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Abstract: Trajectory planning is a classic problem in robotics, with different approaches and optimi-
sation objectives documented in the literature. Most of the time, the path is assumed, i.e., pre-defined,
and optimisation consists of finding the timing of motion under a number of constraints. The focus
of this work is on the minimum-time manoeuvring of robotic manipulators. A nonlinear optimal
control approach is proposed that does not require the provision of either a pre-defined path or a
pre-defined control structure and allows the inclusion of dynamic constraints. The solution (path
and timing of motion) is obtained by transforming the optimal control problem into a nonlinear
programming problem. The proposed approach is applied to a two-link manipulator for illustration
purposes. The optimisation is carried out both without and with obstacles. The minimum-distance
and minimum-time solutions are compared, and some classic results are obtained, including the
trapezoidal pattern of the joint velocity and the bang–bang structure of the control torques. The
effects of limitations on the jerks of actuators and the rate of change in torque inputs are discussed.
The application to a four-link manipulator is also included to show the ‘scalability’ of the approach,
together with a comparison with a classic path-and-motion-planning method, to highlight the charac-
teristics and performance of the proposed approach. Finally, the possibility of enforcing a number of
via-points along the path is demonstrated. The proposed method allows the computation of the path
and motion simultaneously with the computation time, which is 1–30 times the manoeuvre time, on
a standard PC with the current implementation.

Keywords: robotics; optimal control; path planning; trajectory planning; minimum time; obstacle
avoidance; via-points; Industry 4.0

1. Introduction

Industry 4.0 is a term used to describe and encapsulate a set of technological changes
in manufacturing that have been characterising and transforming the industry in the last
several years [1–3]. Robotics and automation play a key role in this framework, with the
motion optimisation and control of robotic manipulators under kinematic and dynamic
constraints being one of the typical challenges.

Trajectory planning is a classic problem in robotics and is usually defined as finding the
timing of the motion law along a given geometric path while satisfying certain requirements
and minimising certain objectives. The typical objectives include execution time [4–7],
vibrations [8,9] and energy consumption [10,11]. A general overview is given in [12]. All
such approaches assume a pre-defined path, which is at least given in terms of so-called
‘via-points’, on top of which trajectory optimisation is performed.

The focus of this work is on the execution time of manipulators while accounting
for both kinematic and dynamic constraints. An optimal control approach is employed
while leaving the path among the optimisation variables. The optimisation problem is
thus defined as finding the path, the timing of motion and related control inputs that are
necessary to move the end-effector from the initial configuration to the final configuration
in the minimum time while satisfying the kinematic and dynamic constraints.

Robotics 2023, 12, 64. https://doi.org/10.3390/robotics12030064 https://www.mdpi.com/journal/robotics

https://doi.org/10.3390/robotics12030064
https://doi.org/10.3390/robotics12030064
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://orcid.org/0000-0001-6256-3384
https://orcid.org/0000-0003-3892-7816
https://orcid.org/0000-0001-6611-173X
https://orcid.org/0000-0002-5150-9486
https://doi.org/10.3390/robotics12030064
https://www.mdpi.com/journal/robotics
https://www.mdpi.com/article/10.3390/robotics12030064?type=check_update&version=1


Robotics 2023, 12, 64 2 of 24

Among the earliest attempts to solve the minimum-time problem for manipulators
is [4]. After an unsuccessful attempt to tackle the problem directly with an optimal control
approach, the solution was obtained by choosing the acceleration that made the velocity
along the specified path as large as possible at every point without violating the constraints.
A very similar approach was devised in [5]. In practice, the optimum is either the maximum
acceleration or maximum deceleration, with the change between the two strategies taking
place at switching points. One of the key issues is thus finding such points. In addition,
for a given path, there is a maximum velocity curve (arising from the limited admissible
torques), which complicates the problem. In [6], similar ideas are exploited, again based
on the fact that, once the path is given, the problem becomes one-dimensional. In [7], a
dynamics-based kinematic approach is proposed to compute the minimum-time trajectory.
The method calculates the robot dynamics only at certain points, thus allowing online
implementation, and was tested with 40 industrial manipulators. A mixed-integer optimal
control problem was formulated in [13] to deal with multi-point manufacturing tasks,
with a cubic polynomial between points. In such a scenario, it is necessary to plan the
optimal strategy to traverse all the desired points in an orderly way while minimising the
manoeuvre time.

It is interesting to note that the approach based on the switching points closely re-
sembles the so-called ’apex-finding’ method used to estimate the lap time of road vehi-
cles [14,15] on a pre-defined path, where the switching points are named apex/critical
points. The solution can also be obtained directly with an optimal control approach, which
allows, among the other things, the control of abrupt changes at the switching points.
However, a more general approach that does not require pre-defining the path, which thus
becomes a result of optimisation, is also possible [15,16].

Similarly, in the robotic field, optimisation can also be carried out without pre-defining
the path. An early example of such an application is discussed in [17], where the min-
imisation of the energy required to transfer the payload of a Cartesian manipulator while
avoiding obstacles is considered. An optimal control approach was employed with barrier
functions introduced into the cost function to prevent collisions. In [18], the minimum-time
problem was solved by using an optimiser to vary the path, which was then used to feed
the algorithm in [4], which computed the related execution time based on the maximum
acceleration/maximum deceleration strategy. The computation of the optimal switching
points was also the focus of [19], again under the assumption of a bang–bang control
system, with application to a two-link manipulator with two control inputs. However, the
optimal solution is not always purely bang–bang [20–22]. The rest-to-rest time-optimal
manoeuvres of rigid two-link robotic manipulators was tackled in [23] using Pontryagin’s
principle. The resulting two-point-boundary-value problem was solved using a combina-
tion of the forward–backward and shooting methods (i.e., indirect approach to the solution
of the optimal control problem). In [24], the rest-to-rest time-optimal manoeuvre with no
pre-defined trajectory and obstacle avoidance was considered. An optimal control prob-
lem was formulated and discretised on a fixed mesh to obtain a nonlinear programming
problem (i.e., a direct approach was used). The method was applied to three-axis and
six-axis manipulators.

Most of the minimum-time approaches proposed lead to discontinuous actuator
torques. A limitation on the rate of change in torque was considered in [25], where the
time-optimal point-to-point control of robot manipulators was solved as an optimal control
problem. An indirect approach was employed. An iterative method for computing the
optimal time based on decreasing the final time of the minimum-energy problem was
proposed. An optimal control formulation, with the rate of change in motor torque as the
input, was also employed in [26]. The related boundary value problem was discretised
with equally spaced mesh points in the time domain. Penalty functions were employed to
enforce constraints on the states and inputs. However, the cost function was not the time,
but a convex combination of energy and power.
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The perusal of the literature suggests that, in the most widespread approaches, path
and motion planning are separate, with motion planning usually obtained with smooth
functions, e.g., polynomial splines, through the via-points generated from the path plan-
ning. In this work, the problem of minimum-time trajectory planning without a pre-defined
path is formulated as a nonlinear optimal control problem (OCP), where path and motion
planning are solved simultaneously. In contrast to most of the approaches proposed in
the literature, the optimal path is not given, since it is a result of optimisation. There-
fore, via-points need not be defined. Additionally, the structure of the optimal control
is not pre-defined, which is not the case for approaches that assume, e.g., maximum-
acceleration/maximum-deceleration strategies. The effects of limitations on either the
jerk of actuators or the rate of change in the control torque are also investigated in order
to avoid the discontinuities (and related problems) that characterise many approaches.
The dynamics of the system are included in the optimisation and affect the optimal path
obtained. A direct solution approach is employed; i.e., the nonlinear OCP is transcribed to
a nonlinear programming problem (NLP). A pseudo-spectral method is used: the discreti-
sation is obtained with a collocation scheme, where the collocation points are the roots of
Legendre polynomials and the solution is approximated with Lagrange polynomials. The
approach has proven successful for solutions to large and nonlinear OCPs in the field of
vehicle dynamics [15,27,28]. A mesh refinement scheme is employed, where both the mesh
size and the order of the polynomial are varied during the iterations [29,30]. Automatic
differentiation is used to compute the required derivatives [31].

This work is organised as follows. The OCP formulation is given in Section 2. The
robotic manipulator model is illustrated in Section 3. The method is demonstrated in
the case of kinematic constraints in Section 4, where minimum-time and minimum-path
solutions, with and without obstacles, are discussed and compared.

The possibility of including a limitation on the joint jerk is shown in Section 4.3. The
method proposed is also compared with the well-known Probabilistic Roadmap Method
(PRM) [32,33] in Section 4.4. Dynamic constraints are introduced in Section 5, and trajectory
planning is carried out again both with and without obstacles. In Section 5.3, the effect of
limiting the rate of change in the joint torque to remove control discontinuities is addressed.
The possibility of avoiding collisions with multiple obstacles is investigated in Section 5.4.
In Section 5.5, optimisation is repeated while including a number of via-points: the path
remains a result of optimisation (i.e., it is not pre-defined) but is enforced to satisfy the
selected via-points. In Section 5.6, a redundant manipulator is considered in order to show
the ‘scalability’ of the approach to more complex robots. Finally, in Section 6, some remarks
on the numerics associated with the practical solutions of the optimisation problems
discussed in the work are reported.

2. Optimal Control Problem Formulation

The dynamical system is described by a set of ordinary differential equations (ODEs):

ẋ(t) = f (x(t), u(t)) ti ≤ t ≤ t f , (1)

where x is the state, u is the input, t is the independent variable (for example, time), ti and
t f are the related limits, and the dot denotes derivatives with respect to the independent
variable. In the so-called Bolza form, the cost function, or performance index, is

J =M(x(ti), x(t f )) +
∫ t f

ti

`(x(t), u(t))dt. (2)

whereM and ` are the Mayer and Lagrange costs, respectively. The objective of the OCP is
to minimise the cost function J while simultaneously satisfying the dynamic equations (1)
and the path constraints

c(x(t), u(t)) ≤ 0. (3)
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Finally, the boundary constraints are given by

b(x(ti), x(t f )) = 0, (4)

while the bounds on the controls are

|u(t)| ≤ umax (5)

In the case of the robotic manipulator considered in this work, the cost function (2) consists
of either the manoeuvre time or the travelled distance, while the path constraints (3) are
both used to limit the maximum velocity, acceleration and torque of joints and to prevent
collisions with obstacles. The solution of the problem consists of the path, the timing of
motion and related control inputs.

The resulting continuous OCP is ‘transcribed’ to a nonlinear programming problem
(NLP) through discretisation: a direct solution method is thus employed [15,28,34,35]. A
collocation approach is used that produces an approximation of the solution in the form of
polynomial functions. The problem equations are satisfied at collocation points. Among the
different approaches available, in this work, the collocation points are obtained from the
roots of Legendre polynomials, while Lagrange polynomials are used for approximations
through collocation points. Hence, a Legendre–Gauss (LG) scheme is obtained. Among
the different LG variants, the Legendre–Gauss–Radau (LGR) is used in this work. The
solutions at all steps are obtained simultaneously by solving a set of algebraic equations.
The transcription is carried out using GPOPS-II [36]. The resulting NLP is solved using the
optimiser IPOPT [37].

A key aspect of efficiently generating accurate solutions to the OCP using collocation
methods is the placement of both the mesh segment boundaries and the collocation points.
In general, for each mesh interval of length h, there are p collocation points. Traditional
fixed-order collocation methods determine the location of the mesh boundaries while
keeping the degree p of the approximating polynomial fixed: these are called h-type
methods. In contrast, p-type methods use a fixed mesh in combination with variable-order
approximating polynomials. When both h and p are varied, the algorithm is of the h− p
type. As a general rule, if the error across a particular segment is large and uniformly
distributed, the polynomial order should be increased. If a significant error occurs at an
isolated point within a segment, the segment should be subdivided. In this work, the h− p
algorithm in [36] is used.

NLP solvers usually require derivatives of the cost function and constraints with
respect to both the state and control variables. There are at least four possible approaches:
computing derivatives analytically; computing derivatives numerically using finite-difference
approaches; using complex-step differentiation [38–40]; and using algorithmic or automatic
differentiation (AD). In order to compute function derivatives to machine precision without
the need to derive them symbolically, the AD approach in [31] is used in this work.

3. Manipulator Model

The two-link planar manipulator shown in Figure 1 is considered in this work as an
example of the application of the approach. The two degrees of freedom consist of the
rotation q1 of the first link with respect to the ground and the rotation q2 of the second link
with respect to the first link. The dataset employed is identical to that reported in [25] and
is shown in Table 1.
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Figure 1. Two-link planar manipulator model.

Table 1. Two-link planar manipulator dataset.

Symbol Description Value

l1 Length of link 1 0.4 m
l2 Length of link 2 0.25 m
m1 Mass of link 1 29.58 kg
m2 Mass of link 2 15 kg
I1 Moment of inertia of link 1 (with respect to the centre of mass) 0.417 kgm2

I2 Moment of inertia of link 2 (with respect to the centre of mass) 0.206 kgm2

(b1, h1) Position of the centre of mass of link 1 (l1/2, 0)
(b2, h2) Position of the centre of mass of link 2 (l2/2, 0)
M Mass of the payload 6 kg

3.1. Kinematic Model

The coordinates of a point P belonging to the second link are given by{
xP(q, ζ)

yP(q, ζ)

}
=

{
l1 cos q1 + ζl2 cos(q1 + q2)
l1 sin q1 + ζl2 sin(q1 + q2)

}
, (6)

where q = {q1, q2}T and ζ ∈ [0, 1]. In particular, P1 is obtained with ζ = 0, and P2
(end-effector) is obtained with ζ = 1.

3.2. Dynamic Model

The equations of motion are obtained from the Lagrangian L = T−V, where T and V
are the kinetic and potential energies of the system. The kinetic energy is given by

T =
1
2

m1|vG1|2 +
1
2

I1q̇2
1 +

1
2

m2|vG2|2 +
1
2

I2(q̇1 + q̇2)
2 +

1
2

M|vP2|2, (7)

where m1 and m2 are the masses of the two links, I1 and I2 are the moments of inertia, M
is the mass of the payload, vG1 and vG2 are the velocities of the centre of mass of the two
links, and vP2 is the velocity of the end-effector. The potential energy is V = 0 because the
system is planar. The torques Q applied to the links are (see Figure 1)

Q = {Q1, Q2}T (8)

Lagrange’s equations of motion are obtained from

d
dt

∂L
∂q̇1
− ∂L

∂q1
= Q1, (9)

d
dt

∂L
∂q̇2
− ∂L

∂q2
= Q2, (10)
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which can be rewritten as

M(q)q̈ + c(q, q̇) = Q, (11)

where M is a 2× 2 matrix, while c is a 2× 1 vector:

M(q) =

[
m11 m12
m12 m22

]
, (12)

c(q, q̇) =

{
−l1q̇2(2q̇1 + q̇2)(m2h2 cos q2 + m2b2 sin q1 + Ml2 sin q2)

l1q̇2
1(m2h2 cos q2 + m2b2 sin q1 + Ml2 sin q2)

}
, (13)

with

m11 = I1 + I2 + m1(b2
1 + h2

1) + m2(l2
1 + b2

2 + h2
2 + 2l1b2 cos q2 − 2l1h2 sin q2) +

M(l2
1 + l2

2 + 2l1l2 cos q2), (14)

m12 = I2 + m2(b2
2 + h2

2 + l1b2 cos q2 − l2h2 sin q2) + M(l2
2 + l1l2 cos q2) (15)

m22 = I2 + m2(b2
2 + h2

2) + Ml2
2 . (16)

4. Planning with Kinematic Constraints

The planning problem needs to account for a number of constraints. Joint motors are
typically limited in their maximum velocities. The associated constraints are given by

|q̇1| ≤ q̇1,max

|q̇2| ≤ q̇2,max,
(17)

where q̇1,max = 3 rad/s and q̇2,max = 8 rad/s are the values chosen in this work (estimated
from [25]). Similarly, acceleration constraints can be included:

|q̈1| ≤ q̈1,max

|q̈2| ≤ q̈2,max.
(18)

The initial and final positions of the joints provide the following boundary conditions:

q(ti) = {q1i, q2i}T

q(t f ) = {q1 f , q2 f }T .
(19)

The initial and final positions can alternatively be given in terms of Cartesian coordinates.
However, the corresponding joint positions (19) can be readily obtained from Cartesian
coordinates through inverse kinematics using (6). The advantage of defining the initial
and final positions directly with (19) is also that the preferred manipulator configuration
{q1, q2}T is selected among the multiple configurations that provide the same end-effector
position {xP2, yP2}T . The initial and final velocities are zero (q̇(ti) = q̇(t f ) = 0); i.e., rest-to-
rest manoeuvres are considered. In the example of the application discussed in this work,
the boundary conditions are q1i = q2i = 0, q1 f = 1 rad and q2 f = −0.5 rad (see Figure 2b).
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(a) (b)

Figure 2. Minimum-time and minimum-distance planning with kinematic constraints: (a) joint
angular positions (top) and velocities (bottom) and (b) stroboscopic movie of the manipulator with
10 equally spaced time steps.

The speed coefficient cv is a typical index used to characterise the motion of joints:

cv =
q̇max

∆q/T
, (20)

where ∆q is the amplitude of motion, and T is the motion time. In several applications, a
symmetric trapezoidal law is assumed for the velocities of joints, which also gives

cv =
T

T − Ta
, (21)

where Ta is the acceleration/deceleration time. The combination of (20) and (21) provides
the expression of the maximum acceleration:

q̈max =
q̇2

max
(cv − 1)∆q

. (22)

A typical value for the speed coefficient is cv = 1.5 [41], which can be introduced in (22) to
provide 18 and 128 rad/s2 for the maximum accelerations of joint 1 and joint 2, respectively.
The limit is assumed to be the minimum between the two, i.e., q̈1,max = q̈2,max = 18 rad/s2.
It is worth stressing that the trapezoidal law is not enforced in the subsequent optimisa-
tion, although it is used to determine reasonable values for the maximum acceleration of
joints allowed.

4.1. Minimum Time vs. Minimum Distance

The OCP is solved with M = 0 and ` = 1 in (2), with time t as the independent
variable. Of course, one can equivalently use M = t f and ` = 0. The controls are the
accelerations u = {aq1 , aq2}T , while the states are x = {q1, q2, vq1 , vq2}. The dynamic
equations (1) consist of integrator chains, which are used to compute the positions q from
their accelerations q̈ = u:

q̇1 = vq1 (23)

q̇2 = vq2 (24)

v̇q1 = aq1 (25)

v̇q2 = aq2 . (26)

The path constraints (3) consist of (17), and the boundary conditions (4) consist of (19),
while the bounds on inputs (5) consist of (18).
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There are multiple minimum-time solutions to the problem. The numerical optimum
obtained depends on the guess solution provided to the solver. The classic solution is
a straight path in the joint space (i.e., q1 vs. q2 diagram) between the initial and final
points; see the solid line in Figure 3a. This is a well-known solution that provides typical
trapezoidal diagrams (Figure 2a) of the joint velocities as a function of the manoeuvre time.
The slope of the trapezoid of the fastest joint (q1 in this case) is related to the acceleration
constraint, while the height is related to the velocity constraint. Of course, in Cartesian
coordinates, the path is not straight (Figure 2b). The manoeuvre time is t f = 0.500 s with the
dataset employed. The minimum-distance manoeuvre is thus a minimum-time manoeuvre,
as long as the fastest joint (q1 in this case) is actuated at its limits.

(a) (b)

Figure 3. Path in the joint space (q1 vs. q2 diagram) for planning with (a) kinematic constraints
and (b) dynamic constraints. The blue circle and red square denote the initial and final positions,
respectively.

However, there are an infinite number of other minimum-time manoeuvres that are
not minimum-distance in the joint space. Indeed, the bottleneck is the fastest joint, which is
q1 in this case. Therefore, the other joint, q2 in this case, can be moved in different ways, as
long as the integral of its velocity vs. time curve provides the rotation required to reach the
final configuration exactly when the bottleneck joint comes to rest. As an example, Figure 4
shows a possible solution, which consists of initially actuating both joints at the limits of
constraints (i.e., maximum acceleration) and then slowing down to rest joint q2, while joint
q1 completes the manoeuvre, always at the limits of its constraints (see Figure 4a). The
path in the joint space is no longer linear; see the dashed line in Figure 3a. The path in
Cartesian coordinates is shown in Figure 4b and differs from that in Figure 2b, although the
manoeuvre time is identical. From a practical point of view, different numerical solutions of
the OCP are related to the different guesses provided. Of course, all the numerical solutions
will include the trapezoidal diagram of joint q1, while the diagram of joint q2 varies.

Clearly, the solution in Figure 2 can also be obtained from an OCP whose cost consists
of the distance in the q1 vs. q2 joint space. In such a case, the independent variable of
the OCP becomes the travelled distance s (in the joint space), with the cost function being
M = s f and ` = 0 in (2). The dynamical equations (1) begin

q′1 = vq1 , (27)

q′2 = vq2 (28)

v′q1
= aq1 (29)

v′q2
= aq2 (30)
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which are again related to integrator chains (with the prime—derivatives with respect to
distance s—replacing the dot—derivatives with respect to time t). As regards the path
constraints (3), in addition to those in (17), the following equation is added:

(q′1)
2 + (q′2)

2 = 1 (31)

to enforce the unit magnitude of the tangent vector in the joint space, i.e., to enforce that
the prime is a derivative with respect to the travelled distance s in the joint space. The
numerical solution again consists of the straight line between the initial and final points.
However, the manoeuvre time is not computed, since pure path planning is performed.
The timing of joint motion can be computed with one of the several methods proposed in
the literature once the path is provided [12].

(a) (b)

Figure 4. Minimum-time but no minimum-distance planning with kinematic constraints: (a) joint
angular position (top) and velocities (bottom) and (b) stroboscopic movie of the manipulator with
10 equally spaced time steps.

As a final remark, the minimum-time OCP solution can be forced to select the mini-
mum distance (in the joint space) by adding the travelled distance to the cost function, i.e.,

J =
∫ t f

0
(1 + w

√
q̇2

1 + q̇2
2)dt, (32)

where w is a weight factor on the travelled distance term. When w = 0, the original problem
is obtained.

4.2. Minimum Time with Obstacle

In the case of an obstacle, the OCP can again be solved with the formulation illustrated
in Section 4.1. In order to avoid multiple minimum-time solutions, cost function (32)
is employed, thus forcing the solver to obtain the minimum-distance solution among
the different minimum-time solutions. The only difference with respect to the OCP in
Section 4.1 is in the path constraints, which need to be inflated to prevent collision with the
obstacle.

In this work, the obstacle is assumed to have a circular shape in the Cartesian space for
illustration purposes. However, more complex shapes can be modelled by using multiple
circular obstacles (see Section 5.4) or by employing more advanced collision techniques [42].
The constraints to avoid collisions are enforced on a discrete number of points along link 2
for illustration purposes. Of course, the constraints can potentially be enforced on link 1 as
well. The additional path constraints associated with the obstacle are given by
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(xP(q, ζ)− x0)
2 + (yP(q, ζ)− y0)

2 > R2 ζ =
i
N

i ∈ {1, . . . , N} (33)

where N is the number of points that are monitored to prevent collision, xP and yP are
from (6), and x0, y0 and R are the centre coordinates and radius of the circular obstacle. In
the example of the application presented in this work, the obstacle is centred at x0 = 0.45 m,
y0 = 0.25 m with the radius r = 0.1 m (see the solid circle in Figure 5b).

(a) (b)

Figure 5. Minimum-time planning with kinematic constraints including an obstacle with N = 1:
(a) joint angular position (top) and velocities (bottom) and (b) stroboscopic movie of the manipulator
with 10 equally spaced time steps.

The number of points N significantly affects the solution. Figure 5 shows the minimum-
time solution when only the end-effector is monitored (N = 1). Clearly, link 2 collides with
the obstacle during motion, while the end-effector passes on the right side of the obstacle.
The solution obtained in this case (Figure 5) is identical to the one obtained without the
obstacle (Figure 2), again with a straight path in the joint space; see the solid line with
crosses in Figure 3a. However, this solution is acceptable if the two-link manipulator is
a SCARA robot and the height of the obstacle is lower than the height of link 2. On the
contrary, when N = 3 points are monitored, the solution becomes the one depicted in
Figure 6, with link 2 passing on the left side of the obstacle without a collision and the
manoeuvre time increasing to t f = 1.180 s. The path in the joint space is no longer straight;
see the dotted line in Figure 3a.

(a) (b)

Figure 6. Minimum-time planning with kinematic constraints including an obstacle with N = 3:
(a) joint angular position (top) and velocities (bottom) and (b) stroboscopic movie of the manipulator
with 10 equally spaced time steps.
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4.3. Minimum Time with Jerk Controls

The minimum-time solutions shown in Sections 4.1 and 4.2 have discontinuities in
acceleration whenever there are sudden changes in velocity, e.g., at the beginning, at the
end and at the edges of the velocity profiles. Such discontinuities may lead to a number
of issues in practical application but can be avoided by limiting the jerks [12]. In the OCP
framework proposed, a practical solution is to control the jerks, i.e., the time derivative of
acceleration, instead of the acceleration.

The dynamic equation of the OCP is inflated by including integrator chains to compute
the accelerations q̈ from the jerks

...
q = u = {jq1 , jq2}T and becomes

ȧq1 = jq1 , (34)

ȧq2 = jq2 , (35)

together with (23)–(26). The state variables are x = {q1, q2, vq1 , vq2 , aq1 , aq2}T , while the cost
function remains (32). The constraints on the velocity and acceleration are still (17) and (18),
while the following bounds on the jerks are enforced:

|jq1 | ≤ jq1,max,

|jq1 | ≤ jq2,max,
(36)

where jq1,max = 500 rad/s3 and jq2,max = 200 rad/s3 are the values chosen in this work. The
boundary conditions again include the initial and final positions (19) and velocities, together
with zero initial and final accelerations (q̈(ti) = q̈(t f ) = 0); i.e., rest-to-rest manoeuvres are
considered.

The minimum-time solution when including an obstacle with N = 3 points monitored
to prevent collision is shown in Figure 7. The solution is quite similar to the one obtained
when controlling the joint acceleration directly (Figure 6), with differences at the beginning,
at the end and at the edges of the velocity profiles, where the jerks are now limited. The
manoeuvre time increases to 1.286 s, which is slower than in the case of controlling the
acceleration directly.

(a) (b)

Figure 7. Minimum-time planning with kinematic constraints and limitation of the joint jerks
including an obstacle with N = 3: (a) joint angular position (top) and velocities (bottom) and
(b) stroboscopic movie of the manipulator with 10 equally spaced time steps.

4.4. Comparison of OCP and PRM Results

In this section, the proposed OCP trajectory-planning method is compared with the
PRM [32,33], which is one of the most well-known methods employed for path planning in
the presence of obstacles [43]. The objective is to highlight the main differences between the
approaches and optimisation results. Once the path is obtained with the PRM, polynomials
can be used for motion planning. Therefore, in this case, path and motion planning are
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separate, in contrast to the proposed OCP approach, where the optimisation of path and
motion is carried out simultaneously. The PRM is a sampling-based method that employs
an algorithm to connect two points in the joint space while avoiding obstacles using
randomly generated via-points within the configuration space, with the aim of minimising
a defined cost. Following the approach in [43], the Dijkstra algorithm is employed in this
work [32,44] to connect the points.

The configuration space is restricted within q1 ∈ [0, π/2] and q2 ∈ [− 2
3 π, 0] to reduce

the dispersion of the randomly generated points. As in [43], the cost employed is the
manoeuvre time from point h to point k, computed using

Thk = max
j=1,2

{
|qj,k − qj,h|

q̇j,max
cv

}
(37)

where q
h
= {q1,h, q2,h}T and q

k
= {q1,k, q2,k}T are the joint positions of points h and k,

respectively. The values used for the speed coefficient and maximum joint velocities are
again cv = 1.5, q̇1,max = 3 rad/s and q̇2,max = 8 rad/s. The method basically consists of
generating n random via-points within the configuration space, excluding the via-points
inside the obstacle as well as the connections colliding with the obstacle, and running the
Dijkstra algorithm with the defined cost to find sub-optimal movement between the initial
and final positions. Finally, motion planning is carried out in this work using splines to
connect the initial and final positions through the via-points while satisfying the velocity
and acceleration limits in (17) and (18). Using splines through via-points is a standard
approach [32,45,46]. In this work, for each joint, a fourth-order polynomial is used between
the initial point and the first via-point, and a fourth-order polynomial is used between the
last via-point and the final point, while third-order polynomials are used between the via-
points. The curve resulting from such a spline, sometimes referred to as the ‘4-3-4 spline’, is
C2, with zero initial and final velocities and accelerations, while jerks have discontinuities.
The structure of the solution is thus consistent with the jerk-controlled OCP solution.

The PRM is compared with the solution obtained with the OCP in the case of an
obstacle with N = 3 points monitored to prevent collision. The PRM is not deterministic;
i.e., different results are obtained depending on the random points generated. Of course,
changing the number of (random) points n generated also changes the solution. Therefore,
in this work, the method was run with 100 different sets of randomly generated points. In
addition, the number of points generated was varied between 50 and 500 with a step of
50. As a consequence, 1000 optimisations were run. The manoeuvre times obtained range
between approximately 1.4 s and 4.0 s, with a mean of 2.0 s and median of 1.9 s. Figure 8
shows the PRM minimum-time solution (among the solutions found), which was obtained
from a set with n = 100 randomly generated points. The Dijkstra algorithm selected four
via-points (see the green crosses in Figure 8b). The manoeuvre time is 1.418 s, which is
slower than that obtained with the OCP approach with jerk controls (Figure 7), although the
general shapes of the velocity profiles are similar. This is not surprising, with the solution
found by the PRM being sub-optimal.
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(a) (b)

Figure 8. Minimum-time planning using PRM including an obstacle with N = 3: (a) joint angular
position (top) and velocities (bottom) and (b) stroboscopic movie of the manipulator with 10 equally
spaced time steps.

5. Planning with Dynamic Constraints

Planning can also be carried out while accounting for the dynamics of the manipulator.
The constraints on acceleration can be replaced with those on the joint torque:

|Q1| ≤ Q1,max

|Q2| ≤ Q2,max,
(38)

where Q1,max = 25 Nm and Q2,max = 9 Nm are the values chosen in this work (again
from [25]). However, the kinematic constraints on the velocity (17) still hold, as well as the
boundary condition on the initial and final positions (19) and velocities.

The controls are torque u = {Q1, Q2}T (instead of the acceleration used in Section 4),
while the states remains the same, i.e., x = {q1, q2, vq1 , vq2}. The dynamic equations consist
of the integrator chains and the equation of motion (in Section 4, only the integrator chains
were used).

q̇1 = vq1 , (39)

q̇2 = vq2 , (40){
v̇q1

v̇q2

}
= M−1(Q− c(q, q̇)), (41)

where (41) is from (11). The cost function of the minimum-time OCP remains the one used
in Section 4.1, i.e.,M = 0 and ` = 1 in (2), with time t as the independent variable.

5.1. Minimum Time

The solution is illustrated in Figure 9, which shows that the control of both joints is
bang–bang (bottom plot of Figure 9a) and none of the joints is engaged at its maximum ve-
locity (top plot of Figure 9a). The optimal solution is quite different from that obtained with
the kinematic constraints only, which is also evident when comparing the Cartesian plots in
Figure 9b (solution with dynamic constraints) with Figure 2b (solution with kinematic con-
straints). The path in the joint space is thus not straight; see the solid line in Figure 3b. The
manoeuvre time is t f = 1.002 s, which is slower than in the case with kinematic constraints,
although with joint accelerations that are locally up to 18 rad/s2 (on q1) and 59 rad/s2 (on
q2), i.e., much larger than those enforced in the OCP with kinematic constraints.
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(a) (b)

Figure 9. Minimum-time planning with dynamic constraints: (a) joint angular velocity (top) and
torque (bottom) and (b) stroboscopic movie of the manipulator with 10 equally spaced time steps.

When repeating the OCP optimisation while enforcing q1 and q2 to follow the minimum-
distance path in the joint space (see dashed line in Figure 3b), the manoeuvre time rises
to t f = 1.081 s, which confirms that this solution is not optimal when including dynamic
constraints associated with equations of motion. The optimal solution becomes bang–bang
in the fastest joint only (Figure 10), while it is bang–bang in both joints in Figure 9. The
maximum accelerations are 3.5 rad/s2 and 1.8 rad/s2 for joints q1 and q2, respectively. Of
course, the same solution can be obtained while enforcing such maximum accelerations in
the OCP of Section 4.

(a) (b)

Figure 10. Minimum-time planning with dynamic constraints and minimum-distance (in the joint
space) constraint: (a) joint angular velocity (top) and torque (bottom), and (b) stroboscopic movie of
the manipulator with 10 equally spaced time steps.

When comparing the control structures in Figures 9 and 10, it can be observed that
they differ in the number of bangs: in the former, there are two bangs in q1 and three in
q2, and in the latter, there are two bangs in q1, while in q2, the control is such that the
pre-defined path is followed, which results in an almost bang–bang solution.

If the payload M is neglected, the solution becomes the one illustrated in Figure 11. As
expected, the manoeuvre time is reduced to t f = 0.843 s, since the same maximum torques
now move a system with a reduced mass. The maximum accelerations reached by joints q1
and q2 are 18 rad/s2 and 69 rad/s2, respectively.
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(a) (b)

Figure 11. Minimum-time planning with dynamic constraints and no payload: (a) joint angular
velocity (top) and torque (bottom) and (b) stroboscopic movie of the manipulator with 10 equally
spaced time steps.

Again, when repeating optimisation while enforcing q1 and q2 to follow the minimum-
distance path in the joint space, the manoeuvre time rises to t f = 0.921 s. The maximum
accelerations are 4.8 rad/s2 (joint 1) and 2.4 rad/s2 (joint 2).

5.2. Minimum Time with Obstacle

When an obstacle is considered, the approach in Section 4.2 is again employed: i.e.,
the path constraints are inflated with the obstacle equations in (33). When preventing the
collision on the end-effector only (i.e., N = 1), the optimal solution is the one in Figure 12,
which is different from the solution obtained when neglecting the obstacle (Figure 9). This
was not the case for the OCP with kinematic constraints, where the solutions without an
obstacle and with an obstacle N = 1 coincide. The path in the joint space is not straight; see
the dash-dotted line in Figure 3b. The manoeuvre time with N = 1 is t f = 1.046 s, which is
slightly slower than the case without the obstacle. However, in this solution, there is a clear
collision between several points of link 2 and the obstacle, unless the two-link manipulator
is a SCARA robot and the height of the obstacle is lower than the height of link 2.

(a) (b)

Figure 12. Minimum-time planning with dynamic constraints and obstacle with N = 1: (a) joint
angular velocity (top) and torque (bottom) and (b) stroboscopic movie of the manipulator with
10 equally spaced time steps.

The collision is prevented when monitoring N = 3 points of link 2. The manoeuvre
time rises to t f = 1.098 s. The solution is shown in Figure 13. In contrast to the case with
N = 1, the end-effector passes on the left side of the obstacle, again with a non-straight
path; see the dotted line in Figure 3b. The control structures in Figures 12 and 13 differ in



Robotics 2023, 12, 64 16 of 24

the number of bangs: in the former, there are two bangs in q1 and five in q2, while in the
latter, there are three bangs in q1 and three in q2.

(a) (b)

Figure 13. Minimum-time planning with dynamic constraints and obstacle with N = 3: (a) joint
angular velocity (top) and torque (bottom) and (b) stroboscopic movie of the manipulator with
10 equally spaced time steps.

5.3. Limitations on the Torque Rate of Change

The minimum-time solutions obtained in Sections 5.1 and 5.2 are characterised by a
bang–bang control structure, which may cause a number of well-known issues in practical
applications. Such discontinuities can be avoided when using the rate of change in torque
as the control variable instead of the torque. The dynamic equations of the OCP are further
inflated by including the integrator chains related to the rates of change J1 and J2 in torque
and become

Q̇1 = J1, (42)

Q̇2 = J2, (43)

together with (39)–(41).
The state variables become x = {q1, q2, vq1 , vq2 , Q1, Q2}T , the control variables become

u = {J1, J2}T , and the cost function remains the same, i.e., the manoeuvre time. The
constraints on velocity and torque are still (17) and (38), while the following bounds on the
rates of change in torque are introduced:

|J1| ≤ J1,max,

|J2| ≤ J2,max,
(44)

where J1,max = 250 Nm/s and J2,max = 100 Nm/s are the values chosen in this work (esti-
mated from [25]). The boundary conditions again include the initial and final positions (19)
and velocities, together with zero initial and final joint torques (Q(ti) = Q(t f ) = 0); i.e.,
rest-to-rest manoeuvres are considered.

The solution without an obstacle is illustrated in Figure 14. The solution is quite similar
to that obtained when directly controlling the joint torque instead of the rate of change (see
Figure 9), with evident differences at the beginning, at the end and at the bangs, where
the torques vary in the maximum rate of change (bottom plot in Figure 14a). Therefore,
the velocity profiles (top plot in Figure 14a) become smoother and start and end with zero
acceleration. The manoeuvre time increases to t f = 1.106 s, which is slower than in the case
of controlling the joint torque directly.
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(a) (b)

Figure 14. Minimum-time planning with dynamic constraints and limitation on the rate of change
in torque: (a) joint angular velocity (top) and torque (bottom) and (b) stroboscopic movie of the
manipulator with 10 equally spaced time steps.

When including an obstacle with N = 3 using the same approach employed in
Section 4.2, the solution becomes the one shown in Figure 15. The manoeuvre time rises to
1.216 s. Again, the torques vary in the maximum rate of change (bottom plot in Figure 14a)
at the beginning, at the end and at the bangs of the torque-controlled solution (see Figure 13),
resulting in smoother velocity profiles (top plot in Figure 14a).

(a) (b)

Figure 15. Minimum-time planning with dynamic constraints and limitation on the rate of change in
torque in the presence of obstacle with N = 3: (a) joint angular velocity (top) and torque (bottom)
and (b) stroboscopic movie of the manipulator with 10 equally spaced time steps.

5.4. Multiple Obstacles

The approach proposed in Section 4.2 can be employed for obstacles having complex
shapes, which are modelled by a combination of circular obstacles. The associated path
constraints become

(xP(q, ζ)− x0j)
2 + (yP(q, ζ)− y0j)

2 < R2
j ζ =

i
N

i ∈ {1, . . . , N} j ∈ {1, . . . , C}, (45)

where C is the number of circular obstacles. As an example application, an obstacle
modelled by three intersecting circular obstacles is considered in this work. The three
obstacles are centred at x01 = 0.52 m, y01 = 0.12 m, x02 = 0.45 m, y02 = 0.2 m and x03 = 0.45 m,
y03 = 0.3 m, with radii R1 = 0.1 m, R2 = 0.075 m and R3 = 0.125 m, respectively; see the solid
circles in Figure 16b.
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(a) (b)

Figure 16. Minimum-time planning with dynamic constraints and multiple obstacles with N = 3:
(a) joint angular velocity (top) and torque (bottom) and (b) stroboscopic movie of the manipulator
with 10 equally spaced time steps.

Figure 16 shows the minimum-time solution with N = 3 points monitored to prevent
collision when controlling the joint torque directly, i.e., without a limitation on its rate of
change. The manoeuvre time is 1.362 s. The control structure (bottom plot in Figure 16a)
is again bang–bang, with four bangs for q1 and five bangs for q2. When limiting the rate
of change in the joint torque, the solution becomes the one depicted in Figure 17. The
manoeuvre time increases to 1.491 s. Again, the torques vary in the maximum rate of change
(bottom plot in Figure 17a), with smoother velocity profiles as compared to the solution
obtained when controlling the torque directly (see top plots in Figures 16a and 17a). When
increasing the number of points monitored to prevent collision to N = 10, the solution
remains the same, in this example.

(a) (b)

Figure 17. Minimum-time planning with dynamic constraints and limitation on the rate of change in
the joint torque in the presence of multiple obstacles with N = 3: (a) joint angular velocity (top) and
torque (bottom) and (b) stroboscopic movie of the manipulator with 10 equally spaced time steps.

5.5. Via-Point Constraints

Although the proposed approach does not require the provision of a path, with the
path being a result of optimisation, via-points can be added to the problem. In such a
case, the OCP finds the optimal path (and corresponding joint motion) that minimises the
manoeuvre time while passing through V pre-defined via-points. Additional constraints
related to the via-points are thus added to the problem in Section 2. In particular, the OCP
is divided into V + 1 phases. The first phase is from the initial configuration to the first
via-point, and the last phase is from the last via-point to the final configuration, while the
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intermediate phases are between the different via-points. The OCP consists of solving all
the phases simultaneously. The via-point constraint is enforced using

q(t f ,v) = q
v

v ∈ {1, . . . , V}, (46)

where q(t f ,v) is the joint position at the end of phase v (i.e., at the final time t f ,v of phase
v), while q

v
is the via-point expressed in terms of the joint positions. Of course, the via-

point can alternatively be given in terms of Cartesian coordinates, from which the joint
coordinates are obtained from inverse kinematics.

The following additional boundary conditions also need to be added in order to
enforce continuity between the phases:

x(t f ,v) = x(ti,v+1), t f ,v = ti,v+1, v ∈ {1, . . . , V}, (47)

where x(t f ,v) is the state at the end of phase v (i.e., at the final time t f ,v of phase v), while
x(ti,v+1) is the state at the beginning of phase v + 1 (i.e., at the initial time ti,v+1 of phase
v + 1). The switching times between the phases and the joint velocities at the via-points are
not pre-defined and thus are a result of optimisation.

As an example application, two via-points at q
1
= {1.0,−2.0}T and q

2
= {1.4,−1.1}T

are considered in this work; see the green crosses in Figure 18b. The solution with a
limitation on the rate of change in the joint torque and three obstacles is depicted in
Figure 18. The manoeuvre time is 1.771 s, which is slower than the corresponding solution
without via-points (Figure 17). The switching times between the phases are 0.682 s (first
via-point) and 1.177 s (second via-point). When comparing the solution with via-points
with the one without via-points, it can be observed that the torque on q1 is not significantly
affected, with the pattern remaining characterised by a ‘min-max-min-max’ pattern. On the
contrary, the torque on q2 gains a ‘min-max’ on top of the original ‘min-max-min-max-min’
pattern. Of course, the lengths of the constant torque sections also vary.

(a) (b)

Figure 18. Minimum-time planning with dynamic constraints and via-point constraint: (a) joint
angular velocity (top) and torque (bottom) and (b) stroboscopic movie of the manipulator with
10 equally spaced time steps. In (a), the vertical dash-dotted lines denote the switching time between
the phases.

5.6. Redundant Manipulator

A four-link planar manipulator is considered in this section to show the ‘scalability’
of the approach to more complex robots. The system has four degrees of freedom (with
q = {q1, q2, q3, q4}T being the relative angles between the links; see Figure 19) and is
redundant, since two degrees of freedom would be sufficient to track the target Cartesian
position (as long as this is within the workspace). The manipulator is obtained from the
baseline manipulator in Section 3 by splitting the two links. The centre of mass and inertia
resulting from the two arms obtained by splitting baseline link 1 are identical (when q2 = 0)
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to the corresponding values of baseline link 1. Similarly, the centre of mass and inertia
resulting from the two arms obtained by splitting baseline link 2 are identical (when q4 = 0)
to the corresponding values of baseline link 2. The equations of motion can be obtained
following the same approach presented in Section 3, where the kinetic energy begins

T =
1
2

m1|vG1|2 +
1
2

I1q̇2
1 +

1
2

m2|vG2|2 +
1
2

I2(q̇1 + q̇2)
2 +

1
2

m3|vG3|2 +

+
1
2

I3(q̇1 + q̇2 + q̇3)
2 +

1
2

m4|vG4|2 +
1
2

I4(q̇1 + q̇2 + q̇3 + q̇4)
2 +

1
2

M|vP4|2, (48)

while the torques applied to the links are

Q = {Q1, Q2, Q3, Q4}T . (49)

The resulting equations of motion can again be written in the form of (11), where M is now
a 4× 4 matrix and c is a 4× 1 vector. However, they are not reported for the conciseness of
presentation.

Figure 19. Four-link planar manipulator model (q3 and q4 are negative in the configuration depicted).

The rate of change J = {J1, J2, J3, J4}T in the four actuator torques of the manipulator
are controlled, as in Section 5.3, to avoid bang–bang in the torques. Joint motions are
limited in their maximum velocities by

|q̇1| ≤ q̇1,max |q̇2| ≤ q̇2,max
|q̇3| ≤ q̇3,max |q̇4| ≤ q̇4,max

(50)

where q̇1,max = q̇2,max = 3 rad/s and q̇3,max = q̇4,max = 8 rad/s are the values chosen in this
work. The constraints on the joint torques are

|Q1| ≤ Q1,max |Q2| ≤ Q2,max
|Q3| ≤ Q3,max |Q4| ≤ Q4,max

(51)

with Q1,max = 25 Nm, Q2,max =15 Nm, Q3,max = 9 Nm and Q4,max = 5 Nm, while the bounds
on the rate of change in torque are

|J1| ≤ J1,max |J2| ≤ J2,max
|J3| ≤ J3,max |J4| ≤ J4,max

(52)

where J1,max = 250 Nm/s, J2,max = 150 Nm/s, J3,max = 100 Nm/s and J4,max = 50 Nm/s are
the values chosen in this work. The initial and final positions of the joints are

q(ti) = {q1i, q2i, q3i, q4i}T

q(t f ) = {q1 f , q2 f , q3 f , q4 f }T .
(53)
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where q1i = q2i = q3i = q4i = 0 and q1 f = 1 rad, q3 f = −0.5 rad and q2 f = q4 f = 0; i.e., links
1 and 2 are aligned at the beginning and the end with baseline link 1, while links 3 and
4 are aligned at the beginning and the end with baseline link 2. The constraints to avoid
collisions are enforced on links 2, 3 and 4 on N points along each link.

In sum, the OCP has 12 state variables (i.e., q, q̇, Q) and 4 control variables (i.e., J),
with the cost function (2) being the manoeuvre time. The dynamic equations (1) consist of
integration chains and manipulator equations of motion, and the path constraints (3) consist
of (50) and (51) plus constraints related to collision avoidance. The boundary conditions (4)
consist of (53), while the bounds on inputs (19) are (52).

Figure 20 shows the minimum-time solution with three circular obstacles, as in
Section 5.4, and N = 2 points monitored to prevent collision along each link. The manoeu-
vre time is 1.029 s, which is faster than in then case of the two-link manipulator (Figure 17).
This is not surprising, since the redundancies are leveraged to improve the performance.

(a) (b)

Figure 20. Minimum-time planning with dynamic constraints for a four-link planar redundant
manipulator: (a) joint angular velocity (top) and torque (bottom) and (b) stroboscopic movie of the
manipulator with 10 equally spaced time steps.

6. Remarks

All the optimisations performed in this work start with a mesh consisting of 50 equally
spaced intervals with 4 collocation points for each mesh interval. When obstacles are
included, special attention is paid to providing the solver with an almost feasible guess
solution, i.e., that which (almost) does not collide with the obstacles. The proposed method
converges to an optimal solution, although (like most optimisation approaches) there is no
guarantee that the solution found is locally optimal or globally optimal. Multiple guess
solutions have been employed to confirm the optimality of the solutions reported in this
work.

Problem scaling can significantly affect the convergence of the optimisation algo-
rithm. Indeed, convergence criteria are often based on the notation of ‘small’ and ‘large’.
A typical approach is to scale the problem variables from their physical representation
to dimensionless quantities, which have desirable properties from the numerical per-
spective. In this work, all problem variables are scaled according to a reference mass
m0 = m1 + m2 + M, a reference length l0 = l1 + l2 and a reference angular acceleration
q̈0 = max(q̈1,max, q̈2,max) for planning with kinematic constraints or according to a refer-
ence torque Q0 = max(Q1 max, Q2 max) for planning with dynamic constraints. Hence, the

scaling of time is
√

1/q̈0 and
√

m0l2
0/Q0 for optimisation with kinematic and dynamic

constraints, respectively.
The solution is typically found after 2–5 mesh refinements, with a mesh tolerance

in GPOPS-II of 10−5 and an error for the IPOPT solver of 10−7. The computational cost
of the planning problems can be assessed considering the number of equations and the
CPU time. In the case of planning with kinematic constraints, the OCPs consist of around
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1000–1600 equations with CPU times ranging within 1–2 s (on a standard PC with Intel i7
and 16 GB RAM), depending on the obstacle and the number of points that are monitored
to prevent collision. In the case of planning with dynamic constraints, the number of
equations to solve is 1000–5000, with CPU times rising to 2–30 s. Of course, large CPU times
are associated with problems involving multiple obstacles, via-point constraints and/or
more complex robots. The number of points N monitored to prevent collision obviously
affects the solution time. As an example, with N = 10, the solution times are typically 50%
larger than in the case with N = 3.

7. Conclusions

In this work, the trajectory-planning problem is tackled with a nonlinear optimal
control approach, which requires neither the path nor the control structure to be defined.
The approach is demonstrated on a two-link manipulator for illustration purposes. The
focus is on minimum-time manoeuvring, which is solved by using both kinematic and
dynamic constraints, both without and with obstacles. Some classic results were obtained,
such as the trapezoidal pattern of the joint velocity—which provides a minimum-time and
minimum-distance (in the space of the joint coordinates) solution of the unconstrained rest-
to-rest problem—and the bang–bang pattern of the control torques. Either the jerk control or
the control of the rate of change in torque is used to remove the discontinuities of the bang–
bang solutions. The approach is demonstrated to also be capable of efficiently performing
planning when obstacles are included, without the need to provide via-points. However, a
number of via-points can also be included in the optimisation, while the path between the
via-points need not be defined. The effect of the number of collision constraints employed
is also shown. The presented approach is suitable for application to different manipulators
as well. The results obtained with the proposed approach are also compared with those
of the standard Probabilistic Roadmap Method (PRM), confirming that the PRM solution
is sub-optimal relative to the OCP solution. The ‘scalability’ to more complex scenarios is
also shown by applying the approach to a redundant four-degree-of-freedom manipulator.
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