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Abstract: This paper proposes an algorithm that provides operational strategies for multiple tethered
autonomous underwater vehicle (T-AUV) systems for entanglement-free navigation. T-AUVs can
perform underwater tasks under reliable communication and power supply, which is the most sub-
stantial benefit of their operation. Thus, if one can overcome the entanglement issues while utilizing
multiple tethered vehicles, the potential applications of the system increase including ecosystem
exploration, infrastructure inspection, maintenance, search and rescue, underwater construction,
and surveillance. In this study, we focus on developing strategies for task allocation, path planning,
and scheduling that ensure entanglement-free operations while considering workload balancing
among the vehicles. We do not impose restrictions on the size or shape of the vehicles at this stage;
our primary focus is on efficient tether management as an initial work on the topic. To achieve
entanglement-free navigation, we propose a heuristic based on the primal-dual technique, which
enables initial task allocation and path planning while minimizing the maximum travel cost of the ve-
hicles. Although this heuristic often generates sectioned paths due to its workload-balancing nature,
we also propose a mixed approach to provide feasible solutions for non-sectioned initial paths. This
approach combines entanglement avoidance techniques with time scheduling and sectionalization
methods. To evaluate the effectiveness of our algorithm, extensive simulations were conducted with
varying problem sizes. The computational results demonstrate the potential of our algorithm to be
applied in real-time operations, as it consistently generates reliable solutions within a reasonable
time frame.

Keywords: path planning for multiple mobile robots; task allocation; marine robotics; tethered robots

1. Introduction

Since the first autonomous underwater vehicle (AUV) launched in the 1950s [1], AUVs
have expanded human access to the harsh underwater environment, both for scientific
research and industrial work. While autonomous navigation in aquatic environments has
focused on a single vehicle to overcome the hostile and dynamic nature of the settings,
a fleet of AUVs is desirable in many underwater applications, not restricted to search,
exploration, monitoring, sampling, and data collection [2–5]. Proper fleet planning is
required for successful mission completion in all these applications based on the AUVs’
structural and functional characteristics. Planning multiple AUVs requires solving three
main topics (1) task allocation, (2) path planning, and (3) scheduling, which are correlated
with each other and, thus, challenging to solve.

AUVs can be categorized into two classes according to the presence of an umbilical
cable. One would be a vehicle with an umbilical cable attached to a control tower called
a tethered autonomous underwater vehicle (T-AUV). The second type is one without the
cable, called a stand-alone autonomous underwater vehicle (S-AUV). S-AUVs include con-
ventional AUVs, and T-AUVs include ROVs (remotely operated vehicles) and hybrid AUVs.
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Because the umbilical cable provides a stable power source, real-time communication,
and data transfer, T-AUVs benefit from long-duration working-class missions, including
underwater ecosystem exploration, infrastructure inspection/maintenance, and search and
rescue missions. However, umbilical entanglement can sabotage the mission for single or
multi-vehicles or damage the system or other underwater elements. Murphy et al. deployed
multiple heterogeneous AUVs at the 2011 Great Eastern Japan Earthquake and reported
that the mission was affected by close operations and the fear of tethers tangling or even a
collision [6]. Escaping from entanglement is difficult due to the dynamic environment and
limited information, especially for human-operated vehicles.

Despite the crucial need for entanglement-free navigation in multiple T-AUV oper-
ations, the existing literature on this topic is limited. Specifically, Herts and Lumlsky [7]
addressed the entanglement-free simultaneous motion planning problem for a highly spe-
cific scenario where each robot moves between a unique pair of start and end nodes. They
employed a motion planner to compute a sequential motion for the robots, followed by
trajectories that allow for simultaneous movement. While this work represents the only
available literature directly related to ours, it falls short in addressing the broader problem
we tackle here, which involves task allocation of multiple targets without visiting sequences
with multiple target locations and simultaneous entanglement-free path planning.

While many researchers are interested in planning for a fleet of AUVs, relatively
limited methods are available [8]. There is increasing interest in advancing techniques
for multiple AUVs under various conditions. For instance, in [9], Yao and Qi focused
on planning the obstacle avoidance of multiple AUVs in complex ocean environments
with the time coordination of simultaneous arrival. Panda et al. [10] proposed a hybrid
grey wolf optimization algorithm for collision avoidance with obstacles and other vehicles.
Nam [11] proposed data-gathering protocols to support long-duration cooperation by
operating long-range AUVs considering energy consumption. A two-stage cooperative
path planner was proposed for multiple AUVs operating in a dynamic environment that
aims to minimize time consumption with simultaneous arrival while avoiding collisions
by Zhuang et al. [12]. A motion planner that focused on obstacle avoidance for a single
AUV was presented by McCammon and Hollinger [13]. Some literature focuses on the
motion planning of non-entangling tethers of autonomous vehicles. NEPTUNE [14] solves
trajectory planning for multiple tethered robots to reach their individual targets without
entanglements, with the algorithm considering the 3D space, and validated with aerial
vehicles. Teshnizi and Shell [15] studied a motion planner for a pair of tethered mobile
robots. Zhang and Pham [16] proposed a planner that coordinates the planar robot motions
to realize a given non-intersecting target cable configuration. Although some state-of-art
techniques have considered heterogeneous fleets of AUVs, entanglement-free constraints
have not been considered in the planning. We aim to fill this gap and build a foundation by
providing good approximate solutions with lighter computational loads.

In our preliminary work, the task allocation and path planning problems for multiple
structurally heterogeneous autonomous ground vehicles were studied to minimize the
last job completion time [17,18]. While working on these problems, we observed that
the heuristics often produce sectioned paths due to the nature of workload balancing.
The sectioned paths used in this paper represent each path in a 3D space that does not
intersect with other paths. Based on this observation, we propose an extended algorithm
applicable to multiple AUVs by introducing an extra dimension and additional steps to
ensure no entanglement happens during operations. This novel approach to the problem is
rarely studied but is essential in operations for multiple T-AUVs. The proposed approach
has been tested extensively in simulation environments. While this paper does not include
field testing, it is worth noting that the Intelligent Robotics and System Optimization
Laboratory (IRoSOL) at Michigan Tech possesses multiple BlueROV2 vehicles, measuring
457 mm in length, 338 mm in width, 254 mm in height, and weighing 10 kg in air. These
resources offer promising opportunities for conducting field tests in the future.
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The remainder of this paper is structured as follows: In Section 2, we specify the
problem and present the formulations. Section 3 presents the heuristic approach to the
problem. The computational results are shown in Section 4, and finally, we conclude the
paper in Section 5.

2. Problem Description and Formulation

In this work, our objective is to address the problem of coordinating T-AUVs in
navigating a set of targets. We aim to find paths for each vehicle that satisfy the following
criteria: (1) All targets are visited by at least one AUV; (2) each path adheres to the motion
constraints specific to the corresponding vehicle; (3) the tethers of the vehicles are kept
at a safe distance from each other to avoid entanglement; and (4) the maximum travel
cost among the vehicles is minimized. The initial setup assumes that the AUVs start at
distinctive depots on the surface and return to these depots once they have visited all their
assigned targets. To simplify the problem, several assumptions are made. First, we assume
symmetrical travel costs that adhere to the triangle inequalities. The vehicles are considered
holonomic and homogeneous, with the travel cost determined as the travel time between
targets using the average running velocity of the vehicles. Additionally, we assume that
the cable connecting the vehicle and the depot is a straight line managed by a tether control
system without requiring extensive cable release. While these assumptions enable us to
present an initial exploration of the problem, our future work aims to incorporate dynamic
features of the tether shape for a more comprehensive solution.

If we relax constraint (3) stated above, the problem can be formulated into a min–max
multiple depot heterogeneous Traveling Salesman Problem (TSP), first introduced in [17].
We use the dual formulation of the linear program relaxation of the problem to generate a
minimum spanning forest, which becomes the initial task assignment. In the formulation,
the following definitions are used for the variables.
Variable Definitions:

T the set of targets
m the number of vehicles in the cohort
dk the depot of the k-th vehicle
Vk the set of nodes that contains targets and the depot for k-th vehicle
Ek the set of edges between the nodes in Vk
δk(S) the subset of the edges of Ek with one end in S, and the other end in Vk\S

Cdual = max 2 ∑
S⊆T

Y1(S) (1)

∑
S:e∈δk(S)

Yk(S) ≤ costk
ijWk ∀i, j ∈ Vk, k = 1, · · · , m, (2)

∑
S⊆U

Yk(S) ≤ ∑
S⊆U

Yk+1(S) ∀U ⊆ T, k = 1, · · · , m− 1, (3)

∑
k=1,··· ,m

Wk ≤ 1 (4)

Yk(S) ≥ 0 ∀S ⊆ T, k = 1, · · · , m, (5)

Wk ≥ 0 k = 1, · · · , m. (6)

In this formulation, Yk(S) can be interpreted as the prices that all targets in the set S are
willing to pay to be connected to dk, while Wk are treated as the gains for giving priority to
the vehicles. Once the initial task allocation is derived, we solve the entanglement problem
as the next step. The details will be explained in the following section.

3. A Heuristic for Entanglement-Free Coordination of Multiple Tethered AUVs

The proposed heuristic for coordinating multiple T-AUVs consists of two main steps:
(1) Producing an initial task allocation and routes by relaxing the entanglement constraint;
and (2) detecting and resolving the possible tether entanglements. We solved the initial
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task allocation and routing problem with a primal-dual heuristic while following the main
structure of the algorithm presented in [17] but with some revisions. The heuristic is
developed based on the dual formulation (1)–(6) while iteratively changing the Wk values
to improve the workload distribution. With fixed Wk values, the heuristic runs Algorithm 1
to find a task assignment and routes. To present the algorithm easier to understand, we
have divided the steps into three and presented them in Algorithms 2–4. Starting from all
zero dual variables, in each iteration, the dual variables Yk(S) that tightens one of the dual
constraints, (2) or (3), is increased. If (2) becomes tight, a corresponding edge is added to the
forest, and if (3) becomes tight, the corresponding set is marked and potentially connected
to another depot with lower cost. The main loop terminates once every target is connected
to at least one depot. The pruning steps guarantee the assignment of tasks to only one
vehicle while trying to improve the workload balancing. Based on the results from fixed Wk
values, the algorithm adjusts the Wk values to decrease the maximum travel cost while not
violating the monotonic cost increase condition, i.e., W1cost1

ij ≤W2cost2
ij ≤ · · · ≤Wmcostm

ij ;
subsequently, the best trial is chosen. When m vehicles and n targets are given, the following
notations are utilized to present the algorithms.
Algorithm notations:

Rk The kth vehicle
Fk A set of edges in the graph of Rk
Ck A collection of vertex sets in the graph of Rk
Yk(S) The dual variable of set S for Rk
dk The depot for Rk
dualk(v) The sum of dual variables for all sets that contain vertex v
boundk(S) The sum of Yk+1(S)
Childrenk(S) The vertex sets of S that exist in the graph for Rk+1, · · · , Rm
activek(S) The variable that represents whether Yk(S) can be increased

activek(S) =

{
1 if set S can increase its dual variable

0 otherwise
Cost = {Co1, · · · , Com} A set of edge costs
Tour = {Tr1, · · · , Trm} A set of routes
W = {W1, · · · , Wm} A set of all Wk
Sk The location of Rk
Tk The heading target location from Sk
Lt

k The estimated location of Rk between Sk and Tk
at time t, where t is a parameter

−−→
CVt

k The cable vector connecting Lt
k and dk

CPk The cable plane that contains dk and two targets assigned to Rk in
sequence

−−→
CSij The vector connecting di, dj
Ryield The vehicle which is made to yield
Rpass The vehicle that passes
v The average moving velocity of the AUVs
Dz zth departure among chronologically arranged n + m scheduled

departures of all vehicles

Algorithm 1 Tour=GetPartition(Cost, W)
1: Wk = 1/k for k = 1, · · · , m;
2: [Fk , Ck , activek , Childrenk ] = Initialization(m, Vk , dk)
3: Fk = Mainloop(Fk , Ck , activek , Childrenk , Cost, W)
4: Tour = Pruning(Fk , Cost, W)
5: Adjust Wk that satisfies the monotonic cost increase condition.
6: Repeat 2–4 until there is no improvement in the cost.
7: Choose the best Tour that produces the minimum max(TourCost)
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Algorithm 2 [Fk , Ck , activek , Childrenk ] = Initialization(m, Vk , dk)

1: Fk ← ∅, Ck ← {{v} : vs. ∈ Vk}, for k = 1, · · · , m
2: All the vertices are unmarked.
3: All the dual variables are set to zero.
4: activek({v})← 1, ∀vs. ∈ Vk , for k = 1, · · · , m
5: activek({dk})← 0, for k = 1, · · · , m
6: Childrenk({v})← {v}, ∀k = 1, · · · , m− 1;

Algorithm 3 Fk = Mainloop(Fk , Ck , activek , Childrenk , Cost, W)

1: while there exists any active component in C1 do
2: for k = 1, · · · , m do
3: Find an edge ek = (i, j) ∈ Ek with i ∈ Ci , j ∈ Cj where Ci , Cj ∈ Ck , Ci 6= Cj that minimizes

4: ε1
k =

{Wkcostk
ij−dualk(i)−dualk(j)}

activek(Ci)+activek(Cj)
.

5: end for
6: for k = 1, · · · , m− 1 do
7: Let < := {R : activek(R) = 1, Children(R) = ∅, R ∈ Ck}. Find R̄ ∈ < that minimizes ε2

k = boundk(C)−
Yk(R̄)

8: end for
9: εmin = min(ε1

1, · · · , ε1
m, ε2

1, ε2
m−1)

10: for k = 1, · · · , m do
11: for C ∈ Ck do
12: Yk(C)← Yk(C) + εminactivek(C)
13: dualk(v)← dualk(v) + εminactivek(C) ∀vs. ∈ C
14: if k < m then
15: boundk(C)← boundk(C) + εmin|Childrenk(C)|
16: end if
17: end for
18: end for
19: if εmin = ε1

k for some k then
20: Fk ← {ek} ∪ Fk
21: Ck ← Ck ∪ {Ci ∪ Cj} − Ci − Cj
22: Yk({Ci ∪ Cj}) = Yk(Ci) + Yk(Cj)
23: if k < m then
24: boundk(Ci ∪ Cj)← boundk(Ci) + boundk(Cj)
25: end if
26: if dk ∈ {Ci ∪ Cj} then
27: activek(Ci ∪ Cj)← 0
28: if k < m then
29: activek+1(C)← 0 ∀C ∈ Childrenk(Ci ∪ Cj)
30: end if
31: else
32: activek(Ci ∪ Cj)← 1
33: end if
34: else
35: activek(C)← 0, Mark all the vertices of C with label C
36: end if
37: end while

Algorithm 4 Tour = Pruning(Fk , Cost, W)

1: Remove all the edges in Fk that do not belong to any of the trees.
2: Let F′k be the resulting forest.
3: Let P′k be the vertices in F′k for k = 1, · · · , m.
4: Pk ← {the vertices that are only connected to dk}, ∀k = 1, · · · , m
5: if there exist vertices that are reachable from multiple depots then
6: Let Pc be the vertices connected to multiple depots.
7: Let Tk be the minimum directed spanning tree of Pk for k = 1, · · · , m.
8: while Pc is not empty do
9: Find the closest tree Pk from the vertex in Pc. Choose the one with the lowest workload if the vertex is

equidistant from multiple trees.
10: Remove the corresponding vertex from Pc and add to Pk .
11: end while
12: else
13: Pk = P′k
14: end if
15: while there is no empty Pk do
16: Assign the closest node to Pk
17: end while
18: Get the best Tour for each Pk for k = 1, · · · , m using existing routing algorithm.
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Based on the initial routes, which did not consider the entanglement constraints, we
focus on detecting and resolving the possible tether entanglements. Given the initial routes,
the schedule, which is each vehicle’s arrival/departure time at each node, should be deter-
mined to avoid collisions and tether entanglements. The proposed approach repeatedly
simulates the movement of the vehicles based on the average running speed v and process-
ing time for each task to accomplish the mission while detecting and resolving the possible
tether entanglements. The details of the algorithm are presented in Algorithms 5–7.

Algorithm 5 Possible entanglement management for T-AUVs

1: Initialization
2: Sk ← Coordinates of the dk for k = 1, · · · , m
3: Tk ← Coordinates of the first target of Rk for k = 1, · · · , m
4: Q =[1, · · · , m]
5: z = 1
6: Main Loop
7: while z ≤ the total number of departures in the mission do
8: for ∀i ∈ Q do
9: Lt

i = Si + (Ti − Si)/v× t
10: for j=1,. . . ,m do
11: Lt

j = Sj + (Tj − Sj)/v× t, for j 6= i

12: Solve equation for t: (
−−→
CVt

i ×
−−→
CSij) ·

−−→
CVt

j = 0
13: if The value of t conforms to the range set by the time schedules of Ri and Rj, respectively,

and their cable segments intersect then
14: [Schedules, C1]=TimeScheduling(Ri, Rj)

15: [Routes, C2]=RouteModification(
−−→
CVt

i ,
−−→
CVt

j )
16: MC = min(C1, C2)
17: if MC == C2 then
18: Update routes and schedules according to the updated routes and restart from

initialization.
19: else
20: Update the schedules and restart from initialization.
21: end if
22: end if
23: end for
24: end for
25: Q = [The next departing vehicle P associated with Dz+1 scheduled at time tP]
26: Sk ← the location of Rk at time tP for k = 1, · · · , m
27: TP ← the immediate next target corresponds to SP
28: z = z + 1
29: end while
30: Repeat steps 1–14 and 19–29, utilizing the TimeScheduling only. Let the cost be TC.
31: Compare TC and MC and choose the one with less cost.

Algorithm 6 [Routes,Time]=RouteModification(
−−→
CVi

t,
−−→
CVj

t)

1: Find nodes corresponding to the CPi and CPj .
2: Determine a node Nr from step 1 such that its cable vector intersects the cable plane of the other

vehicle.
3: Let Rr be the vehicle corresponding to the Nr.
4: Remove Nr from the route of Rr and allocate it to another vehicle that offers the lowest maximum

tour time.
5: Return the updated routes and the maximum tour time.

Algorithm 5 presents the overall steps to detect the possible entanglements and resolve
the issue. When entanglement occurs, we can observe co-planer cable vectors, as shown
in Figure 1. To inspect co-planer cable vectors for possible entanglement, the following
equation is used:
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(
−−→
CVt

i ×
−−→
CSij) ·

−−→
CVt

j = 0 (7)

Algorithm 7 [Schedules, Time]=TimeScheduling(Ri , Rj)

1: Ryield ← Ri and Rpass ← Rj
2: Select nyield from the nodes visited by Ryield before the time of entanglement such that the cable

vector at nyield does not intersect with the cable planes of Rpass
3: Find a node npass in route of Rpass such that all the cable planes comprised of the nodes after npass

never intersect with any of the cable planes of Ryield
4: tyield ← scheduled arrival time of Ryield at nyield
5: tpass ← scheduled arrival time of Rpass at npass.
6: W ← tpass − tyield
7: Ryield ← Rj and Rpass ← Ri and repeat steps 1–6.
8: Choose Ryield, which incurs lower W
9: Return the adjusted schedules with the maximum tour time.

Figure 1. Co-planer cables at the time of entanglement.

The value of t obtained upon solving (7) is the time after which the tethers are antici-
pated to entangle. If t is a positive real value within the range allowed by both vehicles’
schedules, the cables will become a co-planner and may become entangled if the cable
segments intersect. Based on this fact, Algorithm 5 tries to find all possible entanglements
within the initial routes. For a time interval between two consecutive departures Dz and
Dz+1, it simulates the movement of the vehicles and examines the concurrent cable planes.
If entanglement is not detected, it selects vehicle P associated with Dz+1, updates TP and
Sk, and examines the new cable plane of P against other concurrent cable planes using
(7). The steps are repeated until either an entanglement is detected or the time interval
associated with the last departure is passed without an entanglement. If entanglement
is confirmed, it either modifies the existing routes based on Algorithm 6 or adjusts the
time schedules based on Algorithm 7. The heuristic chooses the approach that resolves
the entanglement at the expense of a lower maximum tour cost and accordingly updates
the schedule or routes. Consequently, the algorithm re-initiates a fresh detection for an
entanglement from the beginning at time t = 0. As a last step, the algorithm only checks
if the current solution is better than the solution only with time scheduling. This step is
added because (1) the time scheduling only can run very fast, and (2) modifying the routes
at the beginning causes a drastic delay in the final result for some cases.

The route modification approach in Algorithm 6 tries to find alternate routes by
reallocating the node relevant to the entanglement. For example, if the cable vector of
Ra intersects with CPb, the responsible node is removed from Ra’s route and awarded to
another vehicle with the lowest maximum tour time. Figure 2 shows how the approach
works with an example. In this example, there is possible entanglement when R1 travels
between targets 3 and 4 while R2 travels between targets 7 and 8 in the initial routes as
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shown in the far left figure. Thus, target 8 is removed from the route of R2 and inserted for
R1 between targets 3 and 4.

Figure 2. An example of the route modification approach with two vehicles and ten targets.

On the other hand, the time scheduling approach in Algorithm 7 adjusts the schedules
while forcing one of the vehicles involved in the entanglement to loiter on the starting node
on the plane involved in possible entanglement. It compares the loitering time to avoid
entanglement and chooses a more efficient one. Figure 3 shows the rescheduling between
the vehicles for the same example in Figure 2. There exists a possible entanglement when
R1 travels between targets 3 and 4 while R2 travels between targets 7 and 8. As R2 leaves
the departing target earlier than R1, R1 waits at target 3 until all possible entanglements
are resolved. Thus, R1 restarts to follow the route when R2 arrives at target 10.

Figure 3. The illustrations for the time scheduling approach using the same example with Figure 2.

The proposed heuristic approach produces a feasible solution for every case for the
following reasons: (1) The primal-dual heuristic that produces the initial task allocation
and routes guarantees a feasible solution without considering the entanglement constraint.
(2) The proposed heuristic in Algorithms 5–7 ensures the removal of all the possible en-
tanglements from the initial routes. Thus, all constraints are guaranteed to be satisfied,
although the heuristic may not produce an exact optimal solution.

4. Computational Results

The heuristic is implemented and tested in simulations with varying problem sizes for
validation. All simulations were performed on a PC with an Intel®Core™ i7-7800X CPU
running at 3.5 GHz with 64 GB RAM. The number of vehicles varied from 3 to 10, and the
number of targets was tested for 50 and 100. The tests were repeated for 100 different
instances for each problem size. The coordinates of targets and depots are randomly
generated within a space of 2 m × 2 m × 3.2 m with a uniform distribution. All the depots
are constrained to lie in the topmost plane of the defined space. All vehicles had the
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same average running speed. Costk
ij was set to the minimum travel time by calculating the

distance between i and j divided by the average running speed.
The maximum tour time among all vehicles is considered the operation time. The ex-

periment evaluates the efficacy of the proposed algorithm to provide entanglement-free
navigation of the vehicles while aiming to curb the increase in operation time. Due to a lack
of available literature on this problem, we have computed posteriori bounds PB1 based on
the upper and lower bounds utilizing the initial routes produced by the primal-dual heuris-
tic. The worst feasible solution is one vehicle departing at a time, and all other vehicles
waiting until the vehicle comes back to its depot. For this trivial approach, the operation
time is calculated by adding up the respective tour times of all the vehicles, and we consider
this as the upper bound. On the other hand, the initial operation time produced by the
primal-dual heuristic without considering the entanglement constraints is considered the
lower bound, which is sometimes impossible to achieve. The equation we used to compute
PB1 is as follows:

PB1 = (Talgo − TLB)÷ (TUB − TLB) (8)

where TLB represents the lower bound, TUB represents the upper bound, and Talgo rep-
resents the operation time of the entanglement-free solution produced by the algorithm
applied. While this becomes one way to estimate the qualities of solutions, we observed
that the upper bound increases significantly as the problem size increases because each
vehicle must wait a long time at its depot for other vehicles to complete their missions.
Thus, we also computed posteriori bounds PB2, only compared with the lower bound as
follows:

PB2 = Talgo ÷ TLB (9)

While the proposed algorithm uses a mixed approach between the rescheduling and route
modification depending upon the cost, each problem instance is also solved only using one
approach to compare the efficacy of both methods individually. The computational results
are shown in Figure 4, and Table 1.

Table 1. Computation time in seconds.

The Computation Time for the Entire Process

Vehicles Proposed TS RM Proposed TS RM

Average with 50 targets Worst with 50 targets

3 0.56 0.48 3.54 1.39 1.34 10.81
6 1.15 1.07 3.98 2.79 2.49 9.46

10 1.97 1.83 4.08 4.04 3.17 8.66

Average with 100 targets Worst with 100 targets

3 2.69 2.39 25.19 4.47 3.28 89.07
6 6.56 6.11 28.77 9.99 7.53 112.78

10 11.66 10.84 30.09 21.78 17.56 92.14

The computation time for entanglement resolving only

Vehicles Proposed TS RM Proposed TS RM

Average with 50 targets Worst with 50 targets

3 0.1 0.02 3 0.55 0.1 10
6 0.13 0.17 3 1.12 0.17 7

10 0.28 0.13 2.38 2.50 0.26 7

Average with 100 targets Worst with 100 targets

3 0.33 0.04 23 1.77 0.1 87
6 0.6 0.1 23 3.5 0.46 105

10 1.06 0.23 19 6.8 0.6 77
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Figure 4. Posteriori bounds PB1 and PB2 of the three approaches.

In Figure 4, the left shows PB1, comparing the gaps to the lower bounds with gaps
between the upper and lower bounds. The right presents PB2, comparing the costs with
the lower bounds. The marker shows the average, while the bar shows the minimum and
maximum values. In both figures, RM represents the route modification approach, and TS
represents the time scheduling approach. The proposed approach is a hybrid of the two
approaches. The average posteriori bounds for the proposed approach had the best solution
quality among the compared methods while staying considerably closer to the minimum.
This means that the results are consistent most of the time while only occasionally having
some poorer cases. For PB1, the minimum bounds for the proposed and route modification-
only methods have negative and less than 1 values, showing that the routes are improved
by modification of the initial routes provided by the primal-dual heuristic, which is used
as the lower bound. While the solution quality stayed consistent for 50 targets, the largest
problem size had some increased gap from the lower bound for the proposed method.
This makes sense as the number of vehicles and targets increase, and more entanglement
issues can arise from the initial routes. The route modification-only method had the worst
performance and the longest computation time. This method tries to remove all the possible
crossing surfaces by exchanging nodes, resulting in having an overloaded vehicle with
high computation time in some cases. While the time scheduling-only method solves the
problem instantly, in less than 1 s for all cases, as shown in Table 1, the solution qualities
were not as good as the proposed approach because some vehicles often need to loiter
for a long time to resolve the entanglement issues. Thus, the proposed approach took
advantage of both methods and produced the best solutions among the methods within a
reasonable computation time. Although it compares the two methods every time it detects
a possible entanglement, the proposed method’s computation time is considerably shorter
than the route modification-only method because changing the route at a certain iteration
changes the rest of the schedules. Therefore, the number of possible entanglement changes
depending on which method was chosen in the previous step and affects both solution
quality and computation time. The computational results show the algorithm’s potential
to be implemented in real-world applications, delivering an affordable solution within an
average of 11.66 s for the largest problem size, staying less than 1.5 of the ratio from a lower
bound that does not consider the entanglement. Lastly, Figure 5 shows an example instance
with 3 vehicles and 30 targets. As the possible entanglement is detected for the initial
routes produced by Algorithm 1, Algorithm 5 updated the routes to avoid entanglements.
As shown in Figure 5 of 1-1 and 2-1, some targets were exchanged between the vehicles
while time scheduling was also performed in 2-2.
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(1−1) The initial routes from Algorithm 1
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5. Conclusions

This paper presented an initial exploration of the problem of task allocation, path plan-
ning, and scheduling for T-AUVs. The proposed two-step heuristic algorithm efficiently
allocates tasks among the vehicles, minimizing the last task completion time to ensure
the production of non-entangling routes. Implementation results in simulation environ-
ments have demonstrated the effectiveness and potential of the algorithm, highlighting
its capabilities for future extensions. While this study focused on simulation testing, our
future work aims to perform field experiments using four BlueROV2 vehicles in a diving
pool and at Lake Superior. These experiments will incorporate dynamic features of the
tethers and vehicles into the algorithm, enabling non-straight line shapes based on water
conditions. By including these dynamic elements, we can further validate the algorithm’s
performance in real-world scenarios. Moving forward, we will address the challenge of
incorporating the entanglement constraint into the problem formulation, ensuring it is
considered simultaneously during algorithm design. Additionally, we plan to introduce
heterogeneity among the vehicles, including subsets of vehicles without tethers or vehicles
with different capabilities and motion constraints. By considering these variations, we can
enhance the algorithm’s adaptability to diverse operational scenarios. This paper represents
a preliminary step in coordinating T-AUVs for entanglement-free navigation. The outlined
future extensions and considerations will contribute to a more comprehensive and practical
solution for real-time applications in underwater environments. By addressing these com-
plex challenges, we aim to facilitate the deployment of T-AUV systems in a wide range of
underwater tasks, including ecosystem exploration, infrastructure inspection, maintenance,
search and rescue, underwater construction, and surveillance.
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