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Abstract: This paper addresses the problem of building an occupancy grid map of an unknown
environment using a swarm comprising resource-constrained robots, i.e., robots with limited extero-
ceptive and inter-robot sensing capabilities. Past approaches have, commonly, used random-motion
models to disperse the swarm and explore the environment randomly, which do not necessarily
consider prior information already contained in the map. Herein, we present a collaborative, effective
exploration strategy that directs the swarm toward ‘promising’ frontiers by dividing the swarm
into two teams: landmark robots and mapper robots, respectively. The former direct the latter,
toward promising frontiers, to collect proximity measurements to be incorporated into the map. The
positions of the landmark robots are optimized to maximize new information added to the map
while also adhering to connectivity constraints. The proposed strategy is novel as it decouples the
problem of directing the resource-constrained swarm from the problem of mapping to build an
occupancy grid map. The performance of the proposed strategy was validated through extensive
simulated experiments.
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1. Introduction

Swarm Robotic Systems (SRSs) comprise multiple fully-autonomous or semi-autonomous
robots that collaborate with each other in order to accomplish a task that is often too
complex for an individual robot to complete on its own. Numerous works have categorized
common problems and applications specific to SRS [1–5]. Behaviors of SRSs have been,
commonly, investigated using ground-based robots, including millimeter-scale robots
known as millirobots [6–11]. As well, strategies have also been specifically developed for
swarms comprising aerial vehicles [12–17]. Many applications of SRS have been studied
including object manipulation [2,18,19], environmental monitoring [20,21], and search and
rescue [22–24]. In this paper, our focus is on the use of ground-based millirobots that lack
extensive proximity-sensing capabilities (e.g., omnidirectional laser scanners) often seen
on larger robot platforms. Namely, such SRSs are resource-constrained, having limited
exteroceptive sensing (e.g., unidirectional sensors, local inter-robot proximity sensing) and,
thus, mainly rely on inter-agent communications to accomplish a goal.

The specific swarm problem investigated, herein, is the mapping of an environment
using millirobot-based SRSs with limited proximity-sensing capabilities. In this context,
occupancy grid mapping is a potential approach that can be utilized [25]. Building such
maps, however, would require robots to accurately estimate their own locations and gather
significant amounts of proximity-sensing information from their environment, both of
which may be non-trivial tasks for a resource-constrained SRS. Thus, in this paper, we
propose the development of an exploration strategy that utilizes a resource-constrained
SRS to build an occupancy grid map of an unknown environment.

Exploration of an environment via a SRS can be achieved by having each robot use
random motion to disperse itself throughout the environment [5]. However, in order for
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robots not to “wander” away from other robots within the swarm, the environment must
remain “enclosed”, or the random motion otherwise constrained in some way. The pertinent
literature, investigating the use of resource-constrained swarms to build occupancy grid
maps, has proposed random motion exploration to diffuse robots only throughout an
enclosed environment [26–28]. In these works, all robots use the same random motion
model to disperse themselves independently of the other robots in the swarm. Furthermore,
information contained within the map is not used to influence the exploration area of
the swarm.

In contrast to the abovementioned methods, herein, we propose a unique exploration
strategy for a resource-constrained SRS whereby the mapping of an unknown environment
may be directed to maximize new information added to an occupancy grid map. The
swarm is divided into two teams: a decentralized team of mapper robots and a centralized
team of landmark robots that may communicate with a central controller. The mapper
robots explore the environment using a random motion model and gather information
to be incorporated into the map, although they are constrained to stay nearby the team
of landmark robots. The team of landmark robots, on the other hand, receive motion
commands from a central controller and direct the exploration of the swarm toward a
particular area of the environment.

Our strategy proposes the first use of a resource-constrained swarm, divided into
two teams, to physically decouple the problems of exploration and mapping of unknown
environments. The swarm’s exploration can be directed towards areas that maximize
new information added to the map while still maintaining the overall scalability of the
strategy to a large number of robots. Directing the swarm, toward the most promising
areas to explore, is performed via planning and executing the landmark robots’ motions.
Mapping of those areas is performed via a separate team of mapper robots, each following
a random motion model to disperse themselves and collect information from their local
environment. The swarm is, therefore, able to follow an efficient frontier-based exploration
of the environment while the map is built using robots with limited exteroceptive sensing.

The strategy is novel as it allows the problem of directing a swarm to a new area of
the environment to be addressed separately from the problem of exploring and mapping
that new area using robots with limited environment perception abilities. This physical
decoupling promotes swarm scalability as the landmark robots’ motions can be planned
independently of the number of mapper robots.

2. Related Works

Herein, the pertinent literature related to exploration and mapping of unknown
environments using SRSs is detailed in Sections 2.1–2.4. A comparison of the proposed
strategy to each of the categories described is provided in Section 2.5.

2.1. Metric Mapping Using Homogeneous Swarms with Limited Exteroceptive-Sensing

Metric map creation using resource-constrained swarms, as addressed herein, presents
a unique challenge compared to topological map creation since generating metric maps
(e.g., occupancy grid maps), generally, requires accurate environment perception and
localization. Previous studies, investigating the creation of metric maps using resource-
constrained swarms, have used various random-motion models to explore the environ-
ment [26–28]. Random-motion models specialized in either an intensive exploration of
a small area or coverage of a larger area were investigated in the context of building an
occupancy grid map using odometry-based localization alone [27]. Other studies have
allowed the swarm to share relative proximity measurements to improve the overall swarm
localization estimate. However, each robot in the swarm still uses a random motion model
to disperse themselves without considering which areas of the environment may already
have been explored [26,28]. In these works, the swarm’s motion is unconstrained within an
enclosed environment.
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In contrast to the abovementioned works, our proposed work allows the resource-
constrained swarm’s exploration to be directed toward unmapped areas in the environment
by dividing the swarm into a team of mapper robots and a team of landmark robots, re-
spectively. The latter directs the decentralized mapper robots. The novelty of our proposed
work is based on this division of the swarm into two teams, one to direct the swarm
toward new areas and the other to map those new areas. Namely, the landmark robots
are moved to unexplored areas of the environment to facilitate the building of a map as
efficiently as possible. The use of a separate team of landmark robots enables the mapper
robots to remain decentralized while still being directed toward the unmapped areas of
the environment.

2.2. Topological Mapping Using Swarms with Limited Exteroceptive-Sensing

Topological maps are a sparse representation of an environment capturing the topo-
logical relationship of obstacles or features, similar to a roadmap [29]. In direct pertinence
to our work, topological maps have been built using resource-constrained swarms whose
individual robots may not be able to position themselves or incorporate sensor measure-
ments into a map on their own (e.g., [30–36]). The relative simplicity of each robot and
the large number of robots within these swarms prohibit the use of existing multi-robot
SLAM methods.

Topological maps have been built using a swarm that navigates in an environment
with many landmarks, whose density and distribution in the environment are known [30].
Similarly, the construction of physical topological maps has also been investigated, where
the swarm’s topology represents the map itself [31].

There also have been approaches that build maps offline once the resource-constrained
swarm has gathered data from the environment. In [32], for example, the swarm remains
unlocalized and records information, such as time of encounter with an obstacle, in order to
map a feature-of-interest. Alternatively, in [33–35], a topological map is built by having each
robot move randomly through the environment and record when it encounters another
swarm robot, while each robot remains unlocalized. In these studies, the location of robots
encountering each other are converted into point clouds and, later, into topological maps,
using metric estimation and topological data analysis (TDA) techniques [33–35]. Random-
motion swarms and TDA techniques have also been used to extract the number of obstacles
inside an unknown environment [36]. Millirobot-scale ground swarms are more commonly
used in this category since extensive environment perception or accurate localization is
not required. Our work, however, focuses on the creation of metric maps as opposed to
topological maps using resource-constrained swarms.

2.3. Mapping Using Robotic Systems with “High-Information” Exteroceptive-Sensors

Cooperative exploration of unknown environments using SRSs has been previously
investigated for swarms equipped with “high-information” sensors (e.g., omnidirectional
laser scanners), where each robot can explore and map their local environment individu-
ally [37–41].

Such systems often use existing simultaneous localization and mapping (SLAM)
methods and collaborate to map the environment faster than each robot otherwise could
individually. In this regard, the cooperative exploration and mapping problem for these
swarms can be seen as a subset of the more general multi-robot SLAM problem [42,43],
with emphasis on the scalability of methods for SRSs [44].

In the above context, maps can be built by storing one centralized map that each
robot contributes information to or by having each robot store their own individual map of
the environment. Centralized maps have been used with efficient decentralized frontier-
based exploration methods to quickly disperse agents throughout the environment [37].
Alternatively, each swarm robot may store their own map while exchanging information
with their neighbors to merge their neighbors map with their own and better plan their
own trajectories [38–40]. In [41], for example, decentralized exploration and distributed
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mapping are used in combination to map dynamic environments using teams of wall-
climbing robots and a swarm of ground-level mapper robots. Our work, instead, focuses
on resource-constrained swarms, whose limited sensing capabilities prohibit the member
robots from building, or contributing to, a map individually. Such swarms must collaborate
with each other to achieve these tasks.

2.4. Area Coverage Using Homogeneous Swarms with Limited Exteroceptive-Sensing

Area coverage of an environment has been investigated using SRS where the primary
problem being addressed is the efficient exploration and coverage of a target area. Although
maps of the environment are not necessarily built, the exploration strategies used to cover
the environment are still of interest. In this regard many strategies have investigated the
use of random motion models by each robot in the swarm to disperse the robots across the
target area [45–48].

In [45], the strategy combines a random motion model based on the Lévy distribution
(Lévy flight) with an artificial potential field to improve the exploration efficiency, with the
potential field generating a repulsive vector between nearby robots to promote dispersion
of the swarm. In [46], a control law is proposed based on pheromones to switch the random
motion models between Brownian motion for local searching and Lévy flight motion for
global exploration. In [47], an improved Lévy flight random motion model is proposed
that adaptively changes the models step size based on the swarm’s density and is shown
to provide a more uniform coverage of an environment than when using a standard Lévy
flight random motion model alone. In [48], different random motion models were tested in a
variety of environments using a swarm of Kilobots to reveal which motion model provided
the most effective coverage of a particular environment. Our work, however, constrains
the random motion of mapper robots to only cover the area surrounding landmarks, and
considers how measurements taken during this random exploration can be used to build a
map of the environment.

2.5. Comparison Summary

In order to summarize and compare the pertinent literature with the strategy presented
herein, Table 1 provides a short description of each of the above categories as well as a list
of pros and cons related to each. As can be seen from the table, our proposed decoupling
strategy for a swarm of robots provides clear advantages over existing strategies that also
have limited exteroceptive sensing capabilities, including creating high-fidelity metric
maps of the environment using a frontier-based optimally directed exploration strategy
that maintains the overall scalability to a large number of robots.

Table 1. Comparison of our proposed strategy with others in the pertinent literature.

Category Description Pros Cons

Proposed strategy:
Heterogenous swarms with
limited exteroceptive-sensing

• Uses a group of landmark
robots to optimally direct a
separate team of
mapper robots.

• Mapper robots follow
random motion.

• Builds occupancy grid maps
by localizing individual
robots and incorporating
their proximity
measurements into the map.

• Frontier-based optimally
directed exploration of the
environment:
• Robots maintain

connectivity, allowing
for accurate position
estimates using
cooperative
localization strategies.

• Strategy is scalable since
only the landmark robots’
motions need to be planned
by a central controller.

• High-fidelity metric maps
are built using information
from relatively simple
exteroceptive sensors.

• Motion planning is not
fully decentralized.

• Map building is centralized.
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Table 1. Cont.

Category Description Pros Cons

Homogeneous swarms with
limited exteroceptive-sensing
[26–28,45–48]

• Each robot follows a
random motion, and
exploration of the
environment occurs as a
consequence of this
(random) motion.

• Builds occupancy grid maps
by localizing individual
robots and incorporating
their proximity
measurements into the map.

• Fully decentralized
motion planning.

• Strategy is scalable.
• High-fidelity metric maps

are built using information
from relatively simple
exteroceptive sensors.

• Exploration is undirected
and, thus, sub-optimal:
• Robots explore

previously
mapped areas.

• Map building is centralized.
• Robots may lose

connectivity, which may
lead to inaccurate position
estimates and, thus,
inaccurate maps.

Topological mapping using
swarms with limited
exteroceptive-sensing [30–36]

• Robots explore the
environment through
random motion.

• Data is first collected by a
swarm and later used to
build a topological map
(e.g., roadmap):
• Data collected

includes
time-of-encounter
with other robots
or obstacles.

• Fully decentralized
motion planning.

• Strategy is scalable.
• Minimal exteroceptive

sensing required.
• Topological maps can be

built even with no position
estimates of the robots.

• Large numbers of robots,
that need to disperse
uniformly throughout the
environment, are required.

• Map building is centralized.
• Only low-fidelity map of the

environment can
be achieved.

Robotic systems with
“high-information”
exteroceptive-sensors [37–41]

• Similar to multi-robot
simultaneous localization
and mapping.

• Directs exploration to map
an area.

• Each robot individually
builds a map of an area
without relying on
other robots.

• Strategies are made for and
implemented with a few
robots (e.g., 2 to 5 robots).

• Frontier-based directed
exploration of
the environment:

• Efficient exploration can be
achieved due to
complex sensors.

• High-fidelity metric maps
are built.

• Computationally infeasible
for large-sized swarms
(i.e., not scalable).

• Requires high-information,
complex and, often,
large-sized sensors and,
thus, large-scaled robots.

3. Problem Formulation

As noted above, this paper focuses on the development of a generalized exploration
strategy to build an occupancy grid map of an a priori unknown environment via a resource-
constrained swarm robotic system (SRS). It is assumed that the environment may include a
priori unknown obstacles and may not be enclosed, i.e., bordered.

The swarm is to be divided into two teams prior to the start of a task. The first is a
team of nL (mobile) landmark robots that use a centralized architecture to communicate
with a central controller, where each landmark robot can be denoted by the unique label,
Lj, j ∈ {1, . . . , nL}. The second is a team of nm mapper robots that use a decentralized
architecture and communicate with the landmark robots, where each mapper robot can be
denoted by the unique label, Ri, i ∈ {1, . . . , nm}. The landmark robots are responsible for
guiding the exploration of the swarm by physically positioning themselves in promising
areas to explore. The mapper robots are responsible for acquiring the sensor measurements
to build a map of the environment surrounding the landmark robots.

It is assumed that the mapper robots can acquire information about their local environ-
ment through on-board sensing hardware, such as laser range finders, RGB cameras. Let
us denote the exteroceptive sensory measurement that acquires information (e.g., distance
to obstacle) about the surrounding environment taken by mapper robot Ri at time t as zt

Ri
.

The swarm is assumed to be initially positioned at a (fixed home) base, G H = (xH , yH),
defined by a global frame, GF. It is also assumed that a static sensor that can actively sense
the swarm could be placed at the home base prior to execution. The sensory capabilities
of each robot in the swarm include their ability to uniquely identify and measure relative
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ranges and bearings to their neighbors within a predefined circle-of-radius, ρsense. Swarm
robots within ρsense of each other are said to be connected. Our work considers all robots,
including both landmark and mapper robots, to be equipped with inter-robot sensing
technology that allows them to measure distance and bearing to their neighbors. The
measurement taken by mapper robot Ri of some other mapper robot Rj can be denoted as:

sRi Rj =
(

d̂Ri Rj , b̂Ri Rj

)
, (1)

where sRiRj is the inter-robot sensing of Robot Rj by Robot Ri: d̂Ri Rj and b̂Ri Rj are the
relative distance and bearing between these robots, as observed by Ri, respectively. In
practice, proximity measurements would be the sum of the true relative distance and
bearing between robots, plus some additional zero-mean Normally-distributed noise:

d̂Ri Rj = dRi Rj + N
(

0, σ2
int

)
, and (2)

b̂Ri Rj = bRi Rj + N
(

0, σ2
int

)
(3)

where dRiRj and bRiRj are the true distances and bearings between the robots, and σ2
int is

the variance of the additive Normally-distributed noise. Since all robots in the swarm are
equipped with inter-robot sensing capabilities, measurements can equivalently be taken
between mapper and landmark robots. All inter-robot sensing measurements taken by
Robot Ri of other nearby robots at time t can be combined into a set and denoted as St

Ri
:

St
Ri

=
{

sRi A
}
∀ robots A s.t. dist(Ri, A) < ρsense, (4)

where A represents a general label for either a mapper or landmark robot and the func-
tion dist(Ri, A) represents the distance between mapper Robot Ri and mapper or land-
mark Robot A.

Mapper robots continually broadcast measurements in the form of data packets that
include both inter-robot distance and bearing measurements as well as distance measure-
ments to their local environment. Namely, each data packet includes a tuple of measure-
ments from each type of sensor mentioned above as well as the identifier of the mapper
robot itself. Landmark robots receive these data packets and forward the information to a
central controller along with their own inter-robot measurements, at which point the inter-
robot distance and bearing measurements may be fused to obtain an estimate of the robots’
locations in the environment using cooperative swarm localization techniques [49–60]. Let
us denote the data packet sent by mapper Robot Ri at time t as Dt

Ri
=
{

St
Ri

, zt
Ri

, i
}

.
Per the discussion above, the team of mapper robots is responsible for locally exploring

and acquiring data packets from the area surrounding the landmark robots. The team
of landmark robots, on the other hand, can communicate with a central controller and
is responsible for directing the exploration of the swarm toward a particular area of the
environment. One must note that, while the mapper robots explore and broadcast data
packets, the landmark robots remain stationary until given motion commands by a central
controller. When the landmarks receive motion commands, the mapper robots follow as
they are constrained to stay nearby the landmarks. Thus, by directing the landmark robots
toward a particular area of the environment, the effective exploration area of the mapper
robots is indirectly controlled via the central controller.

The main problem to be addressed is, thus, exploration of the environment through
optimal motion planning for both the mapper and landmark robots, in order to acquire
sensor measurements and build an occupancy grid map. The occupancy grid map is a 2D
matrix of cells with each cell having an associated occupancy probability denoting the
probability that the cell is obstructed by an obstacle [61]. The central controller builds the
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map, M, fixed with respect to the global frame GF, which is to be updated by the latest
proximity measurements.

Per abovementioned, the swarm exploration problem comprises two main sub-tasks:
mapper-robot motion planning and landmark-robot motion planning, as discussed below
in Sections 3.1 and 3.2, respectively.

3.1. Mapper-Robot Motion Planning

For the proposed strategy, the mapper robots need to explore the local area surround-
ing the landmark robots and ”follow” them to new areas in the environment, all the while
broadcasting measurements in the form of data packets. Since the mapper robots can
only sense the landmark robots within a limited radius, ρsense, their motion should be
constrained to stay connected to the landmark robots within ρsense.

Due to the decentralized nature of their control, each mapper robot’s controller must
independently address the following problems: (i) dispersing itself throughout the ex-
plorable area while broadcasting data packets and avoiding obstacles, and (ii) staying
connected to the landmark robots, even as the latter move to new areas in the environment.

In order to avoid the mapper robots from becoming disconnected, as the landmark
robots move, it may be necessary to further constrain their motion to less than the maximum
sensing radius to account for cases in which the landmark robot moves outside of the
sensing range before the mapper robot could react. One can define the radius of allowable
exploration away from the landmark robots, ρexplore, as a function of ρsense, using a safety
factor, s f > 1:

ρexplore =
ρsense

s f
. (5)

3.2. Landmark-Robot Motion Planning

The landmark robots’ motions are planned within the central controller and transmit-
ted to them in the form of motion commands, comprising two stages:

1. Position planning: Given the current map, M, a set of positions (nodes) for the land-
marks need to be determined. In our work, the positions of the landmarks indirectly
dictate where exploration of the environment would occur.

2. Path planning: The landmark robots’ paths, from their current positions to the next
selected set of planned nodes, need to be determined, given the known obstacles and
free spaces within the map. Motion commands for the execution of each path are
generated and sent to the landmark robots individually by the central controller.

3.2.1. Position Planning

In the proposed strategy, the positions of the landmark robots affect where exploration
of the environment will occur. In order to explore the entirety of an environment, the
landmark robots must move to within exploration range, ρexplore, of previously unmapped
areas so that the mapper robots can explore those unmapped regions.

The positions of the landmark robots should be constrained such that they remain
connected. One can define this connectivity in the context of graph theory, where the
positions of the landmarks form the nodes of a graph with edges between nodes being
less than ρsense of each other. The landmark robots should, then, be constrained such that
their corresponding graph remains connected. This connectivity requirement allows for the
team of landmark robots to share relative proximity and bearing to each other and, thus,
improve their localization estimate using cooperative strategies [49–60]. Furthermore, it
ensures that the mapper robots can explore the region surrounding all the landmark robots.

In this regard, the kth set of planned landmark robot nodes, GLk, with nL nodes can be
defined as

GLk =
{

GxLj

}nL

j=1
, (6)



Robotics 2023, 12, 70 8 of 29

where the position of the nodes GxLj are defined with respect to the global frame, GF. The
connectivity constraint can, then, be given as{

dist
(

GxLj ,
GxLj+1

)}nL−1

j=1
≤ ρsense, (7)

where dist
(

GxLj ,
GxLj+1

)
represents the Euclidean distance between consecutive land-

mark nodes.
Additionally, given a set of planned nodes, GLk, within a map, M, the area surrounding

the nodes within a circle-of-radius ρexplore can be explored by the mapper robots. One can
define the subset of this exploration area that has not been mapped as the information gain,
I(GLk). The information gain represents how much new area would potentially be added
to the map if the landmark robots were to move to their respective planned nodes, GLk.
Estimates of I(GLk), given M, can be determined simply as the area of unknown occupancy
grid cells within ρexplore of each planned node since it is this area that would be newly
added to the map [62].

Thus, the primary problem to be addressed at this stage is to determine the best
possible planned positions of the landmark robots, GLk

∗. The optimization objective
function for this problem could be, for example, to maximize the information gain, GLk,

max I
(

GLk

)
= f

(
GLk, M, ρexplore

)
. (8)

Above, the function f describes the dependance of information gain on the positions
of the planned nodes, the latest map, and the radius of exploration surrounding the
landmark robots.

3.2.2. Path Planning

Once the optimal nodes for the landmark robots have been determined, the next
problem at hand is to build point-to-point (PTP) paths for their motions between their
current positions and next planned nodes. For each landmark robot, a path consisting
of a series of intermediate points, from its current position to a planned node position,
should be determined in order to avoid known obstacles in the environment. The main sub-
problems to be addressed are: (i) building collision-free paths, and (ii) ensuring continuous
connectivity of the landmark robot team with the mapper robots, while moving along their
PTP path.

The path-planning stage should consider the decentralized controller used by the
mapper robots. The speed at which the landmark robots traverse the environment may
need to be adjusted to ensure that the mapper robots stay connected to the landmark robots
as they move through the environment.

4. Proposed Methodology

The proposed mapping strategy requires a swarm to be divided into two distinct
groups: a team of (decentralized) mapper robots that would gather information about the
environment, and a team of (centralized) landmark robots that direct the mapper robots
towards specific areas of the environment. A high-level overview of the proposed strategy
is shown in Figure 1. Mapping the environment is an iterative process, with each iteration
involving local mapping of the area surrounding the landmark robots and then, moving
the landmark robots to a new area to explore. The former is achieved by constraining
the motion of the mapper robots to be nearby the landmark robots and incorporating the
mapper robots’ measurements into the map, as detailed in Section 4.1. Once the latest
area at hand has been explored, the landmark robots move to another ‘promising’ area, as
detailed in Section 4.2.
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The proposed strategy allows the swarm to prioritize exploration and mapping of
unknown areas in the environment. The novelty of the strategy is in the decoupling of
the swarm into two teams: one to direct the swarm toward an area in the environment,
and the other to acquire measurements to build the map of that area. A team of landmark
robots directs the swarm toward an area of the environment that maximizes the potential
for new information to be added to the map. A separate team of decentralized mapper
robots gather measurements to be incorporated into the map, while staying nearby the
landmark robots. This decoupling allows the landmark robots to define where exploration
and mapping should occur, independent from the mapper robots.

4.1. Mapper-Robot Motion Planning

As the first stage of the proposed strategy, the local area surrounding the landmark
robots is explored using a decentralized team of mapper robots. The sensing capabilities,
as well as the motion controller, for the mapper robots is outlined below in Section 4.1.1.
Localization of the mapper robots is, then, discussed in Section 4.1.2 and the updating
process of the map is discussed in Section 4.1.3, respectively.

4.1.1. Mapper-Robot Sensing and Motion Models

The mapper robots must remain within communication range, ρsense, of the landmark
robots. Our work considers all robots to be equipped with inter-robot sensing technol-
ogy that allows them to measure the distance and bearing to their neighbors as defined
in Section 3.

We assume that each mapper robot is equipped with an additional exteroceptive
sensor capable of acquiring information from its local environment. It is measurements
from this sensor that, once localized to the global frame of the map GF, will be incorporated
into the map. In our work, mapper robots are equipped with a single laser distance sensor,
pointing straight ahead, capable of measuring distance to an object within range zmax
and field-of-view βz. The distance sensor measurement taken at time t by Robot Ri is
denoted as zt

Ri
.

In order to diffuse themselves throughout the local environment surrounding the
landmark robots, herein, it is assumed that the mapper robots use a random-walk behavior
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to decide in which direction each robot should move, similar to other random motion swarm
exploration methods noted in the literature (e.g., [26–28,32–34]). In contrast these random
motion exploration methods, however, the mapper robots, in our work, are constrained
to stay within a fixed exploration radius of the landmark robots, ρexplore. Each mapper
robot defines a random direction to follow, α, and moves in this direction until either an
obstacle is detected or it detects the nearest landmark to be further than its predefined
exploration radius, ρexplore. In such cases, a new direction is selected to avoid collisions or
stay nearby the landmark robots. Figure 2 outlines this random motion model in the form
of a finite-state machine.
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4.1.2. Swarm Localization

Localization of both the mapper robots and landmark robots is performed in the
proposed strategy by a central controller by fusing inter-robot sensor measurements, sRi Rj .
First, though, estimates of the landmark robots’ positions, GL̂k, are obtained prior to the
local exploration conducted by the mapper robots.

Accurate estimates of the landmark robots’ positions with respect to the global frame,
GF, can be obtained, without the use of onboard global positioning sensors (GPS), via
a wireless tether of mobile sensors as proposed in our previous work [11]. A team of
mobile sensors are positioned to indirectly connect the landmark robots to a static home
base, G H , at the swarm’s starting location. Using the inter-robot measurements from the
mobile sensors, landmark robots, and static home base, an estimate of the landmark robots’
positions, GL̂k, can be obtained through the swarm localization approach proposed in our
previous work [49].

An estimate of a mapper robot’s position needs to be obtained when incorporating
a distance measurement, zt

Ri
, into the map. In this regard, once a mapper robot makes a

distance measurement, it broadcasts a data packet to be received by the landmark robots.
Thereafter, this data packet is relayed to the central controller.

The data packet contains the mapper robot’s distance measurement, zt
Ri

, as well as
inter-robot distance and bearing measurements to any landmark robots within sensing
range, sRi Lj . Additionally, upon receiving the data packet, the landmark robots append
their own inter-robot distance and bearing measurements to the mapper robot, sLjRi , prior
to relaying the packet to the central controller. The kth data packet to arrive at the central
controller is represented as Dk =

{
sRi Lj , sLjRi , zt

Ri
, i
}

and can be used to estimate the

position of (mapper) Robot Ri, when it obtains the distance reading zt
Ri

.
Fusing the distance and bearing sensing data between the mapper robots and land-

mark robots, to obtain an estimate of the mapper robots’ positions, follows the approach
developed in our previous work [10], and can be summarized as follows. Using both sets



Robotics 2023, 12, 70 11 of 29

of inter-robot sensing data from a data packet received by the central controller, an estimate
of mapper Robot Ri’s location with respect to the local frame of the landmark robots can
be determined. Since estimates of the positions of the landmark robots with respect to the
global frame have already been obtained, GL̂, the transformation from the local frame of the
landmark robots to the global frame can be obtained and used to determine the estimated
position of Robot Ri with respect to the global frame, Gx̂Ri . Once an estimate of the mapper
robot’s position, where it obtained a distance sensor measurement, is determined, it can be
incorporated into the occupancy grid map M.

4.1.3. Updating the Occupancy Grid Map

The occupancy grid map, M, is stored and updated by the central controller using
measurements obtained from the mapper robots. The map is a 2D matrix of cells with
each cell at (row, column) index (i, j) having an associated occupancy probability pi,j, in
the range (0, 1). Prior to the incorporation of any data, each cell within the initial map,
M = Mo, has a probability of po = 0.5. Based on the occupancy probability, the true state
of cell can be determined through the following rule: if pi,j > po, the cell is occupied; if
pi,j < po the cell is free; and, if pi,j = po, the cell is unknown.

The map is updated continuously as data packets are obtained from the swarm using
a standard map-update method [63]. The nth packet of data containing a mapper Robot
Ri’s distance measurement, zt

Ri
, and used to obtain the estimated position at the time of

obtaining this distance measurement, Gx̂Ri , is incorporated into the previous map, Mn−1:

Mn = Mn−1 + ISM
(

zRi ,
Gx̂Ri

)
−Mo, (9)

where the function ISM
(
zri ,

Gx̂Ri

)
represents the inverse sensor model that converts the

robots distance measurement into a grid representation of occupancy.
As more data is incorporated into the map, the area within the map surrounding the

landmark robots becomes better ”known”. However, since the motion of the mapper robots
is random, the landmark robots must wait for an a priori unknown amount of time for
them to gather sufficient data to map the entirety of their exploration area. A stopping
criterion for when enough data has been collected to warrant moving the landmark robots
to a new area can be defined based on how much of the expected area that can be mapped
has been mapped.

The exploration area of the mapper robots is estimated simply as the area within
line-of-sight and within radius ρexplore of the landmark robots. From the map, M, and
using the estimated positions of the landmark robots GL̂k, within the map, the total explo-
ration area of the mapper robots can be calculated, mexplore ⊂ M, assuming only unknown
area within line-of-sight of the landmark robots is traversable. Any obstacles that would
block line-of-sight from the landmark robots reduce the size of the exploration area accord-
ingly. Furthermore, the subset of the total exploration area that has been mapped can be
determined, mknown ⊂ mexplore. The stopping criterion can, then, be formulated as:

|mknown|∣∣∣mexplore

∣∣∣ ≥ ws, (10)

where ws is a positive constant in the range [0, 1] representing how much of the normalized
exploration area should be mapped prior to moving the landmark robots to a new area.
For example, in the case where ws = 1, the entirety of the estimated exploration area
must be mapped prior to moving the landmark robots. It should be noted that the known
and explorable areas, mknown and mexplore, are updated as soon as new data packets are
incorporated into the map. This allows the explorable area to remain accurate as new
obstacles are observed since the calculation of the explorable area only considers area
within the line-of-sight of the landmark robots. Figure 3 provides an illustrative procedure
for incorporating measurements from the mapper robots into the map.
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4.2. Landmark-Robot Motion Planning

Once the local exploration of the environment nearby the landmark robots has been
completed, the landmark robots should move towards a new area of the environment
that has yet to be mapped. Planning a set of destination nodes for the landmark robots is
outlined in Section 4.2.1 below. Motion planning and execution of the planned path for the
landmark robots is, in turn, are outlined in Section 4.2.2 below.

4.2.1. Position Planning

Landmark robots should be positioned such that the mapper robots can access previ-
ously unexplored areas and, therefore, gather data to expand the known area of the map.
Before a new set of landmark robot destination nodes can be planned, distinct frontier
regions in the map should be found to determine where unexplored areas can be accessed
and where configurations should be planned.

The set of frontier cells within the map need to be first determined. A frontier cell, f ,
is any free cell adjacent to an unknown cell in the map. A frontier region, FM, represents a
set of m frontier cells within the map that are adjacent to each other [64]:

FM = { f1, f2, . . . fm}. (11)
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Figure 4 provides an illustration of distinct frontier regions found in an occupancy
grid map.
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A set of planned landmark robot positions, q, with n ≤ nL landmark robots, can be
defined as a matrix of (x, y) nodes that correspond to planned positions for each landmark
robot. These nodes can also be defined with respect to the occupancy grid map as a matrix
of [row, column] nodes:

q(n) =


q1
q2
. . .
qn

 =


x1 y1
x2 y2
. . . . . .
xn yn

; x, y ∈ R⇒ qgrid =


r1 c1
r2 c2
. . . . . .
rn cn

; r, c ∈ Z+. (12)

The objective of planning landmark-robot positions is to allow the mapper robots to
explore and gather data from as large an unknown area as possible, such that the occupancy
grid map can be expanded as much as possible. It is, therefore, useful to define a measure
for the expected amount that the map will expand by.

Given some potential landmark-robot nodes, one can define the amount of new
information that could be added by mapping the surrounding area as the information gain,
I(q). The mapping of the surrounding area is performed by the mapper robots, which only
gather data from within a limited range of the landmark robots, ρexplore. The information
gain can therefore be estimated simply as the area of unknown occupancy grid cells within
ρexplore and line-of-sight of each planned node since it is this area that would be newly
added to map. Figure 5 below illustrates how the information gain is estimated given a
potential set of landmark robot nodes. In this example I(q) = 0.0992 m2. The information
gain is used to evaluate the performance of a particular set of nodes and is maximized for
each set of nodes planned at a frontier region.

Optimally planning the position of every landmark robot is not always necessary. It
may be sufficient to optimally plan only a subset of nodes if these nodes still allow the
frontier region to be fully explored. A frontier region may be fully explored by fewer than
the total number of landmark robots, especially, if the region is sufficiently small or there are
many landmark robots available. If there are many landmark robots, optimally planning
the position of every robot directly may become computationally infeasible. Therefore,
the minimum number of landmark robots to explore a frontier region as well as their
corresponding optimal positions need to be determined.
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The proposed algorithm for finding the optimal landmark-robot nodes, at a given
frontier region is a nested-loop procedure, Figure 6: The outer loop (red dashed line) seeks
to find the optimal number of landmark-robot nodes by evaluating configurations with a
feasible number of nodes (i.e., number of nodes no greater than the total number of land-
mark robots, nL); and, the inner loop (blue dashed line) determines the optimal placements
of the landmark-robot nodes for the number of nodes considered by the outer loop.

In this work, landmark robots explore one frontier region at a time. Once all sets of
nodes are planned at each frontier region in the map, one of these sets is chosen for the
landmark robots to move towards the next region, GLk+1. Amongst the sets of nodes for
each frontier region, let the set with the highest information gain be denoted as qmax . This
set is selected as the planned set of nodes for the landmark robots to move towards the
next set, qmax → GLk+1 .

Additional nodes may be added to the selected set of nodes qmax, until the total number
of nodes equals the total number of available landmark robots, nL. These additional nodes
are added at the centroid of the selected set to ensure connectivity of the landmark robots.
Motion from the landmark robots’ current estimated positions GL̂k to the planned set of
nodes, GLk+1, needs to be planned, as to be detailed in Section 4.2.2.

Outer Loop

Given a frontier region consisting of a cluster of frontier points, the outer optimization
loop seeks to find the minimum number of landmark-robot nodes, n ≤ nL, that maximizes
the information gain. For a (feasible) number of landmark-robot nodes considered in
this loop, the information gain is determined by finding the corresponding optimal node
placement q∗(n) using the inner optimization loop described below in inner loop section.

As detailed in Appendix A, when evaluating the information gain between two sets of
landmark-robot nodes, with different number of nodes, the set with more nodes would
have the larger information gain. However, as the number of nodes is increased, the area
within mapping range of the nodes covers more of the frontier region which may become
saturated if there are enough nodes to cover most of the unknown area surrounding the
frontier. Since the size of the frontier region is finite, the unknown area within mapping
range along the frontier region is also finite. A set of landmark-robot nodes would have
an information gain that corresponds to some subset of this finite unknown area. As the
number of nodes is increased and the frontier region becomes saturated with landmark
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robots, the information gain approaches a maximum value corresponding to the total
unknown area within mapping range of the frontier region.
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More formally, a frontier region can be defined as ”saturated” when an optimally
placed set of n nodes are planned such that the information gain of the optimal set of nodes,
I(q∗(n)), surpasses a threshold, wi = [0, 1], of the maximum information gain possible
Imax. Appendix A provides a more detailed description of determining the maximum
information gain, Imax:

I(q∗(n)) ≥ wi ∗ Imax. (13)

The threshold wi can be tuned to favour sets of nodes with more information gain
at the expense of more landmark robots being used. This optimization, then, seeks to
determine the minimum number of landmark-robot nodes to saturate the given frontier
cluster. The optimal number of landmark-robot nodes, n∗, is, then:

n∗ = min(n)s.t.I(q∗(n)) ≥ wi ∗ Imax
n ∈ Z+,

(14)
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where n is constrained by the total number of available robots n ≤ nL.
Determining the optimal number of landmark robots could be conducted using a

simple, single-variable search engine that searches through the discrete set of integers from
1 up to the total available robots nL. The search is terminated prior to reaching nL, if the
number of landmark robots saturates the frontier region.

Inner Loop

Given a frontier region, FM = { f1, f2, . . . fm}, and the number of landmark-robot
nodes to be planned, n, one would need to determine the set of node positions, q∗(n),
that maximizes the information gain. However, due to the limited sensing range of the
landmark robots, and therefore limited exploration range of the mapping robots, constraints
must be imposed on the planned nodes. The constraints imposed on a set of n nodes, q(n),
include the nodes being connected (as defined in Section 3.2.1) and the positions of all the
n nodes being in free space nearby the frontier FM.

The inner-loop optimization solves for:

q∗(n) = max(I(q(n))), (15)

where the set of nodes q(n) = [q1, q2, . . . qn]
T is subject to the following constraints:

Connectivity constraint :
{dist(qi, qi+1)}n−1

i=1 ≤ ρsense,
(16)

Nearby-frontier constraint :{
dist

(
qi, FM)}n

i=1 ≤ ρexplore,
(17)

Free-space constraint :
qgrid ∈ M f ree.

(18)

Above, the distance between a node, qi, and set of frontier points, F, (i.e., dist(qi, F))
is the minimum Euclidean distance between the node and the set of frontier points. Ad-
ditionally in the free-space constraint above, M f ree represents the subset of points in the
occupancy grid that are known to be free (i.e., not unknown and contain no obstacles).

The nearby-frontier and free-space constraints (Equations (17) and (18), respectively)
limit the placement of all the nodes to the same subset of occupancy grid cells. This subset
of cells can be determined prior to beginning the optimization and can be used to specify
the domain of each variable (node) to a discrete set. The connectivity constraint represents
a non-linear constraint between each pair of nodes so that the landmark robots remain
within inter-robot sensing range of each other.

This inner optimization loop represents a nonlinearly constrained discrete optimiza-
tion problem. It is, therefore, recommended to use a combinatoric method, such as a
variation of a genetic algorithm to obtain an optimal solution [65].

In this context, one method of obtaining an initial high-quality solution is to build a set
of nodes sequentially, solving a single-variable discrete optimization problem consecutively
until the number of required nodes is reached. Determining the position of each node
involves solving a single-variable optimization problem for the occupancy grid cell with the
highest information gain. Initially, the first node can be placed at the single location with the
highest information gain that satisfies Equations (17) and (18). The next nodes are added by
assuming all previous nodes remain fixed and, therefore, reducing the domain of the search
for the next node to cells that satisfy all three above constraints, Equations (16)–(18). Figure 7
illustrates this method of finding an initial high-quality solution.
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Figure 7. An initial high-quality solution, when maximizing the information gain I(q(n)) of a set
of planned nodes at a frontier region, can be obtained by planning nodes sequentially. (a–d) depict
an occupancy grid map with nodes (red) planned sequentially at a frontier region (blue) with the
maximized unknown area surrounding each node (yellow).

4.2.2. Path Planning

Once a set of nodes corresponding to destinations for the landmark robots has been
determined, obstacle-free paths must be found between the landmark robots’ current posi-
tions and destination nodes. Additionally, the landmark robots should remain connected
to each other during their motion.

An initial obstacle-free path, between the current centroid of the landmark-robot
positions and centroid of the planned nodes, can be determined using an A* planner [66].
Motion commands can, then, be supplied to the landmark robots to direct them from
their current position, along the planned path, toward their destination node. By having
all the landmark robot use the same planned paths, rather than planning an individual
path for each robot, the landmark robots remain nearby each other during their motion
(i.e., connected).

5. Results

Simulated examples are included herein to illustrate the working of the proposed
mapping strategy in building a 2D occupancy grid map of an unknown environment using
robotic swarms. The proximity sensing and motion characteristics of our mROBerTO
millirobot were used as the robots in the simulations [6–8]. Namely, all simulations were
completed with inter-robot sensing noise variance of σ2

int = 2 mm2 with a maximum range
ρsense = 200 mm. Additionally, each mapper robot was equipped with a simulated forward-
facing 1D distance (laser) sensor on the robot. The simulated distance sensor had a max
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range of zmax = 200 mm, and noise of σ2
laser = 9 mm2 and measured the shortest distance

to an obstacle within a field-of-view of β = 22
◦
.

In the simulations, the landmark robots had a constant speed of vlandmark = 60 mm/s,
while the mapper robots had a faster constant speed of vmapper = 80 mm/s in order to
ensure they remained connected to the landmark robots as the swarm moved to new areas
of the environment. The occupancy grid map had an individual cell size of 10 mm. The
parameter, ws, was set to 0.95 and described what percentage of the explorable area sur-
rounding the landmark robots should be mapped prior to moving the landmark robots. The
parameter, wi, was set to 0.85 and described what percentage of the maximum information
gain at a frontier should a potential set of landmark nodes have before considering the set
of nodes to allow for most of the frontier to be explored (see Appendix A).

5.1. Illustrative Example—1200 × 1200 mm2 Enclosed Environment

For the first simulation, discussed herein, the swarm comprised of four landmark
robots and ten mapper robots and explored a 1200 × 1200 mm2 enclosed environment,
Figure 8. A fixed home base reference was included in the environment, located at (650,
450) mm, needed for the landmark robots to use a tether-based motion strategy to move to
new areas.
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Figure 8. True Environment with initial positions of landmark robots shown as blue circles, and
mapper robots shown as red circles. The home base is shown in green.

The proposed exploration strategy begins by using the decentralized mapper robots
to gather distance measurements around the local area surrounding the landmark robots.
Once 95% of the area within exploration range of the landmark robots has been mapped
(ws = 0.95), the landmark robots move to the next area of the map that maximizes the
amount of new information potentially added to the map, and the process repeats. This
iterative procedure repeats until no more frontiers can be found in the map.

Figure 9 shows the occupancy grid maps after each iteration for a total of nine iterations.
The final map is shown in Figure 9i. Figure 10 depicts the percentage of the environment
mapped over time. The marked points in Figure 10 correspond to the percentage of the
environment mapped after each iteration. The percentage mapped between marked points
(iterations) initially increases rapidly as the local area surrounding the landmark robots is
mapped. Prior to the next iteration, however, the curve flattens since during this time the
landmark robots move to a new area in the environment.
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Figure 9. Occupancy grid maps after each iteration of the proposed exploration strategy. (a–i) depict
the map after iterations one to nine respectively.
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Figure 10. Percentage of the environment (shown in Figure 8) mapped over time. The percentage
after each iteration is additionally shown as circular markers.

5.2. 1000 × 1000 mm2 Non-Enclosed Environment

In this simulation, the swarm comprised four landmark robots and ten mapper robots
and explored a 1000 × 1000 mm2 non-enclosed environment, Figure 11a. A fixed home
base reference was included in the environment, located at (300, 400) mm, needed for the
landmark robots to use a tether-based motion strategy to move to new areas.
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Figure 11. 1000 × 1000 mm2 non-enclosed environment: (a) True Environment with initial positions
of landmark robots shown as blue circles, and mapper robots shown as red circles. The home base is
shown in green. (b) Final occupancy grid map.

The environment did not have walls to prevent the swarm from moving outside
of the desired area to be mapped. The area outside of the true environment shown in
Figure 11a was freely traversable by the swarm. In order to prevent the swarm from trying
to explore regions outside of the 1000 × 1000 mm2 environment, the occupancy grid was
initialized to represent only a 1000 × 1000 mm2 region prior to exploration. Frontiers and,
therefore, planned positions of the landmark robots were always discovered inside the
desired area to be mapped. Figure 11b shows the final map obtained through our proposed
exploration strategy.

Despite the environment not having walls, the landmark robots were always planned
by the central controller to stay inside the 1000 × 1000 mm2 occupancy grid map. Since the
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mapper robots were constrained to stay nearby the landmark robots, none of the robots in
the swarm could travel too far outside the area to be mapped.

5.3. Impact of Relative Number of Landmark Robots

In order to assess the impact of the number of landmark robots, nL, on the exploration
and mapping speed, we conducted a series of simulations with a fixed total number of
robots in the swarm. We assigned a subset of the swarm as landmark robots, while the
remaining members were designated as mapper robots. Varying the number of landmark
robots, nL, we determined the time required to complete the mapping of the environment
and the total number of iterations needed for each simulation.

The objective of this study was to identify the relative ratio of landmark robots to total
number of robots in the swarm that can achieve the fastest mapping of the environment
with the fewest iterations possible. One may recall that, in our exploration strategy, each
iteration involves locally exploring the area surrounding the landmark robots and, then,
planning and moving the landmarks to a new frontier in the environment. It is, therefore,
desirable to minimize the number of iterations in order to minimize the frequency at which
the landmark robots’ motions need to be planned.

The time to complete mapping the environment and the number of iterations were
each normalized and a weighted sum objective function, that combined the values from
both goals, was utilized:

H(nL) = wtime ∗ Tnorm + witer ∗ Inorm, (19)

where wtime and witer represent the weights associated with the normalized completion
time, Tnorm, and normalized number of iterations, Inorm, respectively.

Figures 12 and 13 below depict the normalized completion time and total number
of iterations, as well as the objective function using weights of wtime = witer = 1 for
simulations conducted in the environment shown in Sections 5.1 and 5.2, respectively. As
can be noted in Figures 12 and 13, as the number of landmarks is increased, the overall
time taken to map an environment also increased, while the total number of iterations
required decreased. When the time to complete mapping the environment and total number
of iterations were weighted equally, the number of landmark robots that minimized the
heuristic objective function H(nL) is approximately half the total number of robots in the
swarm. Under these conditions, the environment is mapped using fewer iterations.
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Figure 12. Results from simulations in the enclosed environment from Section 5.1 for (a) N = 20, and
(b) N = 40 robots, respectively. Objective function H(nL) calculated using wtime = 1, witer = 1 and a
second-degree polynomial fit of normalized values.
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Figure 13. Results from simulations in the unbounded environment from Section 5.2 for (a) N = 20,
and (b) N = 40 robots, respectively. Objective function H(nL) calculated using wtime = 1, witer = 1
and a second-degree polynomial fit of normalized values.

In order to map the environment even faster, more weight can be given to the comple-
tion time. In this case, approximately one third of the total number of robots in the swarm
can be given the role of landmark robot while the rest are given the role of mapper robot.
Conversely, when more than half of the robots are landmark robots, the least number of
iterations would be required to complete mapping the environment, at the expense of an
increased overall time to map.

During each iteration every landmark robot’s motion must be planned by a central
controller and sent to the robot in the form of motion commands to be executed. De-
pending on the specific swarm robots utilized, it may be worth the increase in the time to
map the environment, if the landmark robots’ motions need to be planned and executed
less frequently.

5.4. Comparison with Random Landmark Placement

Our strategy optimizes the positions of the landmark robots to maximize new infor-
mation being added to the occupancy grid map. In order to validate the effectiveness of
this optimization, a comparative study, with an alternate method of planning the posi-
tions of the landmark robots, was conducted. This alternate method, hereafter, denoted
the random-placement method, places landmark robots (randomly) nearby a randomly
selected frontier region in the environment. It should be noted that the overall structure
of the exploration strategy, namely, using mapper robots to first locally map an area sur-
rounding the landmark robots and, then, moving the landmark robots to a new area in the
environment, remains the same.

The random-placement method, first, uniformly selects a frontier region from the set
of frontier regions found in the map. Next, a node, representing the planned position of
one landmark robot, is randomly selected from the set of occupancy grid cells satisfying
the nearby-frontier and free-space constraints (Equations (17) and (18), respectively). This
ensures that the frontier region can at least be partially explored by the mapper robots.
Subsequent nodes are randomly selected from the set of cells satisfying the previously
mentioned constraints as well as the connectivity constraint given in Equation (15) until the
total number of nodes equal the total number of landmark robots available. The random-
placement method of positioning the landmark robots satisfies all of the same constraints
as our proposed optimally-planned-placement method presented in Section 4.2.1.
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Figure 14a,b below depict the results from exploring the environments shown in
Sections 5.1 and 5.2, respectively, using both the optimal planned positions of the landmark
robots and the random placement method. The swarm comprised 20 robots in total, of
which nL = 10 were landmark robots. As can be noted in Figure 14, optimally planning
the positions of the landmark robots allows for an overall tangibly faster exploration and
mapping of the environment.
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Figure 14. Validating the effectiveness of the optimal placement method (red) when planning the
position of the landmark robots by comparing with the random placement method (blue) for: (a) the
enclosed environment shown in Section 5.1, and (b) the unbounded environment shown in Section 5.2.

6. Conclusions

This paper presents a novel collaborative exploration strategy that allows a resource-
constrained swarm to build an occupancy grid map of an unknown environment. The
proposed strategy divides the swarm into two teams, mapper robots and landmark robots.
The mapper robots map the local environment surrounding the landmark robots. The
landmark robots direct the exploration and mapping of the swarm toward a particular
area of the environment by physically positioning themselves in that area. The novelty of
our strategy is in the physical decoupling of a swarm into these two teams: landmark and
mapper robots, respectively. This decoupling allows the problem of directing a swarm to a
new area of the environment to be addressed separately from the problem of exploring that
new area using robots with limited environment perception abilities. Namely, the landmark
robots’ motions are planned and executed to maximize new information added to the
map without impeding how the mapper robots explore the area. The mappers robots are,
therefore, can still use a decentralized, scalable, random-motion model to explore the local
area surrounding the landmark robots while the swarm, as a whole, follows an efficient
frontier-based exploration of the environment.

In contrast, other methods, for building occupancy grid maps using resource-constrained
swarms, do not direct exploration. Instead, they use random motion alone to disperse the
swarm and, therefore, may explore the environment inefficiently by allowing the robots to
visit previously mapped areas [26–28].

The positions of the landmark robots are optimized herein using a frontier-based tech-
nique to maximize new information added to the map while also adhering to connectivity
constraints. These connectivity constraints ensure the landmark robots can communicate
and share relative position estimates between themselves and nearby mapper robots. By
ensuring connectivity between the landmark robots, their positions can be accurately esti-
mated using the tether-based strategy presented in our previous work [11]. The landmark
robots do not need to rely on external sensing infrastructure to provide them with absolute
position estimates.
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The proposed collaborative exploration strategy was evaluated through a series of
simulated experiments. These validated the effectiveness of the proposed method in
building an accurate occupancy grid map. Future work may consider the use of alternative
random-motion models for the mapper robots as well as investigating the creation of global
maps of an environment using map merging techniques from local maps generated solely
from exploration of the nearby area surrounding landmark robots.
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Nomenclature

Symbol Description
GF Fixed global reference frame
G H Location of home base with respect to global reference frame
nL Number of landmark robots
nm Number of mapper robots
Ri Label of mapper robot i ∈ {1, . . . , nm}
Lj Label of landmark robot j ∈ {1, . . . , nL}
GLk Set of planned landmark positions at kth iteration
GxLi Planned position of landmark robot Li
GL̂k Estimated landmark positions at kth iteration
Gx̂Li Estimated position of landmark robot Li
M Occupancy grid map
pij Probability of occupancy of cell in map M located at i-th row and j-th column
FM Distinct frontier region in map
q Arbitrary set of landmark robot nodes
I(q) Information gain of set of nodes q
ρsense Maximum distance between robots for inter-robot sensing and communication
ρexplore Radius of maximum allowable distance away from the landmark robots for the mapper

robots to travel
sRi Rj Inter-robot sensor measurement of distance and bearing to Robot Rj as measured by Robot Ri
St

Ri
Set of inter-robot sensor measurements taken by Robot Ri of all robots within ρsense

zt
Ri

Exteroceptive sensor measurement of the environment (i.e., measurement from laser distance
sensor) taken by Robot Ri at time t

Dt
Ri

Data packet of sensor measurements sent by Robot Ri at time t
ws Pre-set threshold for what percent of the exploration area surrounding the landmark robots

should be mapped before moving the landmarks
wi Pre-set threshold on normalized information gain to consider a frontier as fully explorable

(Appendix A)

Appendix A. Maximum Information Gain

In this Appendix, we seek to estimate if a set of landmark robot nodes, q, planned
at a frontier region FM will allow for the exploration of most of the explorable unknown
area surrounding the frontier region. Given a frontier region, corresponding to a finite
set of frontier cells FM, within an occupancy grid map, M, the total potentially explorable
unknown region surrounding the frontier can be defined as the unknown region of the map
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within exploration range of the frontier, i.e., a distance of ρexplore away from the frontier. A
set of landmark robot nodes, q, planned at this frontier, FM, will allow for the exploration
of part of this total unknown region. One can calculate what fraction of the total unknown
region will the set of nodes q allow to be explored. A minimum value of this fraction
can, then, be set to define if q allows for the exploration of most of the unknown region
surrounding the frontier.

In this context, when planning landmark robot nodes, one can estimate how much of
this unknown area will be explored by computing the landmark robot nodes’ information
gain, I(q). The information gain is computed simply as the unknown area of the map
that is within line-of-sight and within a circle-of-radius, ρexplore, of these nodes. Each
frontier cell in the frontier region FM, has a finite amount of unknown area surrounding
it within a radius of ρexplore. Additionally, since there is a finite number of frontier cells
in FM, there is a finite amount of unknown area surrounding the frontier region and,
therefore, there is maximum potential information gain of any set of landmark robot nodes
planned at this frontier region. Let the maximum information gain of the frontier region be
denoted as IFM

max .
The maximum potential information gain can be obtained by finding the unknown

area that is within exploration range of all points satisfying the nearby frontier constraint
(Equation (17)) and free space constraint (Equation (18)). This is equivalent to finding the
information gain of a set of nodes where each node is placed at every grid cell nearby the
frontier region. Let this set of nodes be denoted as q′:

q′ =
{

c ∈ M f ree s.t. dist
(

c, FM
)
≤ ρexplore

}
, (A1)

where Mfree represents the subset of cells in the map M that are known to be free (i.e., not
unknown and contain no obstacles) and the function dist

(
c, FM) represents the distance

between a cell c and set of frontier points FM (i.e., the minimum Euclidean distance between
the cell and the set of frontier points). The maximum potential information gain can, then,
be formulated as:

Imax = I
(
q′
)
. (A2)

Figure A1 illustrates the maximum potential information gain of different frontier re-
gions in an occupancy grid map. The (colored) shaded regions correspond to the maximum
unknown areas that are visible from any point nearby the respective frontier.
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The maximum potential information gain can be used to determine if a given set
of landmark robot nodes, q, allow for the exploration of most of the frontier region FM.
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A configuration information gain can first be normalized with respect to the maximum
potential information gain IFM

max :

Inorm(q) =
I(q)
IFM
max

. (A3)

A set of landmark-robot nodes can be said to allow for the exploration of most of
the frontier region if its corresponding normalized information gain surpasses a threshold
value wi. The set of nodes q allows for most of FM to be explored if:

Inorm(q) > wi. (A4)

Equation (A4) can be rearranged as follows by substituting in Equation (A3):

I(q) > wi ∗ IFM

max (A5)

The normalized information gain values for the red, green, and blue frontier clusters,
shown in Figure A1, are noted in Figure A2 versus the number of planned landmark robot
nodes. An example threshold value of 0.85 was set and configurations with the minimum
number of landmark robots to surpass this threshold are shown in the figures.
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