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Abstract: This research proposes a robust nonlinear hybrid control approach to the speed control of
a multi-input-and-multi-output separately excited DC motor (SEDCM). The motor that was under
consideration experienced parametric uncertainties and load disturbances in the weak field region.
The proposed technique aims to merge the benefits of adaptive backstepping (AB) and integral sliding
mode control (ISMC) to enhance the overall system’s robustness. The unknown parameters with load
disturbances are estimated using an adaptation law. These estimated parameters are incorporated
into the controller design, to achieve a highly robust controller. The theoretical stability of the system
is proved using the Lyapunov stability criteria. The effectiveness of the proposed AB–ISMC was
demonstrated by simulation, to track the reference speed under parametric uncertainties and load
disturbances. The control performance of the proposed technique was compared to that of feedback
linearization (FBL), conventional sliding mode control (SMC), and AB control laws without and with
the adaptation law. Regression parameters, such as integral square error, integral absolute error, and
integral time absolute error, were calculated to quantitatively analyze the tracking performance and
robustness of the implemented nonlinear control techniques. The simulation results demonstrated
that the proposed controller could accurately track the reference speed and exhibited robustness,
with steady-state error accuracy. Moreover, AB–ISMC overperformed, compared to the FBL, SMC,
AB controller without adaptation law and AB controller with adaptation law, in reducing the settling
time by factors of 27%, 67%, 23%, and 21%, respectively, thus highlighting the superior performance
of the proposed controller.

Keywords: adaptive backstepping integral sliding mode; MATLAB representation; nonlinear control
techniques; separately excited DC motor

1. Introduction

Electrical devices play a vital role in control systems and robotics [1]. A common
type of electrical device used in various industrial areas is the DC motor, which converts
electrical energy to mechanical energy. DC motors offer numerous advantages, such as
the ability to control continuous and instantaneous speed [2,3]. These merits make them
versatile for diverse applications, including electric vehicles, pumps, home appliances,
electric cranes, steel rolling mills, and robotic manipulators [1,3].

In recent years, separately excited DC machines have gained significant popularity
for variable speed applications, due to their controllability and ease of use [3]. However,
the dynamic model of a separately excited DC motor (SEDCM) operating in the weak field
region is highly nonlinear. The term “weak field region” refers to a specific operating region
of a SEDCM, where the magnetic field strength produced by the field winding is relatively
weak. This weakening of the magnetic field allows the motor to operate at higher speeds
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than its rated speed. For carrying out a variety of tasks, a machine operates at different
speed modes. Therefore, it needs a controller that can adjust and control its speed according
to the specific application requirement [4]. Furthermore, accurate modeling and control
of the system becomes challenging, due to the varying system parameters and complex
system dynamics [5,6].

There exist several solutions for the speed control of a SEDCM. Classical controllers
find extensive application in the speed control of a SEDCM due to their suitability and
wide acceptance. The accuracy of the mathematical model of the system is a crucial factor
in determining the performance of these controllers in various industrial applications [7].
Developing mathematical models that account for parameter variations is essential for
achieving reliable controller performance. Proportional–integral–derivative (PID) con-
trollers are widely used to control the speed of a SEDCM above the base speed, because of
their simplicity and ease of implementation. However, at high speed, the effectiveness of
the PID controller tends to deteriorate, due to the significant nonlinearities observed in the
motor’s behavior, particularly in the weak field region [3,6,8–10]. In [6], a PID controller us-
ing the artificial bee colony (ABC) algorithm was proposed, to enhance the speed control of
a motor. In [8], speed control of a SEDCM using a DC–DC converter and control strategies,
like proportional–integral (PI) control and fuzzy logic, were used to minimize speed control
errors. Research reported in [9] presented the utilization of PI and fuzzy logic controllers
(FLC) for speed control of a SEDCM. The research work [11,12] introduced a sensorless
control system and an adaptive load approach to improve motor performance, proposing
the online tuning of PID controller parameters through the recursive least square algorithm.

Conventional controllers struggle to maintain a constant speed for the motor, due
to parametric variations associated with nonlinear loads, such as friction and magnetic
saturation [13]. PI and PID controllers, commonly used for speed control, require contin-
uous tuning of control parameters, posing a challenging task during operation. On the
other hand, fuzzy controllers are highly versatile and widely employed for speed control
in industrial and domestic applications. However, fuzzy controllers rely on selecting ap-
propriate values for membership functions, which is crucial for their effective functioning.
As a result, researchers have been exploring various new control techniques to enhance the
system’s performance. Nonlinear control techniques, such as feedback linearization (FBL),
sliding mode control (SMC), and backstepping control (BSC), have been proposed and
applied, to control the speed of a SEDCM above base speed [3,10,14]. These controllers can
handle the nonlinearities in the behavior of the motor more effectively than PID controllers,
resulting in better performance in the weak field region [3,15,16].

A study conducted in [14] investigated the nonlinear behavior of a DC motor and
proposed an FBL control approach, using a metaheuristic optimization algorithm for
improved performance. Research reported in [17] focused on designing and analyzing a
partial FBL controller for AC and DC machines. The simplicity of the FBL approach has
made it a popular choice among nonlinear control techniques for controlling nonlinear
systems: it involves transforming the nonlinear system dynamics into a linear one, which
allows for the use of linear control methods. However, the performance of the FBL approach
may deteriorate, due to the parametric variations and load disturbances [17,18].

To tackle these challenges, researchers have utilized sliding mode algorithms, to attain
robust control over motor speed. SMC is an effective control technique that can yield
outstanding performance, despite uncertainties and disturbances. However, the main
drawback of SMC is chattering, which is typically undesirable in practical drive systems
[18–24]. The research in [18] introduced an integral sliding mode control (ISMC) method
for starting induction motors (IM) in the rotating condition without a speed sensor. The
ISMC method, utilizing the rotor’s back electromotive force model, ensures precise and
rapid estimation of the initial speed. Stability and robustness are analyzed using Lyapunov
stability criteria. Compared to the existing input–output feedback linearization (IOFL) con-
trol method, the proposed approach exhibits improved dynamic performance, robustness,
and absence of overshooting during speed estimation. The work reported in [19] explores
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the implementation of SMC for speed control of permanent magnet synchronous motors
(PMSMs). The study investigated different sliding surfaces and composite controller de-
signs to enhance the robustness of the controller and reduce chattering in a SMC-based law
with a particular focus on the use of a fractional-order sliding surface design. The simula-
tion results validated the effectiveness of the proposed fractional-order SMC (FOSMC) law
for robust and precise speed regulation of PMSM. The introduced sliding surface design
enhanced FOSMC by reducing torque ripple, chattering, and improving anti-disturbance
properties compared to FOSMC with PI or proportional–derivative (PD) sliding surfaces.
In [25], a comparative analysis revealed that the AB super-twisting SMC-based control
law demonstrated superior performance in terms of cyclic path tracking and disturbance
rejection. The control community has consistently improved SMC techniques to enhance
their effectiveness in nonlinear systems. These controllers have good tracking performance
and can effectively handle disturbances. However, a significant drawback of SMC is the
chattering effect, which adversely impacts its overall performance [21,22].

The BSC algorithm is a nonlinear technique that offers a systematic approach for
designing a control law to track a desired reference signal by selecting an appropriate
Lyapunov function. Despite its effectiveness, BSC may not be robust enough to handle
parametric uncertainties [3,20–22]. Unlike SMC, BSC does not suffer from the chattering
effect. However, its ability to effectively reject disturbances caused by load torque is
relatively less efficient than SMC [26].

A SEDCM plays a pivotal role in several industrial and domestic applications, partic-
ularly where precise speed control is required. However, classical controllers encounter
difficulties when it comes to managing load changes in the motor. Controlling the motor’s
speed under varying loads poses a great challenge, making it a complex task to maintain a
steady-state condition. To achieve speeds beyond the base speed, a SEDCM utilizes a field-
weakening control technique. However, its operation in the weak field region introduces
nonlinearities in the motor’s model, primarily due to back EMF and electromagnetic torque.
Thus, designing a robust controller to effectively mitigate nonlinearities, uncertainties,
and load torque disturbances in a SEDCM poses a significant challenge, especially when
aiming for superior dynamic performance. Various control techniques have been explored
to address the challenge of speed tracking. The primary goal of a speed controller is to
achieve the desired motor speed accurately. Additionally, conducting a comprehensive
performance comparison among various nonlinear control techniques is important to
identify the most suitable approach for a specific application.

The present research proposes an adaptive backstepping integral sliding mode con-
troller (AB–ISMC) to address the aforementioned shortcomings and to enhance the system
performance. The controller design improves the tracking of the reference signals in the
presence of parametric uncertainties and load disturbances. The AB–ISMC aims to enhance
the control system’s performance by reducing chattering, improving settling time, and
decreasing the steady-state error. The proposed controller enhances the overall robustness
and ensures system stability based on Lyapunov stability criteria. The designed control
technique is applied to control the speed of a SEDCM in the weak field region. The results
indicate that the proposed hybrid controller outperforms compared to FBL, SMC, and AB
strategies by effectively reducing steady-state error and improving settling time.

The rest of the paper is organized as follows: Section 2 presents the model of a SEDCM.
The design methodologies of various nonlinear control techniques including FBL, SMC,
AB (case 1 and case 2), and AB–ISMC, are discussed in Section 3. The simulation results
are presented in Section 4. Finally, Section 5 summarizes the conclusions drawn from the
study and highlights potential areas for future research.

2. Mathematical Model of a SEDCM

The SEDCM shown in Figure 1 is a common type of DC motor that consists of a
separate field and an armature winding, each with its own voltage source. This enables the
armature voltage and the field voltage to be used as control inputs, allowing for precise
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control of the motor’s speed [3]. The parameters of the SEDCM used in the simulation are
given in Table 1.

Figure 1. Separately excited DC motor.

Table 1. Parameters of SEDCM.

Parameter Symbol Numerical Value Unit

Rated Power P 3.73 kW
Rated Speed wN 183.26 rad/s
Armature Resistance Ra 1.2 Ω
Field Resistance R f 60 Ω
Armature Inductance La 0.01 H
Field Inductance L f 60 H
Motor Constant K 0.3 Nm/A2

Damping Constant B 0.011 kgm2 s−1

Inertia J 0.208 kgm2

Armature Voltage ua 240 V
Field Voltage u f 240 V
Rated Torque τ 18 Nm

Assuming a linear magnetization curve in which the flux is not saturated, the rela-
tionship between the flux and the field current can be expressed as ϕ = L f I f , where L f

represents the field inductance. The state vector is defined as x = [x1 x2 x3]
T = [Ia I f w]T .

Based on this assumption, the equations for a SEDCM can be written as follows:

dIa

dt
=

1
La

(ua − Ra Ia − E)

dI f

dt
=

1
L f

(u f − R f I f )

dw
dt

=
1
J
(Te − Bw− TL)


(1)

where E = KI f w and Te = KI f Ia. The symbol E represents the back EMF, while Te
represents the electric torque. The armature current and field current are represented by Ia
and I f , respectively.

Equation (1) presents a general model of a SEDCM that involves armature voltage and
field circuit voltage as control inputs. The presence of terms like KI f w and KI f Ia makes this
model highly nonlinear. These nonlinearities can significantly affect the performance of the
motor in the weak field region, which requires precise control. Therefore, a nonlinear con-
troller should be designed to compensate for the nonlinearities. To simplify computation,
the following constants are defined.

a1 = −Ra

La
, a2 = − K

La
, a3 = −

R f

L f
, a4 =

K
J

, a5 = −B
J
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Therefore, (1) can be written as,

ẋ1 = a1x1 + a2x2x3 +
ua
La

ẋ2 = a3x2 +
u f
L f

ẋ3 = a4x1x2 + a5x3 − TL
J

 (2)

where the states x1, x2 and x3, respectively, correspond to Ia, I f and w.

3. Nonlinear Controllers Design

Various nonlinear controllers are developed in the present research to address the
challenges of robustness and speed tracking of a SEDCM. These controllers are described
in the following section.

Equation (1) can be expressed in a more concise form as follows:

ẋ = f (x) + gaua + g f u f (3)

where ga = [ 1
La

0 0]T , g f = [0 1
L f

0]T , f (x) =


1
La
(−E− Ra Ia)

− 1
L f

R f I f
1
J (Te − Bw− TL)


3.1. Feedback Linearization (FBL) Based Control

FBL is a widely used nonlinear control technique for DC motors. Its fundamental
concept involves converting the nonlinear system into a linear system via a coordinate
transformation. This transformation can be achieved by selecting a suitable state trans-
formation function that maps the nonlinear state variables to new linear ones [24,27]. A
mathematical transformation is employed in this research to facilitate the design of control
schemes for speed control of a SEDCM using FBL. This transformation allows the system
(3) to be expressed in a more convenient form. This is achieved by involving a change of
variables that can simplify the equations and make them easier to work with.

Consider the following change of variables:

ζ1 = x3

ζ2 = a4x1x2 + a5x3 − TL
J

ζ3 = x2

 (4)

For ζ3 6= 0, the inverse transformation of the new variables is given as

x1 = 1
a4ζ3

(ζ2 − a5ζ1 +
TL
J )

x2 = ζ3
x3 = ζ1

 (5)

Therefore, the equations of SEDCM can be written as functions of the new variables
ζ1, ζ2, ζ3, and the inputs u1, u2. Such that

ζ̇1 = ζ2

ζ̇2 = −(a1a5 + a3a5)ζ1 + (a1 + a3 + a5)ζ2 − (a1 + a3 + a5)
TL
J + a2a4ζ1ζ2

3 + u1

ζ̇3 = a3ζ3 + u2

 (6)

Among them,
u1 = a4

La
x2ua +

a4
L f

x1u f

u2 = 1
L f

u f

}
(7)
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To achieve precise speed control for a SEDCM, it is necessary to ensure that the speed
tracking error is zero, meaning that the motor’s speed exactly follows the reference speed
in a steady-state. Therefore, an error tracking control signal (e) is defined as follows:

e = ζ − ζd (8)

where,

ζd =

ζ1d
ζ2d
ζ3d

 =

wre f
0

I f re f

 (9)

Let the system reference input be r = [r1 r2]
T , such that

Aζd + Br = 0 (10)

where r is the reference model.

r =
[

r1
r2

]
=

( Ra
La

+
R f
L f
) B

J wre f
R f
L f

I f re f

 (11)

Equation (6) can be written in a compact form as

ζ̇ = Aζ + B f̄ + Bu + z (12)

where,

A =

 0 1 0
−(a1 + a3)a5 a1 + a3 + a5 0

0 0 a3

, ζ =

ζ1
ζ2
ζ3



B =

0 0
1 0
0 1

, f̄ =

[
a2a4ζ1ζ2

3
0

]
, u =

[
u1
u2

]
, z =

 0
−(a1 + a3 + a5)

TL
J

0


Remark 1. It is assumed that nonlinear term f̄ is bounded by a known function β such that

|| f̄ || = a2a4ζ1ζ2
3 ≤ β (13)

The final feedback linearization control law is as follows:

u = − f̄ − ke + r (14)

where k is the controller gain.

3.2. Design of Sliding Mode Controller

SMC is a robust nonlinear control technique that is useful to control dynamic systems
subjected to uncertainties and disturbances. SMC achieves control by creating a sliding
surface in the state space that drives the system toward the desired state trajectory. During
the analysis of the system’s response in SMC, there are two distinct phases: (i) the sliding
phase and (ii) the reaching phase [20,28,29]. For the design of SMC for a SEDCM, the
sliding surface is designed to force the output trajectory y to follow a reference yre f . Thus,
S(x, t) can be chosen as

Sj(x, t) =
rj−1

∑
i=0

lji(yjre f − yj)
(i) j = 1, 2, ...m (15)
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The relative degree rj determines the dependency of Sj on Ṡ. By selecting suitable
coefficients lji, the system dynamics can be maintained onto the sliding surface, ensuring
that it moves toward the origin and reduces the tracking error (yre f − y) when constrained
to stay on the surface S(x, t) = 0. According to (15), the sliding surfaces are designed as,

S1 = l10(x3re f − x3) + l11(ẋ3re f − ẋ3)
S2 = l20(x2re f − x2)

}
(16)

The objective is to force the outputs to reach the sliding surface. By solving (16), the
control law is designed as [

ua
u f

]
=

[
u11 + u12

u22

]
(17)

where,
u11 = − a11(x)+k1sign(S1)

b11(x)

u12 = b12[a22(x)+k2sign(S2)]
b11(x)b21(x)

u22 = − a22(x)+k2sign(S2)
b21(x)


(18)

where k j and lji, respectively, determine the control gain and the convergence rate when
the system is in sliding mode. This control input in (17) is fed to a SEDCM to achieve the
desired results and to compensate for the load disturbances.

3.3. Nonlinear Adaptive Backstepping Controller

Backstepping is a nonlinear control technique that utilizes Lyapunov functions to de-
sign a control law for nonlinear systems. It is a recursive design procedure that decomposes
the nth order nonlinear system into n scalar sub-systems. Therefore, the design procedure
becomes more flexible to achieve the desired control objectives, such as stabilization or
tracking. Backstepping is a popular and effective strategy for controlling nonlinear systems
using Lyapunov functions [3,20,30,31].

AB technique is a variant of the BSC technique used to control nonlinear systems with
unknown or time-varying parameters. The approach involves incorporating an adaptive
mechanism into the backstepping design procedure, allowing the controller to adjust its
parameters in response to changes in the system dynamics. The approach has been widely
used in various areas, including robotics, aerospace, and power systems [3,31,32]. Its ability
to handle uncertainties and adapt to changes in the system dynamics makes it well-suited
for controlling complex and nonlinear systems.

Adaptive Backstepping Controller Design

The compact form of the system (1) with uncertainties can be written as follows:

ẋ = fN(x) + f4(x) + gaua + g f u f (19)

where fN(x) and f4(x) are the nominal and uncertain matrices. The uncertainties consid-
ered in the system model are armature resistance, field resistance and load torque. These
are, respectively, given as

4Ra = Ra − RaN
4R f = R f − R f N
4TL = TL − TLN

 (20)

where RaN , R f N and TLN are the nominal values. 4Ra,4R f ,4TL are the uncertainties.
The objective is to develop an AB controller capable of accurately monitoring the reference
speed wre f over the range w ≥ wN . The control scheme is designed to compensate for
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parametric uncertainties, such as R f and Ra and effectively reject load disturbances. The
output variables of the system are given in (21).

h1(x) = w
h2(x) = I f

}
(21)

The notations L f h(x) =Oh. f (x) and Li
f h(x) = L f (Li−1

f h) are used for the Lie derivative
of function h(x) along a vector field f (x) and its iterative form, respectively. This change
of coordinates is one-to-one in s =

{
x ∈ R3 : i f 6= 0 and w 6= 0

}
. The system in the new

coordinates is given byż1
ż2
ż3

 =

 z2
L2

f Nh1(x)
L f Nh2(x)

+

 L f4h1(x)
L f4L f Nh1(x)

L f4h2(x)

+

0 0
1 0
0 1

[ûa
û f

]
(22)

where,
ûa = LgaL f Nh1(x)ua + Lg f L f Nh1(x)u f
û f = Lgah2(x)ua + Lg f h2(x)u f

}
(23)

To improve the transient performance, a linear reference model is defined as

żm = Amzm + Bmure f (24)

ż1m
ż2m
ż3m

 =

 0 1 0
−c1m −c2m 0

0 0 −c3m

z1m
z2m
z3m

+

 0 0
c1m 0
0 c3m

[wre f
I f re f

]
(25)

where c1m, c2m and c3m are the design parameters. The tracking error e is defined as

e =

e1
e2
e3

 =

z1 − z1m
z2 − z2m
z3 − z3m

 (26)

The corresponding error dynamics are given as

ė = A(x) +4A(x) + Bū (27)

where,

ė1 = e2 + L f4h1(x) (27a)

ė2 = L2
f Nh1(x) + L f4L f Nh1(x) + ūa (27b)

ė2 = L f Nh2(x) + L f4h2(x) + ū f (27c)

In (27) the terms A(x),4A(x) and Bū corresponds as

ū =

[
ūa
ū f

]
=

[
ûa + c1mz1m + c2mz2m − c1mwre f

û f + c3mz3m − c3m I f re f

]

A(x) =

 e2
L2

f Nh1(x)
L f Nh2(x)

, B =

0 0
1 0
0 1

, 4A(x) =

 L f4h1(x)
L f4L f Nh1(x)

L f4h2(x)

 =

ϑ1φ1(x)
ϑ2φ2(x)
ϑ3φ3(x)


It is assumed that ϑ1, ϑ2 and ϑ3 in (27) are unknown uncertainties. By careful examina-

tion of (27), it can be observed that the error-tracking model of the SEDCM contains two
decoupled sub-systems. The first sub-system consists of (27a) and (27b) and is controlled by
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ūa, while the second sub-system, which is (27c), is controlled by ū f . This structural property
allows the appropriate use of the AB design technique to obtain the desired controller. The
designed controller aims to match the unknown uncertainties ϑ1, ϑ2, and ϑ3 through the
adaptive mechanism. This mechanism allows the controller to estimate and compensate
for the uncertainties, ensuring that the motor speed tracks the desired reference speed.
By continuously updating the estimates of the uncertainties, the controller adapts to the
changing conditions and demonstrates consistent performance even in the presence of
parametric uncertainties. An AB-based control law can now be designed using the system
(27) via the following steps:

Step 1: We define new variables as

ē1 = e1
ē2 = e2 − α
ē3 = e3

 (28)

α = −k1 ē1 − ϑ̂1φ1 (29)

where α is the virtual control for e2, k1 > 0 and ϑ̂1 is the estimate of ϑ1. The AB controller
and the adaptation law can be easily designed through a suitable Lyapunov function.

Step 2: The Lyapunov function V is defined as follows:

V =
1
2
(ē2

1 + ē2
2 + ē2

3 +
1

γ1
ϑ̃2

1 +
1

γ2
ϑ̃2

2 +
1

γ3
ϑ̃2

3) (30)

where ϑ̃1, ϑ̃2, ϑ̃3 are the error terms for ϑ1, ϑ2, ϑ3 and γ1, γ2, γ3 are the adaptation gains (γ1,
γ2, γ3 > 0). To make the derivative of the Lyapunov function negative definite, i.e.,

V̇ ≤ −k1 ē2
1 − k2 ē2

2 − k3 ē2
3 ≤ 0 (31)

The adaptation law and the control law are designed as follows:

˙̂ϑ1 = γ1φ1(ē1 + k1 ē2)
˙̂ϑ2 = γ2 ē2φ2
˙̂ϑ3 = γ3 ē3φ3

 (32)

ūa = −L2
f Nh1 − ϑ̂2φ2 − ˙̂ϑ1φ1 − k1 ē2 + k2

1 ē1 − k2 ē2 − ē1

ū f = −L f Nh2 − ϑ̂3φ3 − k3 ē3

}
(33)

where k1, k2, k3 are the controller gains (k1, k2, k3 > 0). A Lyapunov function (30) satisfying
V̇(t) ≤ 0 guarantees that the errors are bounded. The application of Barbalat’s lemma [33]
allows a further conclusion that ew → 0 as t → ∞. Therefore, it can be concluded that
the tracking error converges to zero asymptotically. In the design of AB, two cases are
considered:

Case 1: Suppose that there are no uncertainties and a BSC is incorporated in the control
system, i.e.,4Ra = 0,4R f = 0,4TL = 0 and γ1 = γ2 = γ3 = 0.

Case 2: Speed response in the presence of uncertainties, i.e.,4Ra,4R f and4TL.

Remark 2. The performance of the presented controller has been demonstrated by effectively
achieving speed tracking and robustly controlling a SEDCM in the weak field region. The decoupling
effect of the controller enhances independent control of the motor parameters, leading to an overall
improvement in the control performance. The controller’s robustness is shown through simulation
results, which evidence its ability to handle parametric uncertainties and load disturbances. These
findings underpin the controller’s potential for achieving efficient control of DC motors. The
AB–ISMC is proposed in the next section to further enhance the system’s robustness.
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3.4. Adaptive Backstepping Integral Sliding Mode Controller Design

The AB–ISMC is an effective control strategy that can achieve precise and robust con-
trol of nonlinear systems [31]. It has gained significant popularity and extensive application
across various domains such as robotics, aerospace, and power systems. This controller
combines the AB and ISMC technique to overcome the limitations of traditional control
methods. The AB–ISMC is an adaptive control strategy that improves the overall system’s
performance by adjusting control parameters based on the changes occurring within a
system. The adaptive mechanism enables the controller to effectively handle the system’s
uncertainties and disturbances, resulting in consistent control performance.

The control law appears as the sum of continuous and discontinuous components,
taking the following mathematical form:

u = u0 + u1 (34)

The control input u0 corresponds to the continuous part, providing robustness against
external disturbances. On the other hand, the discontinuous term u1 ensures the system’s
invariance to matching uncertainties and maintains the system’s trajectory on the sliding
manifold. The main advantage of this technique is that sliding mode is enforced from
the very beginning, which enhances robustness against uncertainties. In addition, the
parameter update law is formulated as

˙̂ϑ = ˙̂ϑa +
˙̂ϑi (35)

The first term on the right-hand side results from the AB technique, while the second
term is designed based on the ISMC approach. Note that the control law (33) refers to u0

and the update law (32) refers to ˙̂ϑa.

Design of the Discontinuous Component ‘u1’

To design the discontinuous component u1, an integral manifold is constructed to
achieve reaching-phase-free sliding mode. It is defined as follows:

σ(ē) = σ0(ē) + ρ (36)

where σ0(ē) is the sliding manifold, which usually appears as a linear combination of the
states, i.e., σ0(ē) = ∑n

i=1 mi ēi where mi > 0, i = 1, ... , n− 1 with mn = 1 are the design
parameters. The second term, denoted as ρ, represents the integral term that incorporates
the nominal dynamics of the system. Therefore, the integral sliding manifold is designed
as follows:

σ1 = m1 ē1 + m2 ē2 + ρ1
σ2 = m3 ē3 + ρ2

}
(37)

Consider the following Lyapunov functions to design ρ̇:

V1 = 1
2 σ2

1 + 1
2n1

ϑ̃2
1 +

1
2n2

ϑ̃2
2

V2 = 1
2 σ2

2 + 1
2n3

ϑ̃2
3

}
(38)

By taking the derivative of (38) and further solving it, the following discontinuous
control component is achieved:

ūa1 = 1
m2

(−c sign(σ1))

ū f 1 = 1
m3

(−c sign(σ2))

}
(39)
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Furthermore, the adaptive terms are designed as follows:

˙̂ϑ1i = n1(σ1m1 + σ1m2k1)φ1
˙̂ϑ2i = n2σ1m2φ2
˙̂ϑ3i = n3σ2m3φ3

 (40)

where, n1, n2, n3, m1, m2, m3 are the design parameters. The final parameter update law
can then become

˙̂ϑ1 f = ˙̂ϑ1 +
˙̂ϑ1i

˙̂ϑ2 f = ˙̂ϑ2 +
˙̂ϑ2i

˙̂ϑ3 f = ˙̂ϑ3 +
˙̂ϑ3i

 (41)

The final expression of the control law is

ūa f = ūa + ūa1
ū f f = ū f + ū f 1

}
(42)

A Lyapunov function (38) satisfying V̇ ≤ −c|σ|, with c as a positive constant, is
a decreasing function that ensures V̇ is negative definite. Thus, according to LaSalle–
Yoshizawa theorem [34], output tracking error is zero, which proves that the sliding mode
is enforced in finite time. The system trajectories converge to the sliding mode surface
and remain there indefinitely, ensuring the asymptotic convergence of the overall system.
Consequently, the output tracking error converges to zero asymptotically, signifying that
the system tracks the desired output signal in the long term.

4. Simulation Results

For the simulations and analysis of this study, we utilized an HP ProBook laptop
equipped with an Intel Core i5, 10th GEN processor and 8.00 GB RAM. The computing
device operates on Windows 11 Pro and MATLAB R2016a/Simulink software is utilized
for simulations and data analysis. This section compares the performance of controllers in
the weak field region using the minimization criteria: integral square error (ISE), integral
absolute error (IAE), and integral time absolute error (ITAE). These criteria are statistical
parameters that evaluate the system’s design performance. Furthermore, we analyze the
results in more detail using graphical analysis.

The results in Figure 2 demonstrate the impact of parametric uncertainties present in
Ra, R f and disturbance in load on the system’s performance. At the start, the motor is set
to track a reference speed of 183.26 rad/s. Then, at t = 5 s, a disturbance is introduced in
one of the following parameters: Ra, R f , or the load torque. Specifically, a sudden change
of 9 Nm in load torque is introduced at 5 s. The regression criteria (ITAE, IAE, and ISE) are
calculated and presented in Table 2. Furthermore, Figure 2 compares the actual speeds of
all implemented nonlinear control techniques with the desired speed.

The FBL demonstrates high regression parameter values (189.5, 27.15, 151.1 rad/s) and
exhibits a lack of robustness, as indicated by the steady-state error of 5 rad/s in rotor speed
after the introduction of the load disturbance at t = 5 s (refer to Figure 2a). This suggests
that the FBL does not effectively reject disturbances and does not attain robust performance.
The SMC also exhibited high regression parameter values (i.e., ITAE: 17.54 rad/s, IAE:
11.81 rad/s, and ISE: 170.1 rad/s). However, Figure 2b shows that the SMC effectively
rejects the load torque disturbance and returns to the reference speed after a slight peak.
As a result, the SMC demonstrates characteristics of robust performance. Compared to
the FBL and SMC, the regression parameter values for AB (case 1 and case 2) are lower
for all three parameters (i.e., ITAE: 7.072, 5.153 rad/s, IAE: 3.902, 3.675 rad/s and ISE:
45.47, 45.63 rad/s). However, upon observing the results in Figure 2c, one can see that AB
(case 1) cannot reject the disturbance, resulting in a steady-state error of 0.1 rad/s after the
introduction of the load disturbance at t = 5 s. Therefore, AB (case 1) does not demonstrate
robust performance. In contrast, Figure 2d shows that AB (case 2) successfully rejected the
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load torque disturbance and returned to the reference speed after a slight peak. The values
of evaluating parameters for AB–ISMC are considerably lower, as shown in Table 2. It can
be seen in Figure 2e that this controller rejected the parametric uncertainties and returns to
the reference speed. Hence, this designed controller shows robustness in the presence of
variations introduced during the SEDCM operation.

Figure 2. Output speed signals: (a) FBL, (b) SMC, (c) AB (case 1), (d) AB (case 2), (e) AB–ISMC.
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Table 2. Numerical evaluation.

Control Technique ITAE (rad/s) IAE (rad/s) ISE (rad/s)

FBL 189.5 27.15 151.1
SMC 17.54 11.81 170.1

AB (case 1) 7.072 3.902 45.47
AB (case 2) 5.153 3.675 45.63
AB–ISMC 3.569 3.086 41.36

Figure 3 illustrates the system’s speed monitoring and provides visual information
about the respective settling time for each of the designed controllers. Initially, the motor
is set to operate at a speed of 183.26 rad/s. However, at t = 1 s, the speed is increased to
204.3 rad/s.

The FBL technique demonstrates a favorable settling time of 0.656 s compared to
SMC, but suffers from a significant steady-state error of 5 rad/s when subjected to load
disturbances. On the other hand, SMC has the highest settling time of 1.481 s, but it
effectively rejects the load torque disturbance and returns to the reference speed after a slight
peak. The AB controllers (case 1 and case 2) exhibit comparatively lower settling time than
FBL and SMC (0.619 s and 0.607 s, respectively). However, after the load torque disturbance
is applied in case 1, a steady-state error of 0.1 rad/s is observed. Compared to all of the
above control techniques, the proposed controller (AB–ISMC) has a minimum settling time
of 0.477 s. This depicts good speed tracking characteristics and improves settling time by
factors of 27%, 67%, 23%, and 21% compared to FBL, SMC, and AB controllers (case 1 and
case 2), respectively, demonstrating its superior performance characteristics.

Figure 3. Comparative results of various control strategies illustrating the output speed of motors.

AB–ISMC is a novel technique and has numerous distinguishing factors. However,
there are a few challenges associated with AB–ISMC. AB–ISMC is able to reduce the
chattering effect, which is an inherent problem in SMC-based techniques. But it is still
not a chattering-free strategy. AB–ISMC requires careful tuning, especially for complex
and high-dimensional systems. Moreover, AB–ISMC is an intricate control strategy that
demands a good understanding of the system dynamics and mathematical modeling.
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5. Conclusions and Future Work

This study aimed to evaluate and compare the performance of different control meth-
ods for the SEDCM in the weak field region, specifically focusing on their ability to reject
load disturbances in speed control applications. The simulations were conducted using
MATLAB/Simulink. The synergy of adaptive backstepping and integral sliding mode
control (AB–ISMC) produced the best results, with the lowest statistical parameter values
and the minimum settling time in comparison with other implemented methods. Future
research could involve the hardware implementation of the designed controllers with an
actual SEDCM. These results could then be compared to the simulation study to gain addi-
tional insight into the topic. Moreover, considering discrete implementations of controllers
can improve their effectiveness in practical applications. Additionally, expanding the scope
of the study to investigate intelligent control techniques such as fuzzy logic and neural
networks can contribute toward further development in the topic under consideration.

The focus of the present work is to design and simulate model-based nonlinear control
strategies for a SEDCM. Simulation results evidenced the feasibility and overperformance of
the proposed strategies in comparison with other controllers. In the near future, we intend
to realize the proposed control law on a multi-degree-of-freedom robotic manipulator
actuated with SEDCM. Such a manipulator is a highly nonlinear system having coupled
dynamics and is thus anticipated to present several interesting challenges in the realization
of AB–ISMC law.
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AB adaptive backstepping
ABC artificial bee colony
AB–ISMC adaptive backstepping integral sliding mode controller
BSC backstepping controller
FBL feedback linearization
FLC fuzzy logic controller
FOSMC fractional-order SMC
IAE integral absolute error
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IOFL input–output feedback linearization
ISE integral square error
ISMC integral sliding mode control
ITAE integral time absolute error
MIMO multi-input-and-multi-output
PD proportional–derivative
PI proportional–integral
PID proportional–integral–derivative
PMSMs permanent magnet synchronous motors
SEDCM separately excited DC motor
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