid, and then passes them to the PnP algorithm [32],
that, given the camera intrinsics and the CAD cuboid dimensions, is able to retrieve the 6D
object pose.

When the network is used to recognize objects that are scaled versions of the CAD
model used during the training, the resulting estimated pose is affected by a positioning
error depending on the scale difference between the real object and the CAD model.
To overcome this limitation, a pose refinement algorithm, described in [10] and shortly

Robotics 2023, 12, 92 6 of 29

summarized for self-consistency in Section 2.2, is adopted. By using the pose estimated
by DOPE, the CAD model used during the training, and the depth map provided by an
RGB-D sensor, an optimization problem is resolved to obtain the refined pose.

2.1. Network Training

The DOPE network has been trained to recognize two objects: a specific fruit juice
brick and a red apple. While for the first one, an exact CAD model was available, for the
second one a generic CAD model has been used for obvious reasons.

Following the approach described in [22], both domain randomized (DR) and photo
realistic (PR) images have been synthesized for the dataset creation.

For both objects, DR data were generated by placing in virtual worlds a random
number of object instances in arbitrary positions and orientations along with an arbitrary
number of distractors (selected from a set of 3D models). For each simulation, the envi-
ronment, the light conditions, and the applied noise are randomly chosen. Once all is set
up, forces and moments of random intensities and directions are applied to each object in
the scene. As a result, objects will move in the scene in a chaotic manner, colliding and
overlapping each other. A camera, in a fixed position, takes pictures of the scene at a fixed
rate along with the annotations for the training.

The PR data, instead, have been generated by placing the objects on a table or in a fruit
crate (in the case of apples) in a realistic way. The annotated images are then captured with
a camera that moves around the table with a variable elevation and inclination. Each time a
virtual world is created in this manner, a number of parameters are randomly chosen, such
as the number of objects and distractors, their poses, the light conditions, the color and the
dimension of the table (fruit crate), and the camera maximum elevation and inclination.
Figure 1 shows some images of the dataset generated with the NVISII tool [33].

Table 1 reports the training parameters of the two networks used for detecting the juice
brick and the red apple.

Table 1. Training parameters for the two DOPE networks.

Training parameters for the juice brick

DR frames ∼50 k

PR frames ∼10 k

epochs 70

learning rate 0.0001

train batch size 116

test batch size 32

optimizer Adam

training time ∼2 days

Training parameters for the red apple

DR frames ∼100 k

PR frames ∼20 k

epochs 120

learning rate 0.0001

train batch size 116

test batch size 32

optimizer Adam

training time ∼3 days

Robotics 2023, 12, 92 7 of 29

Figure 1. Synthetic data examples. The first two images are the DR and PR data for the juice,
respectively. The last two images are the DR and PR data for the red apple, respectively.

2.2. Pose Refinement

The instance-level inference system adopted to detect fruits and vegetables is prone to
positioning errors in case the object to detect is scaled bigger or smaller than the one used
to train the network, which is a likely circumstance for fresh fruits. DOPE will interpret the
scale difference as a translation, farthest or closest, of the target object. Indeed, an object
seen from a 2D camera can be interpreted in an equivalent way as a smaller version of
the same object placed closer to the camera or a larger version placed further away. To
address this shortcoming for an object of unknown dimensions, a method able to translate
and scale an object without altering its representation in the image plane of the camera
is summarized in this section for self-consistency of the present manuscript even though
proposed in [10].

Let the estimated object pose by DOPE be represented by the vector p̂ and the unit
quaternion Q̂ indicating the position and the orientation of the recognized object with
respect to the camera frame, respectively. Placing the CAD model used for the training in a
virtual world at the position p̂ and orientation Q̂, with respect to the camera frame (of a
virtual camera), a virtual depth map can be acquired and compared with the one coming
from the real RGB-D sensor. The idea is to translate the CAD model in the new position p′

without changing its orientation and to scale it into the updated cuboid dimensions d′ so
that its RGB image, captured by the virtual sensor, is the same, while the corresponding
virtual depth map is different. The updated values p′ and d′ are evaluated as

p′ = p̂− σ
p̂
‖p̂‖ (1)

d′ = µ(σ)dCAD, with µ(σ) =
‖p′‖
‖p̂‖ , (2)

where σ is a scalar factor, µ(σ) is a scale factor depending on σ and dCAD =
[
dx dy dz

]T de-
notes the CAD cuboid dimensions. Starting from these equations, a cost function depending
on σ can be defined and minimized, as described in [10].

The optimum σopt, obtained by solving the optimization problem, is such that the
depth map coming from the RGB-D sensor and the one rendered, are best overlapped.
Therefore, it is used in (1) and (2) to obtain the refined position and the estimated real
cuboid dimensions.

The pose refinement algorithm is validated through experimental results, as discussed
in detail in [10], and here briefly recalled for the reader’s convenience. Five red apples of
significantly different dimensions were placed in five different locations on the table where
the robot was mounted. For each apple and each location, three grasp attempts were made,
firstly, only using the pose coming from DOPE (Table 2), and secondly, refining the pose
with the novel algorithm (Table 3). The comparison of Tables 2 and 3 shows that the pose
refinement algorithm significantly increases the grasping success rate.

Robotics 2023, 12, 92 8 of 29

Table 2. Grasping success rate without pose refinement.

ATT. 1 ATT. 2 ATT. 3 ATT. 4 ATT. 5

Apple 1 100% 66% 0% 100% 100%

Apple 2 33% 33% 33% 0% 0%

Apple 3 66% 33% 33% 33% 33%

Apple 4 0% 0% 0% 0% 0%

Apple 5 0% 0% 0% 0% 0%

Table 3. Grasping success rate with pose refinement.

ATT. 1 ATT. 2 ATT. 3 ATT. 4 ATT. 5

Apple 1 100% 100% 100% 100% 100%

Apple 2 100% 100% 100% 100% 100%

Apple 3 66% 66% 100% 100% 100%

Apple 4 66% 100% 100% 100% 100%

Apple 5 66% 33% 66% 66% 66%

3. Pushing Control

In the experiments used to validate the perception pipeline, the environment was
static and there were no objects impeding the grasp maneuver. In order to improve the
autonomy of the robotic system shown so far and to make grasping feasible even if the
objects collide with each other, a control system for the execution of non-prehensile robotic
manipulation actions has been designed. In particular, we focus on a pushing maneuver
and we will show how it can be used as a pre-grasp manipulation to make the desired
prehensile one feasible.

3.1. Dynamic Model

Referring to Figure 2, the pusher–slider system consists of a rigid object S, the slider,
that can translate and rotate in a plane and whose configuration is described by a vector
qS = [xs ys θ]T with respect to an inertial reference frame FI . In the present study, the
slider is a rectangular object, defined by its width a and its length b. The slider is moved by
another rigid object P, the pusher, assuming that their interaction occurs through a single
contact point. Its coordinates in the plane are expressed according to the position of the
slider, i.e., pS = [pS

x pS
y]

T , with respect to the slider frame FS, centered in the center of
friction of the slider (CF).

𝑥𝐼

𝑦𝐼

ℱ𝐼

S

ℱ𝑆 𝜃𝑆P

𝒒𝑆

𝒑𝑆

𝑏

𝑎

Figure 2. Pusher–slider system.

Robotics 2023, 12, 92 9 of 29

The following assumptions will be used to derive the equations of motion:

1. The pusher and the slider move in the horizontal plane normal to the gravity vector
and all forces lie in this plane.

2. Pusher motion is slow enough that inertial forces are negligible compared to frictional
forces (quasi-static assumption).

3. The friction forces are governed by the Coulomb’s Law: the tangential force of friction
during sliding lies along the opposite direction to the direction of motion, with
magnitude proportional to the normal force.

4. The friction coefficient between the slider and the support surface, µSS, is uniform. It
means that the CF is simply the projection of the center of mass (CM) in the plane.

5. The pusher is assumed always be in contact with the slider in a point pS.

By following the approach developed in the literature, in order to model the interaction
between the pusher and the slider in terms of velocities, the construction of the so-called
motion cone, introduced by Mason in [5], is required. By using the ellipsoidal approximation
of the limit surface used to model the two-dimensional slippage as in [7], a mapping
between the generalized friction forces and the slider twist is recovered. By evaluating
the wrench at the contact point, this mapping is used to evaluate the boundaries of the
motion cone, i.e., vl = [1 γl]

T and vr = [1 γr]T , where the explicit definition of the γl
and γr coefficients can be found in [9]. According to the analogy between the friction cone
and the motion cone, they play the same role for the tangential and normal components of
the velocity as the friction coefficient for the tangential and normal force components, i.e.,
they are the ratio of the minimal tangential component (along the y axis) over the normal
component (along the x axis), which generates a sliding. This representation allows us to
determine if the velocity applied to the slider by the pusher, let it be vS

p = [vS
px vS

py]
T with

respect to FS, results in a sticking or a sliding behavior of the objects in contact. Indeed, if
vS

p is inside the motion cone, the contact between slider and pusher results in a sticking
mode and the velocity is fully transmitted to the slider; if vS

p exceeds one of the edges of the
motion cone, only a part of it is transmitted to the slider and the remaining part determines
a sliding of the pusher on the object, i.e., if vS

p exceeds vl , a sliding left contact mode occurs,
and if vS

p exceeds vr, a sliding right takes place.
Depending on the contact modes j = ST, SL, SR, which correspond to sticking, sliding

left and sliding right, respectively, the hybrid dynamics of the system under examination
can be represented under the following constraints:

ẋ = f (x, u) =


fST(x, u), if γr ≤ vS

py/vS
px ≤ γl

fSL(x, u), if vS
py/vS

px > γl

fSR(x, u), if vS
py/vS

px < γr

(3)

where x = [qT
S pS

y]
T is the state of the system and u = [vS

px vS
py]

T is the control input
represented by the normal and tangential pusher velocity, respectively, expressed in FS.
An explicit formulation of f j(x, u) can be found in [9].

3.2. Control System Design

The role of the proposed feedback controller is to determine the best pusher velocity
to counteract the displacement from the desired trajectory. The controller is based on the
feedback of the state x, i.e., the slider pose that has to be measured by a visual tracker and
the pusher position that is measured through the robot forward kinematics. To achieve the
best performance, the maximum accuracy in system modeling is required, but this is really
hard to obtain due to the difficulties in friction forces modeling. Therefore, the controller
has to be robust enough to address the uncertainties of the model as well as the external
disturbances. Moreover, the controller has to deal with the underactuation of the system
and its hybrid nature, i.e., the constraints of the motion cone described in (3) have to be

Robotics 2023, 12, 92 10 of 29

explicitly accounted for in the controller design. A Model Predictive Control (MPC) has
proven to be the most suitable solution to satisfy all the requirements above.

In order to achieve a real-time control law, rather than considering the highly nonlinear
dynamics in (3) in the control system design, its linearization about a given straight line is
used, as proposed in [9]. Depending on the contact mode j, both the equations of motion
and the constraints in (3) can be written in a matrix form as

δẋ(t) = Aj(t)δx(t) + Bj(t)δu(t), (4)

Ej(t)δx(t) + DT
j (t)δu(t) ≤ gT

j (t), (5)

respectively, where δx(t) and δu(t) represent the perturbation about the equilibrium state
x̄ and about the nominal input ū. The explicit expression of matrices in (4) and (5) can be
found in [9].

Consider the linearized system in (4) and the constraints expressed as linear inequali-
ties in (5). Using the forward Euler integration method, the resulting equations in discrete
time, depending on the contact mode, are:

δx(k + 1) = (I + Ts Aj(k))δx(k) + TsBj(k)δu(k) (6)

Ej(k)δx(k) + DT
j (k)δu(k) ≤ gT

j (k), (7)

where k denotes the time at which the equations are evaluated and Ts is the sampling time.
The controller design is developed by using (6) and (7), as described hereafter.

Let H be the finite length of the prediction horizon, which is assumed to be the
same as the control horizon. The objective of the controller is to resolve the following
optimization problem:

min
δxn ,δun

J(δx, δu) = δxT
HWHδxH +

H−2

∑
n=0

δxT
n+1Wδxn+1 +

H−1

∑
n=0

δuT
n Rδun

s.t.



if n = 0

{
δx1 = δx0 − Ts

(
f (x̄0, ū0)− B̄j0u0

)
D̄T

j0ū0 ≤ ḡT
j0

if n > 0

{
δxn+1 =

(
I + Ts Ajn

)
δxn + TsBjnδun

Ejnδxn + DT
jnδun ≤ gT

jn

uxm ≤ ux ≤ uxM

uym ≤ uy ≤ uyM

−λ b
2 ≤ pS

y ≤ λ b
2

(8)

where n denotes the step along the prediction horizon and the subscript n + 1 stands for
tn+1. W is the weight matrix for the error state, while R weighs the control input. At
the final step, n = H, the error state is weighted with a matrix WH used to approach a
zero steady-state error. Note that for n = 0 a different formulation of constraints, arising
from nonlinear equations, is used so that a greater fidelity to the model is achieved. In
fact, thanks to the knowledge of x0 (note that it is not an optimization variable because
it corresponds to the measurement at time t0 of the prediction horizon), the equations (3)
reduced automatically to a linear form for both the dynamics and the constraints. Moreover,
uxm, uym and uxM, uyM represent the minimum and the maximum normal and tangential
pusher velocities allowed, respectively, and a last constraint is used to force the pusher not
to slide over λ b

2 of the sliding object, where λ is a scalar safety factor.

Robotics 2023, 12, 92 11 of 29

By following the approach in [9], in order to address the hybrid nature of the system
without increasing the computational complexity of the problem, the sub-optimal family
of modes approach has been adopted in the controller design. It consists in selecting η of
the 3H possible sequences along the prediction horizon, so that a wide range of system
behaviors is covered and only η constrained quadratic optimization problems have to be
solved. Note that, the choice of such parameters is critical: a too-high number of sequences
results in a high computational complexity while a too-low number may not be sufficient
to cover the significant dynamic behaviour of the system. Considering that the MPC is
such that only the first computed input is used, the following family of modes has been
chosen for the controller design:

M = {(ST1, · · · , STH),

(SL1, · · · , SLHm , STHm+1 , · · · , STH),

(SR1, · · · , SRHm , STHm+1 , · · · , STH)},
(9)

where Hm represents the number of steps for which the initial contact mode is maintained
and STj, SLj, SRj represent the sticking, sliding left, and sliding right modality at step
j = 1, · · · , H, respectively. This choice not only fits well to cover most of the dynamic
behaviors between the slider and the pusher, but also allows us to drastically reduce the
computational cost of the problem under examination. In fact, in this way, the controller
has to resolve only three (η = 3) QP problems as formulated in (8), one for each sequence
of the family. Subsequently, the best sequence of the contact mode corresponds to the one
for which the optimization problem gave the minimum value of the cost function.

In view of the hybrid nature of the pusher–slider system, an aspect that was overlooked
by the authors of [9] proposing the control strategy above is the control effort required to
switch from one mode to another. Specifically, if the switches occur at high frequency, an
undesirable phenomenon of chattering may occur. A way to reduce as much as possible the
oscillations consists in making the switches happen only when strictly necessary. A design
parameter helpful to regulate them is Hm, which can be selected in the range [1, H]. Suppose
that the controller is in the sticking mode and that a small angular error affects the system
state. If Hm is too low, the controller will consider optimum to switch between sticking and
sliding mode to recover the error as soon as possible. The continuous switching between
the two modes results in an oscillating control signal. To avoid this behavior, Hm has to be
set to a value not too low. Note that, even the opposite extreme is to be avoided, otherwise
the system may be too slow to recover from errors and disturbances. On the other hand, by
analyzing the cost functions trend of the three contact modes, it was observed that their
values differ for a small threshold, let it be ε, when small deviations from the nominal
trajectory occur. Therefore, in these situations, the controller switches from one mode to
another unnecessarily, causing continuous oscillations in the control signal. To avoid it, a
new countermeasure has been adopted here: given ε, at each iteration, after solving the
three QP problems, the mode chosen at the previous step is privileged by subtracting the
threshold ε to its new minimum, as shown in Algorithm 1, where indexk−1 represents the
mode j chosen at the previous step.

Algorithm 1: Chattering avoidance.
Data: δxk, indexk−1, ε
minSTk ← solve QP for sticking mode
minSLk ← solve QP for sliding left mode
minSRk ← solve QP for sliding right mode
solk ← [minSTk, minSLk, minSRk]
sol(indexk−1)← sol(indexk−1)− ε
modeopt ← min(solk)

Robotics 2023, 12, 92 12 of 29

3.3. Explicit Delay Compensation

Although using efficient tools to solve the optimization problems arising from the
family of modes approach allows us to achieve a real-time controller, with a digital imple-
mentation other sources of latency may cause delays in a feedback controller. For example,
in many cases, the systems to be controlled have dynamics characterized by delays not
negligible, so that an input u is actuated with a delay d by the system. This is the typical
case of robot control interfaces, where a reference position, or velocity, or torque is checked
and buffered or filtered before being actuated. Moreover, the perception pipeline could
also be affected by communication delays, especially if the computing hardware running
the neural networks is different from the computing unit running the controller. In this
case, in view of (6) and assuming that all system inputs are subject to the same delay, the
delayed model can be represented as

δx(k + 1) = Akδx(k) + Bkδu(k− d), (10)

where Ak = I + Ts Aj(k), Bk = TsBj(k) and the delay is equal to d sampling periods. To
address the latency of the system, an explicit delay compensation, based on an approach that
was first formulated in [34] for an interior-point optimization algorithm, is preferred to the
implicit one, so that the representation order of the system does not depend on the number
of delayed samples d.

Equation (10) reveals that, due to the input delay, the state at time k does not depend
on the current input δu(k) but only on the previous input obtained at time k− d− 1. In
other words, the effect of the input at time k affects the state only d samples later.

By observing that the state δx(k + d|k) can be recovered recursively from (10), it
results in

δx(k + d|k) = Ad
k δx(k) +

d

∑
ν=1

Aν−1
k Bkδu(k− ν). (11)

By modeling the delay as a FIFO (First-In-First-Out) buffer of fixed length d, according
to (11), the MPC design can still be based on a delay-free system, because the delay
compensation is explicitly addressed. Naturally, at time k, it is necessary to predict the state
in which the system will obtain d samples later, applying to the plant model the control
inputs recorded in the buffer delay.

Figure 3 shows the system architecture arising from this approach. Given the measured
state x(k) and the nominal trajectory evaluated d samples later, i.e., x̄(k + d|k), the predictor
has to simulate the dynamics of the pusher–slider system along the delay buffer. By
swiping the buffer from the last element to the first one, firstly the predictor has to evaluate
the motion cone constraints and then has to simulate the system dynamics. Finally, the
predicted state at time k, i.e., x̂(k + d|k), is given to the controller to evaluate the next
perturbed input controller δu(k), that will enter the buffer. This delay compensation
strategy was essential to obtain a good behavior of the closed loop system running at a
sampling time compatible with the actual update rate of the visual tracker, rather than
using a fictitiously high sample rate for the control computation as in [9].

Robotics 2023, 12, 92 13 of 29

ഥ𝒙 𝑘 + 𝑑|𝑘

𝛿𝒖 𝑘

ഥ𝒖 𝑘

𝒖 𝑘 𝒙 𝑘− Controller𝛿ෝ𝒙 𝑘 + 𝑑|𝑘
𝒖𝑘 𝒖𝑘−1 …

Plant

𝒖𝑘−𝑑

Delayed Plant
Delay Compensation

P
R

E
D

IC
T

O
R

ෝ𝒙 𝑘 + 𝑑 𝑘

Figure 3. System architecture to compensate the delay arising from the dynamic of the system.

3.4. Trajectory Generation

Due to the linearization of the pusher–slider system model about a straight line, the
tracking of more complex trajectories including curves might fail. Still inspired by [9], a
novel strategy is here proposed for the generation of the trajectory characterized by paths
with different shapes, which allows us to re-use the controller designed for tracking the
straight line. The novel strategy conveniently switches the inertial reference frame FI
during the execution of a complex trajectory in order to deceive the controller to think of
following the straight-line trajectory, while allowing separation of translation movements
from rotational ones.

Let P1, · · · , PN be a set of points, belonging to a feasible path in the plane xy and
p` = [px` py`]

T is the vector of coordinates of the point P` expressed in the inertial frame
FI , with ` = 1, · · · , N. Given the initial position of the slider expressed by the point P0,
the planned path is approximated by N segments connecting these points, i.e., the set of
segments from P` to P`+1, with ` = 0, · · · , N − 1.

The desired 2D poses of the slider expressed in FI , corresponding to each target point,
are recovered by splitting the translations from the rotations, so that each target pose
defines a pure translation or a pure rotation. Let X be the matrix grouping all the desired
poses, obtained from the split. Without loss of generality, suppose the first target point P1
lies on the x axis of FI , i.e., py1 = 0. It follows that the first segment is a straight line that
does not require a rotation. The matrix X is defined as follows:

X =



px1 py1 Θ0
px1 py1 Θ1

...
...

...
px` py` Θ`−1
px` py` Θ`
...

...
...

pxN pyN ΘN−1


, (12)

with Θ0 = 0 and Θ` = Θ`−1 + atan2
(

py`+1 − py` , px`+1 − px`
)

for ` = 1, · · · , N − 1. It
follows that the last desired trajectory is a pure translation.

Note that, even if the trajectory is defined through a sequence of straight lines, some
of these may require a rotation of the slider, i.e., Θ` 6= 0. In these cases, the pusher–slider
system would move too far away from the trajectory around which it is linearized, so that
its real behavior would not be faithful to the linearized form used in the control design
anymore. To avoid this, the frame FI has to be updated at the end of each segment, let
it be F `

I , making sure that its axis x`I points from the actual position of the slider to the
target one, as shown in Figure 4. Consequently, the slider pose has to be expressed in the
updated frame F `

I . In this way, it is ensured that the system never deviates too far from the

Robotics 2023, 12, 92 14 of 29

nominal trajectory used for its linearization and the controller is tricked into thinking that
the overall trajectory is a straight line.

𝑷1

𝑷2

𝑷3

ℱ𝐼
1

ℱ𝐼𝑷0

𝑷ℓ

𝑷4

𝑷𝑁

ℱ𝐼
ℓ

ℱ𝐼
2

ℱ𝐼
3

ℱ𝐼
4

ℱ𝐼
𝑁

Figure 4. Trajectory generation strategy. On the left N points defining a feasible trajectory. On the
right, they are approximated by a union of segments. In order to use the linearized system about a
straight line, the frame FI has to be translated and rotated so that, at each step of the trajectory, its
new axis x`I always points toward the next point P`.

In turn, this means that at each time instant t the new nominal state trajectory in
correspondence of a pure translation is updated as

x̄(t) =

p`
` +

p`
`+1−p`

`

‖p`
`+1−p`

`‖
vS

px
(
t− t0`

)
0
0

, t ∈ [t0` , t f`], (13)

where t0` is the initial time of each partial trajectory, t f` is the duration of the segment,

evaluated as
‖p`

`+1−p`
`‖

vS
px

, and, p`
` represents the point p` expressed in F `

I . Note that, due to

the frame updating, it always results ȳ`s = 0. As shown in Figure 4, this approach is such
that the system may not be attached to the nominal trajectory expressed in the updated
frame F `

I , due to a higher or lower angle error. As this error grows, the effort required
to the control grows. In order to always keep a moderate control, it is possible to add an
angular smooth reference in correspondence to the pure rotation step, i.e.,

x̄(t) =


0
0

Θ`
` +

Θ`
`+1−Θ`

`

‖Θ`
`+1−Θ`

`‖
α
(
t− t0`

)
0

. (14)

where Θ`
` is the angle Θ` expressed in F `

I , α is the angular velocity of the reference, t0` is
the initial time of the partial trajectory, and, t f` is the duration of the rotation, evaluated as
|Θ`

`+1−Θ`
` |

α .
Note that, in particular, since Θ`

` in (14) and p`
` in (13) are both expressed in the

updated frame F `
I , it results Θ`

` = 0 and p`
` = 0.

4. Pipeline for Pick-and-Place of Fruits

The overall pick-and-place pipeline, already developed in [10], is here extended with
the non-prehensile manipulation ability of the pushing as explained hereafter. Figure 5

Robotics 2023, 12, 92 15 of 29

shows how it works in a specific context, in which the goal is to pick the target object, a
red apple, in a cluttered scene. The pipeline starts with the perception step, which makes
the system aware of its surroundings, by determining the position and orientation of the
objects in the space through DOPE, and by refining the resulting estimated poses with the
pose refinement algorithm as described in 2.2. Given the refined pose of the target object,
p̂′apple, a motion planning module, described in [10], plans to pick the object. It takes in
input a grasp pose chosen by the grasp selection strategy described in Section 4.1. If the
motion planning is successful in finding a collision-free path to pick and place the red apple,
a grasp force controller, as described in Section 4.1, is used to grasp the object with the
minimum force necessary to lift it. Otherwise, a pushing action is requested to the pushing
module to facilitate the grasp maneuver. The pushing module, described in Section 3, takes
in input the pose of the selected obstacle in the scene, let it be p̂′juice, and pushes it to a
target location. Then, planning trials and pushing actions follow in an iterative way until
the motion planning is successful.

DOPE

RGB Image

Grasp

ෝ𝒑𝑎𝑝𝑝𝑙𝑒Depth Map

ෝ𝒑𝑗𝑢𝑖𝑐𝑒

Motion
Planningෝ𝒑′𝑎𝑝𝑝𝑙𝑒

ෝ𝒑′𝑗𝑢𝑖𝑐𝑒

FAILED

SUCCESS

Grasp selection

strategy

REPLANNING REQUEST

Tactile Map

Pose
Refinement

Pushing

Figure 5. Pick-and-place pipeline.

4.1. Grasp Force Control and Grasp Selection Strategy

Even if the described grasping pipeline is successful owing to the accurate pose
estimation and to the non-prehensile helping maneuver, the actual handling of fruits and
vegetables is a non-trivial issue. This is because, even considering objects of the same type
(e.g., two apples), they have different physical properties such as weight, shape, friction,
and deformability. Moreover, depending on the robot’s acceleration, the handled object is
also subject to inertial forces, thus an open loop grasp force control might not be robust
enough to avoid object slipping while limiting the object deformation at the same time.

To tackle this issue and enhance the manipulation robustness, we adopt the slipping
control strategy proposed in [30,31] based on the force/tactile feedback provided by the
SunTouch sensors [29]. The algorithm aims at automatically regulating the grasp force to
the minimum required force that avoids slippage.

The grasp force control algorithm is briefly described in the following, but more details
are available in [31].

Similarly to the pusher modeling, the control strategy is a model-based algorithm
that exploits the LS theory which is an extension of the classical Coulomb friction to
roto-translational motions. This way the model is aware not only of the translational
load but also of the rotational ones. The resulting grasping force takes into account both
contributions which are strongly coupled, in fact, the grasp force that avoids slippage is
usually much higher in case torsional loads are applied to the grasped object.

The grasp force fn is computed by the grasp controller as the sum of two contributions, i.e.,

fn = fns + fnd . (15)

Robotics 2023, 12, 92 16 of 29

fns is the so-called static contribution and is computed by using the LS theory and the
force and torque measurements at the fingertips. This contribution allows a safe grasp
of objects with unknown weight and grasp location in quasi-static conditions. When
the load varies (e.g., during the lift and the transport) such a contribution might not be
enough and a dynamic model should be taken into account. To tackle this issue the dynamic
contribution fnd is added to the control law. This control action is based on the slipping
velocity estimated by a nonlinear observer thanks to a planar slider slippage model [31].
Specifically, fnd is a linear control action that aims to regulate the estimated slippage velocity
to zero.

A robotic solution for fruit picking able to operate independently in different situations
should have the ability to automatically select the grasping pose depending on the obstacles
in the scene. To increase the chances to pick the target object although the obstacles in the
scene, the grasp selection strategy proposed in [10] is adopted.

The strategy allows to define a set of pre-grasp poses for the end effector frame,
such that its origin is located on the surface of a sphere whose center is positioned in the
refined position of the target object, and its approach vector (z-axis) points towards the
center of said sphere. Figure 6 shows some examples of grasp poses defined following
the aforementioned grasp selection strategy. A complete description of the method can be
found in [10].

Attempt 1

Attempt 2

Attempt 3

Attempt 4

Attempt 𝑛-th

Figure 6. Sketch of the proposed grasp selection strategy.

5. Experimental Results

The experiments are carried out on a seven-axis robot Yaskawa Motoman SIA5F
equipped with a WSG32 gripper by Weiss Robotics, sensorized with the SUNTouch
force/tactile fingers [29] and a RealSense Depth Camera D435i mounted on the robot
gripper. The right finger of the robot is linked to a pushing extension suitably designed
and realized in ABS plastic; its extremity is used by the robot to perform the pushing
maneuver. The optimization problem described in (8) is solved using a state-of-the-art
solver for mathematical programming, the Gurobi Optimizer [35], the communication with
the robot takes place through the Robot Operating System (ROS) and a 3D model-based
tracking system is realized through the platform ViSP [36] to measure the 2D pose of the
slider in order to realize the feedback control law. Table 4 reports the model and controller
parameters used in the experiments described in the following.

Robotics 2023, 12, 92 17 of 29

Table 4. Parameters of the dynamic model and of the controller.

Dynamic model parameters

a 0.062 m

b 0.082 m

m 0.287 kg

µSS 0.32

µSP 0.19

Controller parameters

Ts 0.050 s

d 3

H 20

Hm 3

ε 0.001

uxm 0.001 m/s

uxM 0.02 m/s

uym −0.05 m/s

uyM 0.05 m/s

λ 0.75

ū [0.005 0]Tm/s

W 10 diag([1, 1, 0.005, 0.01])

WH 200 diag([3, 3, 0.03, 0])

R 10 diag([1, 1])

5.1. Comparison with the State-of-the-Art Approaches

To highlight the need of a feedback control, a first open-loop experiment was con-
ducted. The proposed goal consists in pushing the slider for 0.3 m following a straight line
with a nominal velocity ū = [0.005 0]Tm/s. Figure 7 shows the experimental setup. As
shown in Figure 8, even if the system has an almost zero initial error, the state diverges.
This motivates the adoption of a feedback control.

Figure 7. Setup of the first experiment: testing of the MPC pushing controller.

Robotics 2023, 12, 92 18 of 29

(a) (b)

(c) (d)
Figure 8. Experiment of the straight line tracking (open loop). (a) Tracking of x̄s with respect to FI .
(b) Tracking of ȳs with respect to FI . (c) Tracking of θ̄ with respect to FI . (d) Tracking of p̄S

y with
respect to FS.

The first closed-loop experiment has been conducted by using the state-of-the-art
robotic pushing proposed by [9] without our improvements, here named STD-MPC (Stan-
dard MPC). It means that the chattering avoidance and the delay compensation strategies
have not been used in the controller design, thus setting d = 0, Hm = 1, and ε = 0
in Table 4. The desired trajectory has been generated as described in Section 3.4. Since
straight-line tracking is required, only one point is used, i.e., P1 = [0.30 0]m. Figure 9
shows the experimental results. It is evident how both the state and the control variables
are affected by continuous high frequency oscillations caused by the delay that affects the
digital implementation of the controller, given the large sampling time allowed by the
perception module.

Therefore, we repeated the same experiment by adding the first of our contributions,
namely, the delay compensation strategy explained in Section 3.3 to counteract this unde-
sirable effect. The resulting controller is here named DC-MPC (Delay Compensation MPC).
Figure 10d shows a great reduction of the oscillations in the evolution of both the state and
the control signal. However, Figure 10e,f still highlight an unnecessary switching between
the contact modes, considering that the tracking of a simple straight line is required. In or-
der to reduce as much as possible the oscillations, as explained at the end of Section 3.2, the
chattering avoidance strategy has been added in a third experiment, in which the proposed
MPC is adopted. The choice of the parameters d, Hm, and ε used for our improvements can
be found in Table 4.

Robotics 2023, 12, 92 19 of 29

(a) (b)

(c) (d)

(e) (f)
Figure 9. Experiment of the straight line tracking with STD-MPC. (a) Tracking of x̄s with respect to
FI . (b) Tracking of ȳs with respect to FI . (c) Tracking of θ̄ with respect to FI . (d) Tracking of p̄S

y with
respect to FS. (e) Control signals: uy sliding velocity and ux pushing velocity. (f) Optimum contact
modes j.

The experiment was carried out first in simulation in a Matlab environment, simulating
also the measurement noise, and then on the real robot as Figure 11a–d illustrate the state
evolution of the simulated closed-loop system, while Figure 11e shows the control signals u
applied to the simulated plant and Figure 11f shows the contact mode chosen at each step.
The same order of figures is adopted in Figure 12 to show the results of the real experiment.

As expected, the real behavior of the system slightly deviates from the simulated one.
This is unavoidable, due to the model uncertainties and the assumptions made on the plant.
In particular, the non-uniform friction distribution of the contact surface in a real setting is
certainly one of the main causes of the mismatch between simulation and reality.

Robotics 2023, 12, 92 20 of 29

(a) (b)

(c) (d)

(e) (f)
Figure 10. Experiment of the straight line tracking with DC-MPC. (a) Tracking of x̄s with respect to
FI . (b) Tracking of ȳs with respect to FI . (c) Tracking of θ̄ with respect to FI . (d) Tracking of p̄S

y with
respect to FS. (e) Control signals: uy sliding velocity and ux pushing velocity. (f) Optimum contact
modes j.

Concerning the experimental results, the plots in Figure 12 show how the system is
able to follow the reference signals achieving a steady-state error in the order of millimeters.
Note that the slider is positioned by hand with an initial error on pS

y . This justifies the
choice of the controller to adopt the sliding contact mode right away so that the error
can be recovered. Then, the sticking mode is preferred all the time, as expected since
the tracking of a straight line is required. The results clearly demonstrate that no high
frequency oscillation affects the state variable or the control variable, which saturates only
at the initial time instant due to the initial error of almost 2 cm on the pusher position.

Robotics 2023, 12, 92 21 of 29

(a) (b)

(c) (d)

(e) (f)
Figure 11. Simulation of the straight line tracking with the proposed MPC. (a) Tracking of x̄s with
respect to FI . (b) Tracking of ȳs with respect to FI . (c) Tracking of θ̄ with respect to FI . (d) Tracking
of p̄S

y with respect to FS. (e) Control signals: uy sliding velocity and ux pushing velocity. (f) Optimum
contact modes j.

Robotics 2023, 12, 92 22 of 29

(a) (b)

(c) (d)

(e) (f)
Figure 12. Experiment of the straight line tracking with the proposed MPC. (a) Tracking of x̄s with
respect to FI . (b) Tracking of ȳs with respect to FI . (c) Tracking of θ̄ with respect to FI . (d) Tracking
of p̄S

y with respect to FS. (e) Control signals: uy sliding velocity and ux pushing velocity. (f) Optimum
contact modes j.

5.2. Straight Line Tracking with Disturbances

To test the robustness of the control system, the previous experiment has been repeated
in a real-world setting by applying two disturbances to the system during the execution.
The disturbances are applied by touching the object by hand, hence moving it from the
desired path and varying ys, as it can be appreciated in Figure 13b. The first touch, which
causes a displacement of 0.024 m, is applied after six seconds from the start of the task
execution, while the second one, 0.02 m large, is applied about thirty seconds after the
first one. Naturally, the effect of the disturbance affects all the state variables, causing
a transient increase in the tracking error. In both cases, as soon as the disturbances act,
a change of mode occurs: the contact modes in both the cases switch from the previous

Robotics 2023, 12, 92 23 of 29

sticking contact mode to the sliding mode (Figure 13f). In this way, by applying a tangential
velocity, which almost saturates to the imposed constraints, the robot is able to reject the
disturbances, bringing the object back on track and achieving a steady-state error in the
order of millimeters, as in the previous experiment. Note that, compared to the other
state variables, in all the experiments a greater error on pS

y is recorded. This is reasonable
considering the weight matrices used in the MPC designer. In fact, the value used to weigh
vS

py is much smaller than the ones used to weigh xs and ys, both in W and WH . This is
because it is not important that ys follows the reference signal, but only that it does not
exceed its constraints.

(a)

disturbances are applied here

(b)

(c) (d)

(e) (f)
Figure 13. Experiment of the straight line tracking with disturbances (closed loop). (a) Tracking
of x̄s with respect to FI . (b) Tracking of ȳs with respect to FI . (c) Tracking of θ̄ with respect to FI .
(d) Tracking of p̄S

y with respect to FS. (e) Control signals: uy sliding velocity and ux pushing velocity.
(f) Optimum contact modes j.

Robotics 2023, 12, 92 24 of 29

5.3. Trajectory Tracking

The following experiment is performed to demonstrate the utility of a pushing maneu-
ver in a real-world application of robotic manipulation of fresh fruit. The task is performed
by the robot by using the recognition system described in this paper and the overall pipeline
in Figure 5.

Figure 14 shows the scenario of this experiment. The proposed robotic task consists
in picking the red apple placed in a cluttered box and placing it in a container on its left.
To recognize, grasp and place the fruit in the desired position, the pipeline described in
Section 4 is adopted. In the considered situation (see Figure 14), the grasp of the apple is
unfeasible due to the two fruit juice bricks very close to the apple. Indeed, the adopted
grasp selection strategy, also due to the gripper design, cannot find a feasible solution to
allow the pick of the target object without colliding with the obstacles in the scene. In
this context, a non-prehensile manipulation is very helpful to successfully complete the
proposed task by preliminary moving one of the obstacles.

Figure 14. Experimental set-up.

By following the approach described in Section 3.4, a more complex trajectory has
been generated using the points P1 = [0.07 0]m and P2 = [0.12 0.10]m and an angular
velocity α equal to 5◦/s. With reference to (12), the overall trajectory is defined through

X =

0.07 0 0
0.07 0 1.1071
0.12 0.10 1.1071

, (16)

where the coordinates in the first two columns and the angles in the last column are
expressed in meters and radians, respectively; therefore, three phases can be detected: the
first one consists of a straight line, the second phase is a pure rotation and the third one is a
new straight line.

Figure 15 illustrates the state evolution of the closed loop system, the control signals,
and the contact mode chosen at each step. The tracking of the first segment takes place with
high precision. However, when the system has to track the second part of the trajectory,
which is a pure rotation, an error on xs and ys begins to accumulate. This is unavoidable
since a pure rotation can be realized only by applying a moment to the object. To follow
the angular reference a switch of contact mode is required, so that a tangential velocity is
applied, but during this phase the normal velocity cannot be zero to avoid contact loss.

Robotics 2023, 12, 92 25 of 29

Then, in the third part of the trajectory, the system returns to track a straight line in sticking
mode with the desired nominal velocity. In the end, a low steady-state error is reached.
Therefore, the results obtained from this experiment also test the ability of the designed
control system to track a more complex trajectory using the strategy described in Section 3.4.

Finally, Figure 16 shows a series of screenshots of the overall pipeline of this experi-
ment, reporting its most important steps. As shown in Figure 16e,f, thanks to the pushing
maneuver performed in the previous step, the robot is able to pick the red apple without
colliding with the other objects in the scene and place it in the container on its left as
required by the task.

A video of all the experiments is available as Supplementary Material (Video S1).

(a) (b)

(c) (d)

(e) (f)
Figure 15. Experiment of the pushing trajectory tracking. (a) Tracking of x̄s with respect to FI . (b)
Tracking of ȳs with respect to FI . (c) Tracking of θ̄ with respect to FI . (d) Tracking of p̄S

y with respect
to FS. (e) Control signals: uy sliding velocity and ux pushing velocity. (f) Optimum contact modes j.

Robotics 2023, 12, 92 26 of 29

(a)

𝑃1

𝑃2

𝑃0

(b)

𝑃1

𝑃2

𝑃0

(c)

𝑃1

𝑃2

𝑃0

(d)

(e) (f)
Figure 16. Screenshots of the experiment execution. (a) Initial scene to pick the red apple. The
grasp is unfeasible due to the obstacles in the scene. (b) The robot moves to the pre-push pose
to execute the pushing maneuver. (c) The robot reaches the first point P1 of the desired trajectory.
The picture-in-picture image shows the camera view used by the tracking system. (d) The robot
reaches the second point P2 of the desired trajectory. The picture-in-picture image shows the camera
view used by the tracking system. (e) The robot is now able to grasp the red apple in the box. The
picture-in-picture image is the camera view. (f) The robot places the red apple in the desired container.

6. Discussion and Conclusions

In order to highlight the utility of the pushing maneuver, several experiments have
been conducted in addition to the previous ones evaluating the grasping success rate
obtained by using the pipeline in Figure 5 in random cluttered scenes. Particularly,
15 cluttered scene configurations, containing one red apple and three juice bricks, were
generated, and for each of them, the grasp of the apple, with the strategy described in
Section 4.1, was attempted, allowing also the robot to push the obstacles in the scene as
described in the pipeline in Figure 5 when necessary.

Both the apple and the juice bricks are enclosed in a circle of radius rapple = 0.04 m
and rjuice = 0.05 m, respectively, simply to ease the computation of the distance among all

Robotics 2023, 12, 92 27 of 29

objects. In detail, the 2D positions of the juice bricks in the scene are generated by using
a Gaussian distribution with respect to the frame placed in the center of the red apple,
placed in a fixed position in the box. The random positions of the juice are generated
while avoiding collisions with all other objects in the scene and in a rectangle of width
0.30 m (x direction), height 0.24 m (y direction) and centered in the center of the apple. The
orientations of the juice bricks are kept fixed.

As a result, out of fifteen random scene configurations, seven of them (almost 50%)
required the pushing maneuver to pick the apple, since the prehensile maneuver alone
with the grasping selection strategy is not sufficient to complete the desired task without
collisions. Figure 17 shows some of these configurations, in which the non-prehensile
action has become necessary to allow the robot to grasp the red apple. In these cases, the
juice brick selected to realize the pushing maneuver is the closest to the center of the apple.

𝑑2 = 0.09𝑚
𝑑1 = 0.10𝑚

𝑑3 = 0.09𝑚

𝑑1 = 0.11𝑚

𝑑2 = 0.09𝑚

𝑑3 = 0.09𝑚

𝑑1 = 0.11𝑚

𝑑2 = 0.09𝑚

𝑑3 = 0.10𝑚

𝑑3 = 0.09𝑚

𝑑1 = 0.09𝑚

𝑑2 = 0.10𝑚

Figure 17. Sample random scene configurations requiring a pushing maneuver. The values of di,
with i = 1, 2, 3, represent the distances between the center of the red apple and the center of each
juice brick.

These results allow us to claim that a combination of both prehensile and non-
prehensile manipulation actions greatly enhances robot’s ability to act in complex scenarios,
by doubling the fruit picking success rate with respect to a robotic solution not endowed
with the pushing ability. On one hand, the approach proposed to perform robot control in
both types of maneuvers is model-based. Complex physics-based friction models have been
used to describe the dynamics of the objects being manipulated, both pushed and grasped.
Such a priori knowledge allowed us to limit the number of parameters to be known by
the controllers to few units. However, the friction model is limited to a uniform friction
coefficient over the contact surface between the object and the support surface, which is
assumed to be flat. Therefore, future work is needed to relax such assumptions. The control
algorithm is based on a state-of-the-art MPC endowed with innovative enhancements such
as a chattering avoidance strategy and a delay compensation algorithm, which significantly
improved the robotic system performance. The main limitation of the control strategy is

Robotics 2023, 12, 92 28 of 29

that inertial forces are neglected, hence only low acceleration maneuvers are possible. On
the other hand, the proposed object perception system is based on a combination of deep
neural networks and a geometric model useful to improve the accuracy in the 6D pose
estimation. Even though the network architecture is characterized by a high complexity, it
can be trained exclusively through synthetic data. Its generalization capabilities in the pose
estimation have been achieved through the geometric model and the suitable exploitation
of depth measurements. The results achieved so far are encouraging and urge the authors to
pursue the method to achieve a better autonomy, e.g., by integrating AI reasoning methods
to autonomously plan the pushing path and the grasping pose, and to exploit reinforcement
learning methods to generalize the non-prehensile manipulation action to more complex
contact conditions.

Supplementary Materials: The following supporting information can be downloaded at: www.mdpi.
com/article/10.3390/robotics12040092/s1, Video S1: Video of the Experiments.

Author Contributions: Conceptualization, M.C., M.D.S., S.F. and C.N.; Methodology, M.D.S. and
S.F.; Software, M.D.S. and S.F.; Writing—original draft, M.D.S. and S.F.; Writing—review and editing,
M.C. and C.N. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the European Commission within the Horizon Europe
Intelliman project ID n. 101070136.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role
in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript, and in the decision to publish the results.

References
1. Lynch, K.; Mason, M. Stable Pushing: Mechanics, Controllability, and Planning. Int. J. Robot. Res. 1999, 15, 533–556. [CrossRef]
2. Yu, K.T.; Bauza, M.; Fazeli, N.; Rodriguez, A. More than a million ways to be pushed. A high-fidelity experimental dataset

of planar pushing. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Daejeon, Korea, 9–14 October 2016; pp. 30–37. [CrossRef]

3. Yu, K.T.; Leonard, J.; Rodriguez, A. Shape and pose recovery from planar pushing. In Proceedings of the 2015 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 1208–1215.
[CrossRef]

4. Lynch, K. Estimating the friction parameters of pushed objects. In Proceedings of the 1993 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS’93), Yokohama, Japan, 26–30 July 1993; Volume 1, pp. 186–193. [CrossRef]

5. Mason, M.T. Mechanics and Planning of Manipulator Pushing Operations. Int. J. Robot. Res. 1986, 5, 53–71. [CrossRef]
6. Akella, S.; Mason, M. Posing polygonal objects in the plane by pushing. In Proceedings of the 1992 IEEE International Conference

on Robotics and Automation, Nice, France, 12–14 May 1992; Volume 3, pp. 2255–2262. [CrossRef]
7. Lynch, K.; Maekawa, H.; Tanie, K. Manipulation And Active Sensing By Pushing Using Tactile Feedback. In Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots and Systems, Raleigh, NC, USA, 7–10 July 1992; Volume 1, pp. 416–421.
[CrossRef]

8. Hogan, F.R.; Rodriguez, A. Reactive planar non-prehensile manipulation with hybrid model predictive control. Int. J. Robot. Res.
2020, 39, 755–773. [CrossRef]

9. Hogan, F.R.; Rodriguez, A. Feedback Control of the Pusher-Slider System: A Story of Hybrid and Underactuated Contact
Dynamics. In Algorithmic Foundations of Robotics XII: Proceedings of the Twelfth Workshop on the Algorithmic Foundations of Robotics;
Springer International Publishing: Cham, Switzerland, 2020; pp. 800–815. [CrossRef]

10. Costanzo, M.; Simone, M.D.; Federico, S.; Natale, C.; Pirozzi, S. Enhanced 6D Pose Estimation for Robotic Fruit Picking. In
Proceedings of the 9th International Conference on Control, Decision and Information Technologies (CoDIT’23), Rome, Italy,
3–6 July 2023.

11. Mason, M. Manipulator Grasping and Pushing Operations; Technical Report; Massachusetts Institute of Technology: Cambridge,
MA, USA, 1986.

12. Goyal, S.; Ruina, A.; Papadopoulos, J. Planar sliding with dry friction Part 1. Limit surface and moment function. Wear 1991,
143, 307–330. [CrossRef]

13. Lee, S.H.; Cutkosky, M.R. Fixture planning with friction. J. Eng. Ind. 1991, 113, 320–327. [CrossRef]
14. Bauza, M.; Hogan, F.R.; Rodriguez, A. A Data-Efficient Approach to Precise and Controlled Pushing. In Proceedings of the 2nd

Conference on Robot Learning, Zürich, Switzerland, 29–31 October 2018 ; Billard, A., Dragan, A., Peters, J., Morimoto, J., Eds.;
Volume 87, pp. 336–345.

www.mdpi.com/article/10.3390/robotics12040092/s1
www.mdpi.com/article/10.3390/robotics12040092/s1
http://doi.org/10.1177/027836499601500602
http://dx.doi.org/10.1109/IROS.2016.7758091
http://dx.doi.org/10.1109/IROS.2015.7353523
http://dx.doi.org/10.1109/IROS.1993.583097
http://dx.doi.org/10.1177/027836498600500303
http://dx.doi.org/10.1109/ROBOT.1992.219923
http://dx.doi.org/10.1109/IROS.1992.587370
http://dx.doi.org/10.1177/0278364920913938
http://dx.doi.org/10.1007/978-3-030-43089-4_51
http://dx.doi.org/10.1016/0043-1648(91)90104-3
http://dx.doi.org/10.1115/1.2899703

Robotics 2023, 12, 92 29 of 29

15. Kopicki, M.; Zurek, S.; Stolkin, R.; Mörwald, T.; Wyatt, J. Learning to predict how rigid objects behave under simple manipulation.
In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011;
pp. 5722–5729. [CrossRef]

16. Byravan, A.; Fox, D. SE3-nets: Learning rigid body motion using deep neural networks. In Proceedings of the 2017 IEEE
International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 173–180. [CrossRef]

17. Zeng, A.; Song, S.; Welker, S.; Lee, J.; Rodriguez, A.; Funkhouser, T. Learning Synergies between Pushing and Grasping with
Self-Supervised Deep Reinforcement Learning. In Proceedings of the 2018 Proceedings of the IEEE International Conference on
Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 4238–4245.

18. Hinterstoisser, S.; Cagniart, C.; Ilic, S.; Sturm, P.; Navab, N.; Fua, P.; Lepetit, V. Gradient Response Maps for Real-Time Detection
of Textureless Objects. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 876–888. [CrossRef] [PubMed]

19. Li, Y.; Wang, G.; Ji, X.; Xiang, Y.; Fox, D. DeepIM: Deep Iterative Matching for 6D Pose Estimation. In Proceedings of the European
Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018.

20. Rios-Cabrera, R.; Tuytelaars, T. Discriminatively Trained Templates for 3D Object Detection: A Real Time Scalable Ap-
proach. In Proceedings of the 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013;
pp. 2048–2055.

21. Xiang, Y.; Schmidt, T.; Narayanan, V.; Fox, D. PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation
in Cluttered Scenes. In Proceedings of the XIV Robotics Science and Systems Conference (RSS), Pittsburgh, PA, USA, 26–30
June 2018

22. Tremblay, J.; To, T.; Sundaralingam, B.; Xiang, Y.; Fox, D.; Birchfield, S. Deep Object Pose Estimation for Semantic Robotic
Grasping of Household Objects. In Proceedings of the 2nd Conference on Robot Learning, Zürich, Switzerland, 29–31 October
2018; Billard, A., Dragan, A., Peters, J., Morimoto, J., Eds.; Volume 87, pp. 336–345.

23. Hou, T.; Ahmadyan, A.; Zhang, L.; Wei, J.; Grundmann, M. MobilePose: Real-Time Pose Estimation for Unseen Objects with
Weak Shape Supervision. arXiv 2020, arXiv:2003.03522.

24. Lin, Y.; Tremblay, J.; Tyree, S.; Vela, P.A.; Birchfield, S. Single-Stage Keypoint-based Category-level Object Pose Estimation from
an RGB Image. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA,
23–27 May 2022.

25. Pavlakos, G.; Zhou, X.; Chan, A.; Derpanis, K.G.; Daniilidis, K. 6-DoF object pose from semantic keypoints. In Proceedings of
the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 2011–2018.
[CrossRef]

26. Wang, H.; Sridhar, S.; Huang, J.; Valentin, J.; Song, S.; Guibas, L.J. Normalized Object Coordinate Space for Category-Level 6D
Object Pose and Size Estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Long Beach, CA, USA, 15–20 June 2019.

27. Manhardt, F.; Nickel, M.; Meier, S.; Minciullo, L.; Navab, N. CPS: Class-level 6D Pose and Shape Estimation From Monocular
Images. arXiv 2020, arXiv:2003.0584.

28. Wang, G.; Manhardt, F.; Shao, J.; Ji, X.; Navab, N.; Tombari, F. Self6D: Self-supervised Monocular 6D Object Pose Estimation.
In Computer Vision—ECCV 2020; Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M., Eds.; Springer International Publishing: Cham,
Switzerland, 2020; pp. 108–125.

29. Costanzo, M.; De Maria, G.; Natale, C.; Pirozzi, S. Design and Calibration of a Force/Tactile Sensor for Dexterous Manipulation.
Sensors 2019, 19, 966. [CrossRef] [PubMed]

30. Costanzo, M.; De Maria, G.; Natale, C. Two-Fingered In-Hand Object Handling Based on Force/Tactile Feedback. IEEE Trans.
Robot. 2020, 36, 157–173. . [CrossRef]

31. Costanzo, M. Control of robotic object pivoting based on tactile sensing. Mechatronics 2021, 76, 102545. [CrossRef]
32. Lepetit, V.; Moreno-Noguer, F.; Fua, P. EPnP: An accurate O(n) solution to the PnP problem. Int. J. Comput. Vis. 2009, 81, 155–166.

[CrossRef]
33. Morrical, N.; Tremblay, J.; Lin, Y.; Tyree, S.; Birchfield, S.; Pascucci, V.; Wald, I. NViSII: A Scriptable Tool for Photorealistic Image

Generation. arXiv 2021, arXiv:2105.13962 .
34. Rao, C.; Wright, S.; Rawlings, J. Application of interior-point methods to model predictive control. J. Optim. Theory Appl. 1998,

99, 723–757. [CrossRef]
35. Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual. Available online: https://www.gurobi.com (accessed on 22

June 2023.
36. Marchand, E.; Spindler, F.; Chaumette, F. ViSP for visual servoing: A generic software platform with a wide class of robot control

skills. IEEE Robot. Autom. Mag. 2006, 12, 40–52. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ICRA.2011.5980295
http://dx.doi.org/10.1109/ICRA.2017.7989023
http://dx.doi.org/10.1109/TPAMI.2011.206
http://www.ncbi.nlm.nih.gov/pubmed/22442120
http://dx.doi.org/10.1109/ICRA.2017.7989233
http://dx.doi.org/10.3390/s19040966
http://www.ncbi.nlm.nih.gov/pubmed/30823548
http://dx.doi.org/10.1109/TRO.2019.2944130
http://dx.doi.org/10.1016/j.mechatronics.2021.102545
http://dx.doi.org/10.1007/s11263-008-0152-6
http://dx.doi.org/10.1023/A:1021711402723
http://dx.doi.org/10.1109/MRA.2005.1577023

	Introduction
	Related Work on Robotic Pushing
	Related Work on Object Detection

	Object Recognition and 6D Localization
	Network Training
	Pose Refinement

	Pushing Control
	Dynamic Model
	Control System Design
	Explicit Delay Compensation
	Trajectory Generation

	Pipeline for Pick-and-Place of Fruits
	Grasp Force Control and Grasp Selection Strategy

	Experimental Results
	Comparison with the State-of-the-Art Approaches
	Straight Line Tracking with Disturbances
	Trajectory Tracking

	Discussion and Conclusions
	References

