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Abstract: Visual Question Answering (VQA) models fail catastrophically on questions related to the
reading of text-carrying images. However, TextVQA aims to answer questions by understanding
the scene texts in an image–question context, such as the brand name of a product or the time on a
clock from an image. Most TextVQA approaches focus on objects and scene text detection, which
are then integrated with the words in a question by a simple transformer encoder. The focus of
these approaches is to use shared weights during the training of a multi-modal dataset, but it fails to
capture the semantic relations between an image and a question. In this paper, we proposed a Scene
Graph-Based Co-Attention Network (SceneGATE) for TextVQA, which reveals the semantic relations
among the objects, the Optical Character Recognition (OCR) tokens and the question words. It is
achieved by a TextVQA-based scene graph that discovers the underlying semantics of an image. We
create a guided-attention module to capture the intra-modal interplay between the language and the
vision as a guidance for inter-modal interactions. To permit explicit teaching of the relations between
the two modalities, we propose and integrate two attention modules, namely a scene graph-based
semantic relation-aware attention and a positional relation-aware attention. We conduct extensive
experiments on two widely used benchmark datasets, Text-VQA and ST-VQA. It is shown that our
SceneGATE method outperforms existing ones because of the scene graph and its attention modules.

Keywords: artificial neural networks; computational and artificial intelligence; natural language
processing; Visual Question Answering; scene graphs

1. Introduction

Significant progress for multi-modal tasks that demand the simultaneous processing of
both images and texts has been made in the past few years, and Visual Question Answering
(VQA) is one of the prominent multi-modal tasks that requires answering natural language
questions by inferring from the content of the given images. However, the nature of the
questions and images of many existing VQA datasets is deficient in training the model
to build a comprehensive understanding of human everyday scenes. For example, the
collected photo-realistic images of many conventional VQA datasets exclude the texts that
commonly appear in daily-life scenes, and the questions are merely designed to examine
the recognition of objects and their attributes, such as colors and sizes. To overcome
this limitation of existing conventional VQA datasets and to train models with better
understandings of texts in realistic scenes through question answering, a new variant of
VQA tasks, TextVQA [1], was recently proposed.

Images in TextQA tasks are collected from realistic scenes that contain various formats
of texts, e.g., brand names and price tags, and the questions are specifically designed to
be answered by referring to the textual information in the images. Hence, in addition to
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the recognition of objects as in the conventional VQA task, it is necessary for TextVQA
models to additionally recognize the texts that are associated with the objects and capture
these textual features from the images. Most current TextVQA models rely on the Optical
Character Recognition (OCR) technique to directly extract the textual characters from
images as OCR tokens and then integrate these OCR token features with image and
question features for answer prediction, as shown in [1–3]. However, the use of OCR tokens
as an additional sequence of inputs to image object features and question word features can
hardly reveal or capture the relations between the texts and their related objects in images.
Such relations are significant in answering questions that show the explicit positional or
semantic relationships between the objects and the textual characters, such as the relation on
between UMD and uniforms in the question “What university is represented on these uniforms?”
in Figure 1. To capture the relatedness between objects and OCR tokens, some recent
works [4–7] proposed to implicitly represent the relationships between objects and OCR
tokens through their absolute locations. However, assuming such positional proximity as
“relatedness” is not reliable and could be ambiguous, because irrelevant objects that are in
different categories might be located in similar positions around one OCR token.

Figure 1. Architecture of our SceneGATE model.

To overcome this problem, we propose an explicit representation of the relationships
between the OCR tokens and their associated objects in an image with the help of a scene
graph. A scene graph [8] is a graph structure that annotates the attributes of objects and the
relationships between objects in an image. In this work, we propose a novel scene graph
structure, specifically for TextVQA tasks, by assigning the OCR tokens as the attributes
of objects to represent the affiliations of OCR tokens with their related objects. The scene
graph embedding is encoded via the semantic embeddings of the objects and OCR tokens
of the scene graph; thus, compared to previous works that only considered the visual
features of objects, such scene graph embedding captures the relationships between objects
and OCR tokens from the semantic aspect. A semantic relation-aware attention module
is also applied to obtain the ultimate scene graph embedding that encodes the different
semantic relationships between the objects and the OCR tokens.

Another problem that this work tries to solve is to achieve much more intense inter-
actions between the multi-modal inputs for TextVQA models and thus generate a better
answer representation for the final answer prediction. Most of the previous works [2,7]
directly input different modalities (i.e., image, question and OCR token features) into a
multi-modal transformer; although some works [3,6] made additional interactions for
some modalities beforehand, these interactions were rather weak because there was a lack
of simultaneous self-attention learning within each modality. Thus, we propose a Scene
Graph-Based Co-Attention Network (SceneGATE) that includes a co-attention module
consisting of two attention units: self-attention that boosts the intra-interactions for each
modality and the guide-attention unit that uses the question features to guide the attention
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learning for the image and OCR token features. A positional relation-aware attention mod-
ule is applied to the integrated visual features of objects and OCR tokens. Such integration
enables the model to additionally learn relationships between the OCR tokens and their
related objects from the positional level. The SceneGATE network operates on the two
branches of scene graph features and the visual-level integrated multi-modal features in
parallel, such that the relationships between objects and OCR tokens from both the semantic
level and positional level are highlighted. The overall architecture of SceneGATE can be
found in Figure 1. In summary, the main contributions of our work are as follows.

• To the best of our knowledge, this is the first attempt to apply a scene graph as
an image representation in TextVQA. We introduce a novel scene graph generation
framework for the TextVQA environment.

• We propose and integrate scene graph-based semantic relation-aware attention with
positional relation-aware attention to establish a complete interaction between each
question word and visual feature.

2. Related Work
2.1. TextVQA

Look, Read, Reason and Answer (LoRRA) [1] was the first baseline model for TextVQA
tasks. It simply encodes the OCR tokens by FastText embeddings and enables the use of
any type of contextual attention mechanism to integrate the questions, images and OCR
token features. Further works have been proposed to solve the TextVQA problem from
various aspects; for example, ref. [2] proposed Multi-Modal Multi-Copy Mesh (M4C) with
an enriched OCR representation to capture more properties of the OCR tokens. Such
enriched OCR token features are then projected with the object regions and question
features into the same joint embedding space through the multi-modal transformer encoder.
As an extension of M4C, ref. [6] captured the relationships between the object regions and
their related OCR tokens by encoding the OCR-related object features through softmax
attention, which are the result of learning the locations of corresponding OCR tokens and
the object regions. Others have proposed graph structures to better represent and encode
the relationships between OCR tokens and the related object regions. For example, ref. [4]
built three different graphs to represent the visual, semantic and numeric information of
OCR tokens and object regions, where the nodes of the graphs are updated from locationally
related nodes. Ref. [5] proposed a spatially-aware graph attention module to emphasize
the importance of different types of relative spatial relationships between OCR tokens and
objects. Similarly, ref. [7] also utilized the graph attention module but this was conditioned
on the relationships between the OCR tokens and the objects that were revealed from
the question structural patterns. Ref. [9] proposed to align the related OCR tokens with
the question by using a two-stage module that aligns the question with images via the
pre-trained visual grounding task and then aligns the question and OCR tokens through
object labels. Different from using an off-the-shelf OCR module, as in all the previous
works, a recent study [10] integrated the training of the OCR technique into the flow of an
end-to-end TextVQA model to mitigate the influence of poor OCR accuracy on the final
answer prediction. A comparison of the TextVQA models can be found in Table 1.

2.2. Conventional VQA

VQA [11] is a multi-modal task that requires answering natural language questions
by looking at given images. The answer representation is generated from the inputs with
different natures in essence: images formed by pixels and questions formed by semantic
words. To align the image features and question features into the same joint embedding
space for answer prediction, previous VQA works mainly adopt two different methods:
fusion techniques [12–16] and attention mechanisms. The attention mechanism in VQA
tasks ranges from the basic vanilla attention [17,18] to the recent, commonly used co-
attention mechanism [19–22]. Such a co-attention mechanism aims to obtain a stronger
interaction between different modalities by using the attention weights learned from
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individual modalities to guide the attention of each other. In this work, we use the guided-
attention module for stronger intra-modal integration for OCR tokens, images and question
features.

Table 1. Summary of TextVQA models discussed.

Model Question
Feature

Image Feature Main Model Dataset

LoRAA [1] GloVe
LSTM

(Object) Faster R-CNN,
(OCR) FastText

Self-Attention,
OCR Copy Module

TextVQA,
VQA 2.0,
VizWiz

MM-GNN [4] LSTM (Object) Faster R-CNN,
(OCR) FastText/Sigmoid/
Cosine

Graph Neural Network,
Graph Attention,
OCR Copy Module

TextVQA,
ST-VQA

M4C [2] BERT (Object) Faster R-CNN,
(OCR) Faster R-CNN +
FastText + PHOC

Multi-Modal Transformer,
Dynamic Pointer Network

TextVQA,
ST-VQA,
OCR-VQA

LaAP-Net [6] BERT (Object) Faster R-CNN,
(OCR) Faster R-CNN +
FastText + PHOC

Multi-Modal Transformer,
Localization Aware Predictor

TextVQA,
ST-VQA,
OCR-VQA

SMA [7] BERT (Object) Faster R-CNN,
(OCR) Faster R-CNN +
FastText + PHOC

Self-Attention,
Graph Atttention,
Dynamic Pointer Network

TextVQA,
ST-VQA

SA-M4C [5] BERT (Object) Faster R-CNN,
(OCR) Faster R-CNN +
FastText + PHOC

Multi-Modal Transformer,
Spatial Attention,
Dynamic Pointer Network

TextVQA,
ST-VQA

SNE [3] BERT
(Object) Faster R-CNN,
(OCR) Faster R-CNN +
FastText + PHOC +
Recog-CNN

Feature Summarizing Attention,
Multi-Modal Transformer,
Dynamic Pointer Network

TextVQA,
ST-VQA

2.3. Scene Graph in Visual Language Tasks

The scene graph has been applied in various visual language tasks, including image
captioning [23,24], text to image generation [25] and image–text retrieval [26]. Recently,
scene graphs have also been used in VQA. For example, ref. [27] processed the scene
graphs and image features simultaneously through two parallel branches of recurrent
memory networks to improve the model’s reasoning ability over objects’ relationships.
Ref. [28] proposed to use a probabilistic scene graph of images as the state machine, where
questions were transformed into instructions to perform the reasoning process. Ref. [29]
claimed that only partial scene graphs are effective for answer prediction and proposed a
selective system to choose the most important path in a scene graph and the most probable
destination node on the graph to predict the answers. Ref. [30] used a graph attention
network to encode scene graph embeddings to leverage the relatedness between different
objects. Ref. [31] applied the pre-training pipeline for Visual Commonsense Reasoning
(VCR) tasks by incorporating object-based scene graphs in transformer layers to focus on
semantically adjacent object nodes within multiple hops, regardless of relationship types.
Nevertheless, our work is the first to apply a scene graph in TextVQA tasks and we propose
a novel TextVQA-based scene graph structure to explicitly represent the affiliations between
objects and OCR tokens.
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3. SceneGATE—Input Representations

In this work, we proposed a Scene Graph-Based Co-Attention Network for TextVQA
tasks; the architecture is shown in Figure 1. We first describe the input representations,
the scene graph generation and the scene graph encoding methods in Section 3. We then
explain the co-attention networks for multi-modality semantic and positional relation
integration in Section 4. Table 2 defines all the mathematical symbols in our description.

Table 2. Symbols and definitions.

Symbol Definition

SG = (V , E) scene graph of an image with node set V and edge set E
sgo ∈ O object node set of each scene graph
sga ∈ A attribute node set of each scene graph
sgr ∈ R relationship node set of each scene graph
P = |O ∪ A| total number of object and attribute nodes in each scene graph
N = |O| total number of object nodes in each scene graph
M = |O ∪ A ∪ R| total number of nodes in each scene graph
H(l) hidden states at layer l of GCN
XGCN input scene graph node feature matrix of GCN
Ã adjacency matrix of scene graph nodes
D̃ degree matrix of scene graph nodes
w1, . . . , wt question words
d embedding size of question words
d′ embedding size of OCR tokens

X generalized input feature matrix into self-attention/guided attention
Y generalized additional input feature matrix into guided attention
T self-attended question representation
V = Vobj ∪Vocr ∪ D self-attended visual objects, OCR features and decoder hidden states
V′ = V′obj ∪V′ocr ∪ D′ question-guided visual objects, OCR features and decoder hidden states
Fs positional relation-aware (PRA) attention layer output
Fsg semantic relation-aware (SRA) attention layer output
Rj subset of relationships that the j-th head of SRA attention attends to
κ = |Rj| number of relationships that each SRA/PRA head attends to
β a bias term introduced in attention computation of SRA/PRA attention
t time step at decoding stage
D′(t), D′(<t), D′(>t) decoder answer token at, before and after time step t, respectively

3.1. Input Representations

Given question words w1, . . . , wt, we encode each word into a d-dimensional Bidi-
rectional Encoder Representations from Transformers (BERT) embedding [32]. The weights
are then fine-tuned during training. For objects in each image, we obtain the appear-
ance features for a maximum of 100 objects via the Faster-RCNN model pre-trained on
the Visual Genome dataset [33]. We concatenate the appearance features of each ob-
ject with its corresponding bounding box coordinates to represent each object region.
For the OCR tokens, we extract their appearance features from the images using the
same pre-trained Faster-RCNN model. Each OCR token (Google Cloud OCR Extractor:
https://cloud.google.com/products/ai/, accessed on 30 June 2023) is also encoded by
300-dimensional pre-trained FastText embeddings (FastText embedding pre-trained with
subword information on Wikipedia 2017, UMBC WebBase corpus and statmt.org news
dataset: https://fasttext.cc/docs/en/english-vectors.html, accessed on 30 June 2023)).
Following [2], we concatenate the appearance features, FastText embeddings, Pyramidal
Histogram of Characters (PHOC) [34] features and the bounding box coordinates of each
OCR token to obtain the d′-dimensional enriched OCR embedding.

3.2. Scene Graph Construction

A scene graph is a graph structure SG = (V , E) that denotes the relationships between
objects as well as the associated attributes of each object for an image, where objects sgo ∈ O,

https://cloud.google.com/products/ai/
https://fasttext.cc/docs/en/english-vectors.html
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attributes sga ∈ A and relationships sgr ∈ R are set as nodes of the graph. In this work, we
construct a novel scene graph structure that is specific for TextVQA tasks to represent the
affiliations between OCR tokens and the associated object regions.

For each object in an image, we compare its bounding box coordinates with the other
objects in the image. We have defined 11 different relation types: inside, surrounding, to
the right of, to the left of, under, above, top right, bottom right, top left, bottom left and overlap.
(The semantic relation types can be defined in various ways if they can be represented
in different semantic categories. This will be encoded in the categorical embedding in
Section 3.3). We also compare the bounding box coordinates of each OCR token with all
the objects in the image and assign this OCR token as the attribute of the object whose
bounding box surrounds the OCR token’s bounding box with the highest intersection over
union (IoU) score. Finally, we obtain the triplet of (sgoi , sgr, sgoj) for every two objects and
the pair of (sgoi , sgai ) for each object that has attributes. We use bi-directional edges in the
scene graph.

3.3. Scene Graph Embedding

We use different methods to encode the scene graph based on whether the (scene
graph-based) semantic relation-aware (SRA) attention is applied or not. We describe the
methods in detail in this section. We report our findings from the ablation studies in
Section 6.2, where the SRA attention is not applied.

When SRA attention is applied, we initialize the node features of each object and its
attributes with a 300-dimensional embedding. They are stacked together as the node embed-
ding matrix MatrixP×300, where P is the total number of objects and attribute nodes of each
scene graph. We then add an extra relationship type, self, to the 11 pre-defined relationship
types as mentioned in Section 3.2 in order to denote the relationship of each node with itself.
In addition to the triplet of (sgoi , sgr, sgoj) denoting the relationships between every two
objects, we further add the relationships inside and surrounding between objects and their
attributes to explicitly show and encode the existing semantic relationships between the
objects and their associated OCR tokens. Hence, the object–attribute pair (sgoi , sgai ) now
becomes a triplet of (sgoi , sgr, sgai ), where sgr = surrounding, and (sgai , sgr, sgoi ), where sgr
would be inside. The 12 relationship types are then converted into numeric labels of 1 to
12 to build the adjacency matrix that covers all the object nodes and attribute nodes of a
scene graph.

When SRA Attention is not applied, we encode each scene graph according to [27].
We first initialize the node embedding for all objects, relationship and attribute nodes in
300 dimensions, and then update each object node embedding with its associated attribute
nodes’ embeddings and all the relationship nodes’ embeddings as well as their associated
subject node embeddings. Specifically, for each sgoi , we update its embedding to a 900-
dimensional embedding by concatenating two additional embeddings: (1) the average
of all the related relationship embeddings, where each relationship embedding is the
average of the embeddings of the relationship node and the subject node in the triplet of
(sgoi , sgr, sgoj) for sgoi ; (2) the average of all the embeddings of the associated attribute
nodes that are connected to sgoi . The updated object node embeddings are stacked into a
matrix MatrixN×900 as the scene graph representations for each scene graph, where N is
the number of total object nodes in each scene graph. We also propose two approaches
to initialize the node features: pre-trained word embedding and GCN-based embedding,
as illustrated in Sections 3.3.1 and 3.3.2. The performance for these two approaches is
compared in Section 6.2.

3.3.1. Pre-Trained Word Embedding

Each node is initialized by either a 300-dimensional pre-trained GloVe embedding
(GloVe embedding pre-trained on the Wikipedia and Gigaword5 corpus: https://nlp.
stanford.edu/projects/glove/, accessed on 30 June 2023) or FastText embedding. For

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
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words with multiple tokens, we take the average of each token’s embedding as the node
embedding.

3.3.2. GCN-Based Embedding

Graph convolutional networks (GCN) take the node embedding matrix and the ad-
jacency matrix as inputs. They are propagated over all nodes and result in a matrix with
the updated node features. We construct one graph based on all the unique categories of
objects, relationships and attributes nodes across all the scene graphs of all the images in the
dataset, and we propagate them over a 2-layer GCN for the updated node representations
following Equation (1).

H(l+1) = f
(

D̃−
1
2 ÃD̃−

1
2 H(l)W(l)

)
(1)

H(l) at layer l = 0 is the input node feature matrix XGCN ∈ RM×M, where each node
is represented by a one-hot encoding and M is the total number of nodes. Based on the
triplets of (sgoi , sgr, sgoj) and the pairs of (sgoi , sga) in the scene graphs, the objects are
connected with the related relations and the associated attributes in the adjacency matrix Ã.
We assign a weight of 1 to all the connected edges and 0 to non-edges in Ã. D̃ is the degree
matrix computed based on Ã such that D̃ii = ∑j Ãij. We train two different GCNs in terms
of different node labels. In the object-GCN, we manually categorize all the object types into
60 super-classes based on the hypernym of the synset (synonym set) of each object token
and use these 60 super-classes as the labels of each object node during GCN training. In
the attribute-GCN, we label each attribute node with the attribute tokens’ named entity
recognition (NER) types. (We used the Google Cloud NLP API to identity the entity type:
https://cloud.google.com/natural-language/docs/analyzing-entities, accessed on 30 June
2023). We have 8 different classes: CONSUMER GOOD, EVENT, LOCATION, NUMBER,
ORGANIZATION, PERSON, WORK OF ART and OTHER. The outputs of the second layer
of object-GCN H(l2)

obj and attribute-GCN H(l2)
att are then passed to a minimum pooling layer

as in Equation (2) to obtain the final node feature matrix X
′
GCN ∈ RM×d.

Poolingmin = min(H(l2)
obj , H(l2)

att ) (2)

The node features of X
′
GCN are then used as the initial node representations for object,

relationship and attribute to generate the scene graph embedding of each scene graph.

4. SceneGATE—Co-Attention Networks

For multi-modality integration, we apply a guided attention module over the inputs
and introduce two parallel branches of scene graph-based semantic relation-aware attention
and positional relation-aware attention layers.

4.1. Self-Attention Module

The self-attention (SA) module consists of a multi-head attention layer and a feed-
forward layer with ReLU activation and dropout [35]. The input matrix X is transformed
into three matrices that are in the same dimensions, i.e., query, key and value, as the
learnable weights. These three matrices are then fed into a multi-head attention layer for
the calculation of scaled dot-product attention. We respectively apply two SA modules
for our two sets of inputs X: (1) the question features to obtain the self-attended question
representations T; and (2) the combination of object appearance features, the enriched
OCR token features as described in Section 3.1 and the answer token features from the
decoder, to obtain the attended visual-level object-OCR features and decoder hidden states
V = Vobj ∪Vocr ∪ D.

https://cloud.google.com/natural-language/docs/analyzing-entities
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4.2. Guided Attention Module

The guided attention (GA) module shares the same structure and hyperparameters as
the SA module, but the inputs of the multi-head attention layer are the feature matrix X
and the transformed key and value matrices of another feature matrix Y. In the GA module,
we use the self-attended question representations T as the feature matrix Y to guide the
attention learning with the attended visual-level object-OCR features V that function as the
input feature matrix X. Finally, we obtain the question-guided object-OCR features and
decoder hidden states V′ = V′obj ∪V′ocr ∪ D′.

4.3. Semantic Relation-Aware Attention

We use the transformer encoder [35] with 12 heads as the backbone for our semantic
relation-aware (SRA) attention Layer. As illustrated in Section 3.3, we annotate 12 pre-
defined different relationships sgr ∈ R between every two object nodes (sgoi , sgr, sgai ) and
2 relationship types between objects and their attributes (sgai , sgr, sgoi ) in the scene graph.
We introduce a special attention mechanism whereby each head of the transformer will
only attend to certain nodes of the scene graph. In other words, we only allow each node
to attend to nodes that are connected by certain types of relationships Rj for the j-th head
in the SRA attention Layer, where Rj is a subset of the 12 relationships R and contains only
κ number of relationship types. A bias term β is added to the calculation of the scaled
dot-product attention. When β = 0, the attention weights can be calculated normally
between the two nodes, considering that an edge is mapped to some relationship types
sgr ∈ Rj that the j-th head of the SRA attention Layer is supposed to attend to. When
β = −∞, the attention weights between two nodes also become −∞, considering that
an edge is mapped to a set of relationship types sgr /∈ Rj. Since each head is supposed
to attend to specific sub-information in a scene graph, the calculation of the attention is
only limited to a given set of nodes. In order to manage which relationship types and the
number of relationship types that each head in the SRA attention layer pays attention to, we
need to control the values of β and κ. Empirically, we find that κ = 3 is the most suitable.

4.4. Positional Relation-Aware Attention

Inspired by [5], we also construct a directed complete spatial graph over the object
features V′obj and OCR token features V′ocr in V′, where each edge corresponds to one of the
spatial relationship types according to their relative positions. Additional edges are also
added to connect all the object nodes and OCR tokens to all the question tokens.

Similar to the SRA attention Layer, the positional relation-aware (PRA) attention layer
also uses the structure of the multi-modal transformer encoder with 12 heads as the back-
bone and permits each head to attend to different subsets of the spatial relationship types.
All the heads also allow all the objects and OCR tokens to attend to the question’s words.

Moreover, a causal attention mask is applied for the decoder D′ in the PRA attention
layer. D′(t) is the answer token generated from the decoder at time step t. The attention
layer can attend to all question tokens, objects and OCR tokens along with the previously
decoded entries in the answer D′(<t), without attending to D′(>t), the decoding entries after
time step t. T and V′, obtained from the SA module and GA module, are combined as the
input sequence and fed to two subsequent PRA attention layers to obtain spatially attended
features Fs.

Outputs Fsg from the SRA attention layer are combined with Fs to become the input
to the multi-modal transformer encoders [35]. The combined input allows the model to
attend to all input features in a pair-wise manner. The multi-word answer in each time step
t is decoded using the dynamic pointer network following [2].
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5. Experiments
5.1. Datasets

We evaluate our model with two widely used benchmark datasets: Text-VQA and ST-
VQA. The Text-VQA dataset was proposed by [1] in 2019. Different from the conventional
VQA datasets, images in the Text-VQA dataset contain texts in different formats, and the
questions are specifically designed to be answered by referring to the textual information
in images. The Text-VQA dataset collects 28,408 images that contain texts from the Open
Images v3 dataset [36]. There are 45,336 question–image pairs in the Text-VQA dataset,
which are split into 34,602, 5000 and 5734 for training, validation and testing, respectively.
Each question has 10 ground truth answers, and the voting of these 10 answers is used
to compute the soft accuracy score. The ST-VQA dataset [37] is a concurrent work of the
Text-VQA dataset. However, different from the Text-VQA dataset, the 23,038 images in
the ST-VQA dataset are collected from multiple source image datasets, including the Coco-
text [38], Visual Genome [33], VizWiz [39], ICDAR [40,41], ImageNet [42] and IIIT-STR [43]
datasets, in order to reduce the effect of possible biases from a single-source image dataset.
There are 17,028 images/23,446 questions for the training set, 1893 images/2628 questions
for the validation set and 2971 images/4070 questions for the test set. Each question has at
most 2 ground truth answers to compute the accuracy score by soft voting, similar to the
VQA context. To clearly show the difference between conventional VQA datasets and the
Text-VQA/ST-VQA dataset, we list some typical conventional VQA datasets and compare
them in terms of various aspects in Table 3.

Table 3. Comparison between conventional VQA dataset and TextVQA/ST-VQA dataset.

Dataset Year Image Type Question Type Answer Type Size
(Img./Q.)

VQA v1. [11] 2015 photo-realistic images +
abstract scene

asking different attributes
of objects

open-
ended/multiple

choice
255 K/760 K

VQA v2. [44] 2017 photo-realistic images asking different attributes
of objects open-ended 204 K/1.1 M

Clevr [45] 2017 auto-generated synthetic
images compositional questions open-ended 100 K/865 K

Visual
Genome [33] 2017 photo-realistic images asking different attributes

of objects open-ended 108 K/1.7 M

GQA [46] 2019 photo-realistic images compositional questions open-ended 113K/22M

Text-
VQA [1] 2019 photo-realistic images

contain texts asking for texts in images open-ended 28 K/45 K

ST-VQA [37] 2019 photo-realistic images
contain texts asking for texts in images open-ended 23 K/30 K

5.2. Implementation Details

We encode the question features, the appearance features of objects and the OCR
tokens in the same dimension and the same maximum sequence length as in [5]. Each
scene graph has an average of 36 object nodes and a maximum of 100 OCR nodes. The
downstream SA and GA modules have a dimension of 768, with 8 attention heads and a
dropout rate of 0.1. Our experiments are conducted utilizing an NVIDIA Titan RTX GPU
with 24 GB RAM, a 16 Intel(R) Core(TM) i9-9900X CPU @ 3.50 GHz with 128 GB RAM
and the operating system of Ubuntu 20.04.1. Our final model contains around 95 million
trainable parameters and requires around 0.6 h to train one epoch. The validation accuracy
converges within 40 epochs of training for most of our model variants, and our best model
converges within 8 epochs on both datasets. In short, the training of our best-performing
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model requires around 3GB GPU RAM and 4 h to complete. We use a batch size of
8 and follow the same settings as in [5] for other hyperparameter values. Details of all
hyperparameters can be found in Appendix A.

5.3. Baseline Models

We compare the SceneGATE network with the following baselines in this work:
LoRRA [1] encodes the OCR tokens with only FastText embedding and it has an atten-
tion mechanism to integrate all image, question and OCR token features into the same
joint embedding space for answer prediction. M4C [2] uses enriched OCR token repre-
sentations that include the appearance, semantic, character-level and spatial features of
OCR tokens. The multi-modal transformer encoder is used for modality integration and
iterative decoding, while a dynamic pointer network is applied for answer generation.
Simple is not Easy (SNE) [3] has three separate vanilla attention blocks for the independent
integration of object region, OCR visual-based and OCR textual-based features with the
questions. Localization-Aware Answer Prediction (LaAP-Net) [6] integrates objects and OCR
token features via an attention mechanism to obtain the OCR-related image features, which
is followed by M4C using the multi-modal transformer for integration with the question
features. The Multi-Modal Graph Neural Network (MM-GNN) [4] constructs three graphs
for object regions, semantic OCR tokens and numeric OCR tokens, which all interact to
learn from the related nodes. Spatially Aware Multi-Modal Multi-Copy Mesh (SA-M4C) [5]
adopts a spatially aware self-attention module to capture and to encode 12 different types
of spatial relationships between objects and OCR tokens. Structured Multi-Modal Attention
(SMA) [7] applies a question-conditioned graph attention module to identify the potential
relationships between objects and OCR tokens from the question patterns.

6. Results
6.1. Performance Comparison

Different from other works that used ST-VQA to enlarge the training dataset size,
we compared the performance of our model with different baselines by training only on
the original Text-VQA dataset. We can see from Table 4 that our model outperformed
all the baselines and yielded the state-of-the-art result of 42.37% validation accuracy and
44.02% test accuracy on the Text-VQA dataset. We ran the code provided by SA-M4C to
train the Text-VQA dataset with their default hyperparameters. Their results were only
40.71% and 42.61% for the validation and test accuracy, respectively, which were almost
2% lower than our model. Compared with M4C, SNE and LoRRA, which simply used
the attention mechanism to integrate the different modalities, the models (SMA, SA-M4C
and SceneGATE) that applied the graph attention module achieved better performance,
indicating the importance of the explicit representation and encoding of the relationships
between objects and their related OCR tokens for the TextVQA task. However, both SMA
and SA-M4C considered only the visual representation of object nodes and their spatial
relationships, when the node embedding of OCR tokens in a graph was updated. Our
model overcomes this limitation via the additional encoding of the semantic embeddings
of object nodes and the semantic relationships among different objects and OCR tokens
with the use of the scene graph. Our results also indicate the importance of such semantic
relationship representation and the scene graph in the TextVQA task.

In addition to the accuracy rate, we also used the Average Normalized Levenshtein
Similarity (ANLS) score, which was proposed for the evaluation of the ST-VQA dataset [37],
as an additional evaluation metric to evaluate the performance on ST-VQA. The ANLS score
aims to eliminate the dropped performance caused by OCR recognition errors. It compares
the similarities between the ground truth answers and the prediction results, rather than
the robust identity, as when using the accuracy rate. The edit distance of converting a
prediction string into a ground truth string is measured by this metric in order to give a
soft score for the prediction. If the edit distance is greater than 0.5, it can be considered as
an incorrect prediction not resulting from OCR recognition mistakes, and a score of 0 is
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given. Otherwise, the difference of this edit distance from 1.0 is awarded as the prediction
score. A higher ANLS score indicates that more accurate predictions are made by the model.
The performance of our models and the baselines is compared in Table 5 and we can see
that our model greatly outperforms the baselines by achieving 41.29%, 0.525 and 0.516 for
the validation accuracy, validation ANLS score and test ANLS score, respectively. Our
model achieved a 1.5% improvement in accuracy, a 0.028 improvement for the validation
ANLS score and a 0.039 improvement for the test ANLS score compared to the base model
SA-M4C, which performed slightly worse than its base model M4C in terms of accuracy
and achieved only around a 0.01 increase in the ANLS score on both the validation set and
test set compared to its base model, M4C. The larger performance gap achieved by our
model compared to our base model shows the importance of considering the semantic
relations among the objects and OCR tokens.

Table 4. Results on Text-VQA dataset. Acc. refers to the soft accuracy score.

Model Acc. on Val Acc. on Test

LoRRA 26.56 27.63
MM-GNN 32.92 32.46
M4C 39.40 39.01
LaAP-Net 40.68 40.54
SMA 40.05 40.66
SA-M4C 40.71 42.61
SNE 40.38 40.92

SceneGATE (Ours) 42.37 44.02

Table 5. Results on ST-VQA dataset. Acc. refers to the soft accuracy score.

Model Acc. ANLS ANLS
on Val on Val on Test

MM-GNN - - 0.207
M4C 38.05 0.472 0.462
LaAP-Net 39.74 0.497 0.485
SMA - - 0.466
SA-M4C 37.86 0.486 0.477
SNE - - 0.509

SceneGATE (Ours) 41.29 0.525 0.516

6.2. Ablation Studies

SG Embedding. The use of a scene graph to capture the explicit semantic relationships
between objects and OCR tokens makes an important contribution to our model’s SOTA
performance on both the Text-VQA and ST-VQA datasets. To examine the impact of
different scene graph node embedding initialization methods on the model’s performance,
we also evaluated the model’s performance in using GCN and GloVe for node embedding
initialization on both the Text-VQA and ST-VQA validation sets. We can see from Table 6
that GloVe had the worst results, with only 41.33% and 40.79% accuracy on both the Text-
VQA and ST-VQA validation sets, while the use of GCN would increase the performance
slightly. FastText resulted in the best performance considering that FastText is more capable
of dealing with the OOV issue for the cases of rare OCR tokens in a scene graph.

Network Component. To investigate the contribution of our model’s components, we
first integrated all the image, question, OCR token and scene graph features via multi-modal
transformer encoders as in M4C [2]. This simple approach achieved 39.13% and 37.78%
accuracy on the Text-VQA and ST-VQA validation sets, respectively, as shown in Table 7.
After the addition of the co-attention module for the better inter- and intra-integration
of the image, question and OCR token features, the performance on the validation and
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test sets increased significantly to 41.27% and 39.57%, indicating the effectiveness of such
self-attention-based guided attention. The inclusion of PRA attention layers gave an
improvement in the accuracy rate by around 0.7%, and the performance rose further
to 42.37% and 41.29% for the Text-VQA and ST-VQA validation sets after adding the
SRA attention layer over the scene graphs. These results prove the critical roles of the
co-attention, PRA and SRA attention layers in our model.

Table 6. Validation performance of our model obtained on different types of scene graph node
embedding. Acc. refers to the soft accuracy score.

Model Acc. on Acc. on
Text-VQA ST-VQA

SceneGATE w GloVe 41.33 40.79
SceneGATE w GCN 41.36 40.86
SceneGATE w FastText 42.37 41.29

Table 7. Ablation testing results on the validation set. PRA: positional relation-aware. SRA: semantic
relation-aware. Acc. refers to the soft accuracy score.

Model Acc. on Acc. on
Text-VQA ST-VQA

MM Transformer 39.13 37.78
+ Guided Attention 41.27 39.57
+ PRA Attention 41.95 40.37
+ SRA Attention 42.37 41.29

Effect of Layer Number. In order to determine how many layers we should apply
to each module of the model, we conducted experiments with different combinations of
layer numbers and the results are presented in Table 8. Since having two multi-modal
transformer encoder (MMTE) layers worked the best for the SA-M4C model [5], we started
by fixing the number of final BERT layers to two and adopted all the combinations of
numbers in the range [1, 3] for the number of PRA attention layers and the number of
SRA attention Layers. We empirically observed that models with two PRA attention layers
always performed better than others (rows 4–6 vs. other rows), yielding validation accuracy
of more than 41.8%. In addition, having two layers for each type of attention layer worked
the best. Based on these two observations, we fixed the number of SPA layers to two
and tested the model with a smaller number of SRA attention layers and MMTE layers.
Eventually, we found that having two PRA attention layers, one SRA attention layer and
one MMTE layer was able to yield the best validation accuracy result, 42.37%.

Table 8. Validation performance for different numbers of each type of attention layer used. MMTE:
multi-modal transformer encoder layers, PRA: positional relation-aware attention layers, SRA: se-
mantic relation-aware attention layers, Acc.: soft accuracy score.

# MMTE # PRA # SRA Acc. on Val

2 1 1 41.33
2 1 2 41.73
2 1 3 41.24
2 2 1 41.82
2 2 2 41.89
2 2 3 41.86
2 3 1 41.68
2 3 2 41.32
2 3 3 41.19

1 2 2 41.53
1 2 1 42.37
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6.3. Quality Analysis

Figure 2 shows some sample pairs of images with questions and the answers from
different baseline models. The OCR tokens and their associated object regions with high
attention weights are highlighted with yellow and red bounding boxes in the images.
Compared with other baselines, our model generated more accurate and complete answers
with the correct corresponding OCR tokens regions detected in the images. For example,
our model perfectly identified the brand of the beer with the answer Coors Light, while M4C
missed the token Light and LoRRA and SA-M4C gave incorrect results for the case in the
top-right image. In addition, our model also showed good inference ability in addition to
text-reading ability. Taking the bottom-right image as an example, to answer the question
of How many items can you get for $5?, the model can not only recognize the correct location
of $5, but it also has the ability to understand the semantic meaning of the forward slash
in the image and to interpret the character before this symbol as a number. Our model
provided the correct answer, while the answers of LoRRA and SA-M4C were incorrect. We
present more examples and error analyses in the Appendices B and C.

Figure 2. Visualization of attention outputs from SceneGATE. Yellow bounding boxes surround the
OCR tokens predicted by SceneGATE. Red bounding boxes are the object regions that are associated
with the OCR tokens. The thicker the bounding box lines, the higher the attention weights are.

7. Conclusions

We propose SceneGATE with the use of a novel TextVQA-based scene graph by treat-
ing the OCR tokens in images as the attributes of the objects. Our SceneGATE applies
semantic relation-aware attention to the scene graph and uses the guided attention mecha-
nism to obtain the question-guided object and OCR token features, which are then fed into
the graph attention module for the learning of the positional relationships between objects
and OCR tokens. Our SceneGATE comprehensively learns the semantic and positional
relationships between objects and texts in images and outperforms the SOTA on both the
Text-VQA and ST-VQA datasets.
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Appendix A. Training Hyperparameters

In this section, we include a list of hyperparameters in Table A1.

Table A1. Hyperparameters used to train the SceneGATE model.

Name Value Name Value

max text token length 20 max obj num 100
max ocr num 50 max SG obj num 36
max SG ocr num 100 batch size 8
learning rate 0.0001 # epoch 100
max gradient norm 0.25 optimizer Adam
lr decay @ step 14,000, 19,000 lr decay rate 0.1
warmup factor 0.2 warmup iterations 1000
# workers 0 distance threshold 0.5
SRA Attention context 3 PRA Attention context 3
seed 0 obj dropout rate 0.1
ocr dropout rate 0.1 hidden size 768
# positional relations 12 # semantic relations 12
textual query size 768 ocr feature size 3002
obj feature size 2048 sg feature size 300
# decoding_steps 12 text encoder lr scale 0.1
# text encoder layers 3 # PRA layers 2
# SRA layers 2 # MMTE layers 2

https://textvqa.org/
https://rrc.cvc.uab.es/?ch=11&com=introduction
https://rrc.cvc.uab.es/?ch=11&com=introduction
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Figure A1. Visualization of attention outputs from SceneGATE. Yellow bounding boxes surround the
OCR tokens predicted by SceneGATE. Red bounding boxes are the object regions that are associated
with the OCR tokens. The thicker the bounding box lines, the higher the attention weights are.

Appendix B. Additional Qualitative Examples

Figure A1 compares some additional prediction results of SceneGATE to those of the
other baselines.

Figure A2. Visualization of incorrect classification analysis. Yellow bounding boxes surround the
OCR tokens predicted by SceneGATE. Red bounding boxes are the object regions that are associated
with the OCR tokens. The thicker the bounding box lines, the higher the attention weights are.
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Appendix C. Incorrect Classification Analysis

In Figure A2, we show some qualitative examples of the errors that our SceneGATE
model makes.

The first row shows examples of when our model inherits mistakes made by the
OCR system. Based on the bounding boxes visualized, we can observe that SceneGATE is
attending to the correct entities, giving almost correct answers. In the first example, the
model is attending to the startling stories region of the image, and in the second example,
the model attends to the word printed on the black jersey but gives “kidover” as the answer
instead of “andover”. This is because the OCR token provided by the pre-trained OCR
model is wrong. When the model dynamically copies the OCR tokens as the answer, it
inherits the error made by the OCR system despite its own ability to choose the correct
elements. Since TextVQA models largely depend on the information of scene texts, the
accuracy of pre-trained OCR systems could be a bottleneck for the TextVQA problem.

The second row shows examples in which our predictions can also be considered as
correct answers although they are different from the ground truths. Taking the instance
on the left as an example, yosemite, national and park are the top three OCR tokens that our
model attends to, and our model outputs all three words as the answer, which is actually
correct to answer the given question. Similarly, in the example on the right, the button to
be pressed is called press start, so our model attends to both words and outputs them as the
answer.
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