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Abstract: The bat algorithm (BA) is a nature inspired algorithm which is mimicking the bio-sensing
characteristics of bats, known as echolocation. This paper suggests a Bat-based meta-heuristic for the
inverse kinematics problem of a robotic arm. An intrinsically modified BA is proposed to find an
inverse kinematics (IK) solution, respecting a minimum variation of the joints’ elongation from the
initial configuration of the robot manipulator to the proposed new pause position. The proposed
method is called IK-BA, it stands for a specific bat algorithm dedicated to robotic-arms’ inverse
geometric solution, and where the elongation control mechanism is embedded in bat agents update
equations. Performances analysis and comparatives to related state of art meta-heuristics solvers
showed the effectiveness of the proposed IK bat solver for single point IK planning as well as for
geometric path planning, which may have several industrial applications. IK-BA was also applied to a
real robotic arm with a spherical wrist as a proof of concept and pertinence of the proposed approach.

Keywords: inverse kinematics; robotic arm; bat algorithm; meta-heuristic; path planning

1. Introduction

Robotic manipulators are characterized by their versatility due to means of their
mechanical structure that consists of serial links joined together to be like a human arm,
where the motion of their end-effector is dependent on joint movements [1]. This grants
them the adaptability to perform in multiple processes, from simple applications such
as pick and place operations, to more complex processes that involve applications such
as welding, assembly, and painting [2]. These tasks typically require adequate paths to
be tracked by the robot’s end-effector [3,4]. These paths are generally described in the
Cartesian space, while the end-effector position is set according to the robot joint angles.
Therefore, the key issue in path tracking is the mapping between the Cartesian space of
the tracked path and the joint space of the robot manipulator. Such mapping is achieved
through a kinematic modeling of the robotic arm, where a forward kinematics (FK) model
allows determining of the end-effector location from a specific configuration of the robot
joints. The FK problem possesses a unique solution, considering that each position of the
robot joints drives to a one single location of the end-effector. A common way of solving the
FK problem is to use the Denavit-Hartenberg notation [5]; whereas, the inverse kinematics
(IK) intends the opposite, i.e., determine the corresponding joint variables that enables the
end-effector to reach a specific target position [6]. Figure 1 interprets the relation between
the forward and inverse kinematics.

Unlike FK, the IK problem often has many different solutions, since one target point
could be reached through multiple positions of the manipulator. Hence, solving the IK
problem for robotic manipulators is a challenging task. The geometry of the robot and the
nonlinear trigonometric equations that define the mapping between Cartesian space and
joint space contribute to the problem’s complexity [7,8]. This problem has been approached
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by several conventional methods with deterministic characteristics, where their final solu-
tion is determined by the initial conditions of the problem [9]. For robots with high degrees
of freedom (DOF), the IK problem is more sophisticated, hence, conventional methods
require more computational processes, which slow down controlling the manipulator in
real time [6,10].
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Figure 1. Relation between forward and inverse kinematics.

Conventional methods are generally divided into algebraic, geometric, and numerical
methods. Algebraic and geometric methods aim to find closed-form solutions to the
problem. While they are indeed faster than numerical methods, their provided solutions are
not generic but rather robot-dependent. Meanwhile the numerical methods are applicable
to any kinematic structure, therefore they are not robot-dependent; however, they are
generally time consuming and unable to calculate all possible solutions [11].

With the expansive usage of robot manipulators in production lines, and the prereq-
uisite for higher productivity with high accuracy, many researchers have directed their
efforts in searching for alternative approaches that tackle the IK problem while overcoming
the disadvantages of conventional methods. The application of artificial neural networks
(ANN) is an example of advanced investigations [12,13]. Cursi et al. [14] proposed the use
of a type of ANN known as a probabilistic neural network to enhance the task accuracy
of a surgical macro–micro robot manipulator. However, using ANNs suffers from long
training time and lack of accuracy [15], which has motivated further investigations using
other soft-computing alternatives, such as meta-heuristic (MH) algorithms. MH algorithms
are characterized by non-deterministic behavior, which eases the obtaining of approximate
satisfying solutions of an optimization problem with a plausible computational cost [16,17].
They are exploited to tackle the IK problem using only the FK model. Applying MH
algorithms requires modeling the IK problem as an optimization problem [18], where an
objective function is defined according to the manipulator’s FK model and the desired pose
of the robot’s end-effector. The MH algorithm is dedicated to find the corresponding joints
values that enable the robot manipulator to achieve a desired pose. In a case where the
objective function is intractable or impossible to be formulated analytically, it is preferable
to employ a black-box optimization approach. In this approach, a close form of the objective
function is not required [19]. For instance, Cursi et al. [20] developed an open source global
optimization framework for robot design. Considering that the robot design is regarded
as an optimization problem with a black-box cost function; therefore, their developed
framework implements a Bayesian optimization method to approximate an appropriate
formulation of the objective function.

This paper suggests a sensible adjustment of a MH algorithm, known as the bat
algorithm (BA) for the IK problem, IK-BA, of robot manipulators with spherical wrists,
which is typical for industrial robotic arms. The main motivation of the use of the MH
approach for open chain robotic arm is to avoid the singularities of the classical invers
solvers. Singularities consist in configurations where the inverse kinematic equations
of the robotic arm do not have a unique solution [21]. Classical IK solvers may not
provide a meaningful solution at singular configurations, since the Jacobian matrix becomes
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singular, which means that it cannot be inverted to calculate the required joint velocities [22].
By using MH optimization approaches as IK solvers, the robotic arm can avoid these
singularities by exploring alternative configurations and selecting the optimal solution
based on a predefined fitness function. This approach can help to improve the overall
performance and reliability of the robotic arm, allowing it to carry out complex tasks with
greater accuracy and efficiency [23].

The proposed IK-BA is an intrinsically hybridization of BA, which aims to accord an
IK solution, while assuring a minimal variation from the initial configuration of the robot
manipulator until the solution’s position. The elongation control mechanism is embedded
within BA update equations, making the proposal specific to IK. This contraction between
the initial configuration and the generated solution, guarantees a shorter path compared to
another IK solution provided without considering the initial configuration. The adjustment
of the BA algorithm lies in modifying its update equations in a way to generate solutions
affected by the initial configuration. The remaining of the paper is organized as follows:
paragraph 2 details the key related works and similar proposals; paragraph 3 stands for
the IK problem statements with elongation control. In paragraph 4, the BA algorithm
is presented before introducing the IK-BA proposal, it ends with a flowchart describing
how a path planning can be conducted using the suggested method. An experimental
investigation is presented in paragraph 5, including a comparative analysis and a time
assessment test, based on an industrial robotic arm. Conclusion and discussions are detailed
in paragraph 6.

2. Related Works

Early applications of meta-heuristic algorithms for solving the IK problem for re-
dundant robotic manipulators have emanated from using one of the initial paradigms of
MH algorithms, which is the genetic algorithm (GA). The GA is an MH developed by
Holland [24]. It is inspired by the process of natural selection and evolution, which is used
to find approximate solutions to optimization and search problems. Genetic algorithms are
commonly used in a variety of fields, including machine learning, engineering, to solve
complex optimization problems that are difficult to solve using traditional methods [25].

Parker et al. [26] tested the GA in solving the IK problem of a 4 DOF serial manipulator,
where the solution provides a minimized largest joint displacement in a point-to-point
positioning task. Furthermore, Nearchou [27] suggested using a modified version of GA
to solve the IK problem as a way to minimize both the end-effector’s positional error
and the robot’s joint movements, while keeping the solution free from collisions with
obstacles in the robot’s workspace. Both contributions used the weighted sum approach to
combine the minimization of the positional error and the minimization of joint motions
objectives, into one objective function. Tarokh and Zhang [28] used the same approach with
an additional objective function dedicated to the orientation employing an adaptive GA to
tackle the trajectory tracking problem of robot manipulator. In the weighted sum approach,
a multi-objective optimization problem is transformed into a single objective, where each
objective function is multiplied by a user-supplied weight. The weight value assigned to an
objective function is generally proportional to the objective’s relative importance. However,
the importance of an objective is a vague concept, hence, the choice of these coefficients
might be inaccurate, whereas the final solution is strongly affected by the chosen weight
coefficients, which eventually might lead to an inaccurate solution [29].

Another paradigm of MH algorithms is the particle swarm optimization (PSO) algo-
rithm. It was developed in 1995 by Kennedy and Eberhart [30]. The PSO is inspired by
the social behavior of birds’ flocks and fish schools. It has been applied as an IK solver, as
in [31–33].

Adly and Abd-El-Hafiz [34] have intended to solve the IK problem with minimizing
the range difference between the initial joints position and the IK solution values that
represent the final position. They suggested a multi-objective optimization approach,
where the first objective function is dedicated for the IK solution; meanwhile, the second
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function formulates the variation from the initial joint values and the solution values.
They applied an extension of PSO for multi-objective optimization problems called the
Time Variant Multi-Objective Particle Swarm Optimization (TV-MOPSO) algorithm [35].
This approach provides an IK solution that guaranties an optimal trajectory of the end-
effector to move from one point to another. However, compared to the single objective
approach, the multi-objective method is generally more time-consuming as it requires
additional processes for generating a set of trade-off solutions that satisfies two or more
conflicting objectives.

Rokbani et al. [36] proposed a multi-objective version of a new modified particle
swarm optimization MO-m-PSO to solve the inverse kinematics of a 5-DOF robotic arm.
Its IK problem is formulated as a multi-objective problem that takes into consideration the
end-effector pose (position and orientation).

Various other swarm-based meta-heuristics were employed for the IK issue, such as
Cuckoo Search Algorithm [37], Artificial Bee Colony [38,39], Firefly Algorithm [40,41], and
Salp Swarm Algorithm [42]. Most investigations about the application of MH algorithms to
the IK problem proved that MH algorithms are suitable and reliable IK solvers. Accordingly,
some researchers have made further analyses attempting to employ MH algorithms for
robot manipulator trajectory tracking. Lopez-Franco et al. [43] presented a comparative
study on six soft-computing algorithms in solving the IK and path tracking problems,
where the best algorithm according to the comparative simulations is applied on a real
robot manipulator. Kanagaraj et al. [44] tested the performance of four MHs in path tracking
simulations, where the algorithms are required to solve the IK problem for every point
of a generated trajectory. The tested algorithms are particle swarm optimization (PSO),
whale optimization algorithm (WOA), gravitational search algorithm (GSA), and the bat
algorithm (BA). The simulation results confirmed the outperformance of the BA compared
to the others.

When robots need to follow a specific orientation with a minimal angles variation
during point-to-point tasks, the two most common approaches used are the classical
weighted sum technique or multi-objective optimization methods. The weighted sum
technique simplifies the problem, but may not be so accurate, while the multi-objective
optimization requires more computing time. In this paper, the IK-BA is suggested to solve
the IK problem assuring a minimal variation of joint angles (elongation). The proposed
method takes into account the initial joint configuration that restricts the exploration of the
algorithm, hence guaranteeing a limited variation of angles from the initial configuration
towards the final solution. It is tested on solving the IK problem of KUKA LBR iiwa
14 R820 robotic arm; it is compared with ordinary BA, and other MH-IK solvers from the
literature. The comparatives are in terms of accuracy and angles variation of their provided
IK solutions.

3. Inverse Kinematics Problem

The positional accuracy of a robotic manipulator is assessed by the distance between
the desired position to reach and the actual position of the robot’s end-effector, which is
mathematically calculated using the following equation:

εp =

√
(x− xd)

2 + (y− yd)
2 + (z− zd)

2 (1)

where (x, y, z), (xd, yd, zd) denotes the end-effector’s coordinates and the desired coordi-
nates, respectively. The lower the distance error ε is, the higher the accuracy.

The orientation of the end-effector could be described by a 3× 3 rotation matrix as
represented in Equation (2) below:

R =

nx ox ax
ny oy ay
nz oz az

 (2)
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where n =
[
nx ny nz

]T , o =
[
ox oy oz

]T and a =
[
ax ay az

]T are the expression of
→
x ,
→
y and

→
z axes, associated to the end-effector frame, relative to the base frame.

Let Rd be required orientation of the end-effector. The orientation error εr could be
defined as in [45] using Equation (3), where ‖.‖ indicates the Euclidean norm of a matrix.

εr =
‖R− Rd‖
‖Rd‖

(3)

The IK problem aims to determine the appropriate joint angles that minimize the
position error, which could be formulated as an optimization problem as denoted in
Equation (4):

Find Θ = [θ1, θ2, . . . , θn] that :


Minimize εp and εr

Subject to :
Θmin ≤ Θ ≤ Θmax

(4)

where Θ is a vector of joint angles of an n-dof robot manipulator. Θmin and Θmax are vectors
that represent the upper bound and the lower bound of joint angles, respectively.

Formulating the IK problem as an optimization problem enables the employment of
an optimization an algorithm to determine an adequate solution.

4. Proposed Method
4.1. Bat Algorithm

The bat algorithm (BA) is a nature-inspired algorithm, developed by Yang [46]. It is
built around the bio-sonar characteristics of micro-bats, known as echolocation. Most bats
use echolocation to navigate and catch prey in dark places. Micro-bats are able to emit
ultrasonic pulses that bounce as an echo when clashing into a surrounding object. When
the echo bounces to their ears, they could estimate the location of the object, based on
the delay time between the emitted sound pulse and the echo. Each pulse has a constant
frequency in the range of 25 KHz to 150 KHz, and they typically last 5 to 20 ms. Micro-bats
emit around 10 to 20 sound pulses every second with a loudness in the range of 110 dB.
While they became quieter when hovering close to a prey, the rate of pulses per second
could increase to 200.

The BA is formulated based on the principle of echolocation characteristics of micro-
bats, when it is associated with an objective function as a subject of optimization.

To numerically simulate the bats behaviour for an optimization problem, each bat is
formulated with a set of parameters:

• Position X: corresponds to the position of the bat in the search space, representing a
candidate solution of the optimization problem.

• Velocity V: is the velocity of the bat, which models an incremental variation of the
position between 2 successive iterations.

• Frequency f : is the frequency of the emitted pulse. It is used to adjust the velocity change.
• Loudness A: represents the loudness of the emitted pulse. It enables a local search

around the best solution.
• Pulse rate r: is the rate of the emitted pulses. It increases gradually along the iterations

of the algorithm, assuming a consistent gradual compromise from an exploration
phase to an exploitation phase.

The position Xi and velocity Vi of bat i are updated in the search space at each iteration
t, according to the following equations:

fi = fmin + ( fmax − fmin)β (5)

Vt
i = Vt−1

i +
(
Xt

i − Xbest
)

fi (6)

Xt
i = Xt−1

i + Vt
i (7)
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where β ∈ [0, 1] is a random generated vector drawn from a uniform distribution. Xbest
is the current best position (solution) among the positions of all bats. Initially each bat is
assigned by a random frequency fi uniformly drawn from [ fmin, fmax] using Equation (5).

A local search is performed around the selected best solution, where a new solution is
locally generated using random walk using Equation (8):

Xnew = Xgbest + ε At (8)

where ε is random number in the range of [−1, 1] generated from a normal distribution. At

is the loudness at iteration t.
The loudness A decreases progressively while the rate pulse increases along the

iterations. This mimics the natural behaviour of bats when they get closer to their prey.
This formulated in Equations (9) and (10):

At+1
i = α At

i (9)

rt+1
i = r0

i [1− exp(−γ t)] (10)

where α and γ are constants. r0
i is the initial rate of pulse emission that corresponds to

the maximal value r attained when t→ ∞ . According to Equations (9) and (10), for any
0 < α < 1 and γ > 0, the variation of the loudness Ai and the pulse rate ri, along the
iterations proceeding is described as below:

At
i → 0, rt

i → r0
i , as t→ ∞ (11)

Algorithm 1 is a pseudo code that elucidates the approach of the BA.

Algorithm 1: Pseudo code of BA

Input: Fitness function: f it(X = [x1, . . . , xn]
T), Number of bats: N, Maximum number of

iterations: tmax, frequency range: fmin and fmax, increasing coefficient: α, Attenuation coefficient: γ

Output: Best solution Xbest
Initialize the bat population Xi(i = 1, 2, . . . , N) and Vi;
Define pulse frequency fi at xi;
Initialize pulse rates ri and the loudness Ai;
while t < tmax do

for i = 1 : N do
Adjust frequency using Equation (5);
Update velocity and position using Equations (6) and (7), respectively;
if ri < rand then // rand is a random number in [0, 1]

Select a solution among the best solutions Xbest;
Generate a local solution around the selected best solution using Equation (8);

End
evaluate the new solution according to the objective;
if rand < Ai & f (Xi) < f (Xbest) then

Accept the new solution;
Increase ri and decrease Ai using Equations (9) and (10);

End
Rank the bats according to their fitness and update the best solution Xbest;

End
End

4.2. Bat Algorithm for Inverse Kinematics

In this study, a simplified version of BA is employed, where the loudness A and the
pulse rate r are equivalent for all bats as in [47]; in order to make it easier to implement,
reduce the computational complexity for a faster convergence of the algorithm, and to
provide a better balance between exploration and exploitation.
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The proposed IK-BA ensures a minimum angular variation, which could be measured
using Equation (12).

Variation
(

Θs, Θ f

)
=
∣∣∣∣∣∣Θs −Θ f

∣∣∣∣∣∣ =
√√√√ d

∑
i=1

(
Θs −Θ f

)2
(12)

where Θs = [θs1, θs2, . . . , θsd] and Θ f =
[
θ f 1, θ f 2, . . . , θ f d

]
represent the positions of the

initial configuration and solution’s configuration, respectively. d is the the number of DOF
of a robot manipulator.

The velocity update equation is modified as in Equation (13), where the initial configu-
ration is included in the equation to restrict the bats positions in the search space according
to the initial position.

Vt
i = Vt−1

i +

(
Xt

i −
(Xbest + Θs)

2

)
fi (13)

Another modification concerns the local search generated by Equation (8). It is modi-
fied to take into account the initial configuration at the expense of the best solution in the
last iterations as in Equation (14). Furthermore, the local search acquired by this equation
is realized at each iteration; hence, the condition (ri < rand) in Algorithm 1 is removed in
the IK-BA.

Xnew = rtXgbest +
(
1− rt)Θs + ε At (14)

Note that it is preferable to use the initial configuration instead of random positions,
as initial position for at least one bat, to assure a minimal angle variation.

For the IK-BA, the bats position vector X =
(
[x1, . . . , xn]

T
)

corresponds to the joint
positions of the robot, where each bat’s position represents a potential solution to the IK
problem. The fitness function f it() denotes the difference between the desired end-effector
position and the actual end-effector position, as in Equation (1). f it() is used to evaluate
the quality of the solution X at each iteration of the algorithm. New potential IK solutions
are generated iteratively by modifying the current solutions using the echolocation of the
bat, which is numerically simulated by the algorithm’s intrinsic parameters f , A and r.
Algorithm 2 presents the methodology of the proposed IK-BA used in this study.

4.3. IK-BA for Decoupled Position-Orientation

For a robot manipulator of n-dof with spherical wrist, the axes of the last three
rotational joints, dedicated to the orientation of the end-effector, intersect in one point.
The manipulator can be accordingly decoupled into two parts. The first (n− 3) joints are
responsible for the position and their values would be determined using the IK-BA, whereas
the last three joints would be calculated according to the required orientation. Based on the
formulation in [21], the origin of the (n− 2) frame O(n−2) (point of intersection of the three
last joints, that assign the orientation) defines the wrist’s position of the arm in relation
with the end-effector’s position as shown in Figure 2 and formulated in Equation (15):

Pw = P− dn[R]

0
0
1

 (15)

where, dn is the distance between On−1 and On along Zn−1. [R] is a 3× 3 rotation matrix of
the end-effector relative to the base (frame 0), where its third column indicates the direction
of zn and zn−1 axes with respect to the base (since zn and zn−1 are always collinear). Pw
and P are the vectors denoting the position of the wrist and the position of the end-effector,
relative to the base frame.
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Algorithm 2: IK-BA pseudo code

Input: IK fitness function: f it
(

X = [x1, . . . , xn]
T
)

, Number of bats: N, Maximum number of
iterations: tmax, frequency range: fmin and fmax, increasing coefficient: α, Attenuation coefficient:
γ, Initial configuration: Θs = [θs1, θs2, . . . , θsd], Target position: P =

[
px py pz

]
Output: Best solution Xbest
Initialize the bat population Xi(i = 1, 2, . . . , N) and Vi;
Define pulse frequency fi at xi;
Initialize pulse rates ri and the loudness Ai;
while t < tmax do

Increase ri and decrease Ai using Equations (9) and (10);
for i = 1 : N do

Adjust frequency using Equation (5);
Update velocity depending on Θs = [θs1, θs2, . . . , θsd] using Equation (13) and the position and

using Equation (7);
Select a solution among the best solutions Xbest;
Generate a local solution around the selected best solution depending on Θs = [θs1, θs2, . . . , θsd]

using Equation (14);
evaluate the new solution according to the fitness function fit(X) and target position

P =
[
px py pz

]
if rand < Ai & f (Xi) < f (Xbest) then

Accept the new solution;
end
Rank the bats according to their fitness and update the best solution Xbest;

end
end
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Figure 2. Wrist’s position relative to the end-effector’s position.

To include a required orientation in addition to the position, the calculation of the
three last joints value using the IK-BA is excluded. In this case, the algorithm attends
to finding the values of θi, i = 1, . . . , n− 3, that enable the wrist to be positioned in Pw
position, calculated by Equation (15). The remaining angles θn−2, θn−1 and θn are calculated
according to the orientation of the wrist based on the θi, i = 1, . . . , n− 3 values provided
by the IK-BA, and the required orientation 0Rn, using Equations (16) and (17):

0Rn−3(θ1, θ2, . . . , θn−3) =
0R1(θ1 )× 1R2(θ2)× . . .× n−4Rn−3(θn−3) (16)

n−3Rn(θn−2, θn−1, θn) =
0R(−1)

n−3 ×
0Rn (17)
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In a robotic arm with a spherical wrist, the orientation of the end-effector is set
according to the positions of the last three joints, in which their values could be deduced
from the n−3Rn orientation matrix. Thus, all the required values θi, i = 1, . . . , n to attain a
specific pose 0Tn are obtained in two phases. In a first phase, the values of θi, i = 1, . . . , n− 3
are obtained using the proposed IK-BA in order to enable the wrist of the arm to reach
the position calculated using Equation (15). Furthermore, in a second phase, the required
rotational matrix to reach the desired orientation is calculated using Equations (16) and
(17), and the remaining three joints value θi, i = n− 2, . . . , n are deduced from the required
rotational matrix.

Figure 3 is a flowchart that summarizes the entire methodology.
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5. Simulation Results

The proposed IK-BA is dedicated to providing an IK solution dependent on the
initial configuration. The advantage of this approach lies in solving the IK problem while
minimizing the joints variation from one point to another. The proposed methodology
highlights its importance in path tracking tasks for assuring a smooth variation of the joints
values from point to point of the trajectory, hence a path tracking test is suggested to feature
this advantage.

The performance of the IK-BA is compared with the ordinary BA, and other MH
algorithms from the literature.

The kinematic structure of KUKA LBR iiwa 14 R820 robot manipulator is considered
for the path tracking test.

5.1. Kinematic Modeling of the KUKA LBR Iiwa 14 R820

KUKA LBR iiwa 14 R820 is a 7-axes robot manipulator. Its kinematic structure provides
it with a maximum versatility that makes it effective in collaborative tasks with human
operators. Figure 4 elucidate the allocation of the KUKA LBR’s joints and their associated
frames. The intrinsic parameters of the algorithms used in the simulation are indicated in
Table 1.
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Table 2. DH parameters of KUKA LBR iiwa 18 R820 robot manipulator. 

Link 𝒊 𝜽𝒊 𝒅𝒊 𝒂𝒊 𝜶𝒊 [deg] Range [deg] 

1 𝜃1 𝑑1 0 −90 [−170, 170] 

2 𝜃2 0 0 90 [−120, 120] 

Figure 4. Kinematic scheme of KUKA LBR iiwa 14 R820.
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Table 1. Intrinsic parameters values for the IK-BA and the ordinary BA.

Algorithm Parameters Values

IK-BA

Frequency range [ fmin, fmax] [0, 2]
Increasing coefficient (α) 0.97

Attenuation coefficient (γ) 0.1
Loudness for each bat (At

i ) 1
Initial pulse rate (rt

i ) 1

BA
[48]

Frequency range [ fmin, fmax] [0, 2]
Increasing coefficient (α) 0.5

Attenuation coefficient (γ) 0.5
Loudness for each bat (At

i ) Random number in the range of [0, 1]
Initial pulse rate (rt

i ) 0.001

DE
[45]

Scaling factor (F) 0.6
Cross-over factor (C) 0.9

PSO
[43]

Inertia weight (w) 1.1312
Individual confidence factor (c1) 2.0149

Swarm confidence factor (c2) 0.53514

K-ABC
[38] No intrinsic parameters

MO-PSO
[49]

Inertia weight (w) 0.5
Individual confidence factor (c1) 2

Swarm confidence factor (c2) 2
Number of grids in each dimension

(Ngrid) 20

Maximum velocity (Vmax) 5
Uniform mutation percentage (umut) 0.5

In the Denavit–Hartenberg notation, each link relating two neighbouring joints j− 1
and j is described by 4 parameters, whereas each parameter denotes a spatial transformation
between the frames associated to each joint. These parameters are:

• θi: indicates a rotational transformation from frame j− 1 to frame j around the z axis,
therefore θj is the angle between xj−1 and xj through zj−1.

• dj: indicates a displacement from frame j− 1 to frame j along the z axis, it is measured
as the distance from oj−1 to xj along the zj−1.

• aj: indicates a displacement from frame j− 1 to frame j along the new x axis, therefore
it represents the distance between zj−1 and zj axes along xj.

• αj: indicates a rotational movement from frame j− 1 to the frame j around the new z
axis, therefore αj is the angle between from zj−1 to zj axes about the xj axis.

The pose (orientation and position) of frame j relative to j− 1, could be defined by a
4× 4 homogeneous matrix, that corresponds to the product of the four transformations
denoted by (θi, dj, aj and αj) as implied in Equation (18):

j−1Tj = Rotz,θj ·Transz,dj
·Transx,aj ·Rotx,αj

=


C
(
θj
)
−S
(
θj
)

0 0
S
(
θj
)

C
(
θj
)

0 0
0 0 1 0
0 0 0 1

·


1 0 0 0
0 1 0 0
0 0 1 dj
0 0 0 1

·


1 0 0 ai
0 1 0 0
0 0 1 0
0 0 0 1

·


1 0 0 0
0 C

(
αj
)
−S
(
αj
)

0
0 S

(
αj
)

C
(
αj
)

0
0 0 0 1



=


C
(
θj
)
−S
(
θj
)
C
(
αj
)

S
(
θj
)
S
(
αj
)

aiC
(
θj
)

S
(
θj
)

C
(
θj
)
C
(
αj
)
−C
(
θj
)
C
(
αj
)

aiS
(
θj
)

0 S
(
αj
)

C
(
αj
)

dj
0 0 0 1


(18)
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Matrix j−1Tj represents the transformation matrix from frame j− 1 to frame j. C() and
S() stands for cos() and sin() functions respectively.

Table 2 represents the DH parameters of the KUKA LBR iiwa 14 R820 robot manipula-
tor according to Figure 4.

Table 2. DH parameters of KUKA LBR iiwa 18 R820 robot manipulator.

Link i θi di ai αi [deg] Range [deg]

1 θ1 d1 0 −90 [−170, 170]
2 θ2 0 0 90 [−120, 120]
3 θ3 d3 0 90 [−170, 170]
4 θ4 0 0 −90 [−120, 120]
5 θ5 d5 0 −90 [−170, 170]
6 θ6 0 0 90 [−120, 120]
7 θ7 d7 0 0 [−175, 175]

Based on the generic homogeneous matrix of Equation (18) and the DH parameters in
Table 2, the last column in the table indicates the limits of each joint. The transformation
matrix between each two successive joints of KUKA LBR iiwa 18 R820 are denoted from
Equations (19)–(25).

0T1 =


C(θ1) 0 −S(θ1) 0
S(θ1) 0 C(θ1) 0

0 −1 0 d1
0 0 0 1

 (19)

1T2 =


C(θ2) 0 S(θ2) 0
S(θ2) 0 −C(θ2) 0

0 1 0 0
0 0 0 1

 (20)

2T3 =


C(θ3) 0 S(θ3) 0
S(θ3) 0 −C(θ3) 0

0 1 0 d3
0 0 0 1

 (21)

3T4 =


C(θ4) 0 −S(θ4) 0
S(θ4) 0 C(θ4) 0

0 −1 0 d4
0 0 0 1

 (22)

4T5 =


C(θ5) 0 −S(θ5) 0
S(θ5) 0 C(θ5) 0

0 −1 0 d5
0 0 0 1

 (23)

5T6 =


C(θ6) 0 S(θ6) 0
S(θ6) 0 −C(θ6) 0

0 1 0 0
0 0 0 1

 (24)

6T7 =


C(θ7) −S(θ7) 0 0
S(θ7) C(θ7) 0 0

0 0 1 d7
0 0 0 1

 (25)
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The representation of the end-effector’s pose relative to the base frame is obtained
through a successive multiplication of transformation matrices between two adjacent joint
frames, as denoted in Equation (26).

0T7 = 0T1·1T2·2T3·3T4·4T5·5T6·6T7 =


nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1

 (26)

where n =
[
nx ny nz

]T , o =
[
ox oy oz

]T and a =
[
ax ay az

]T are the elements of rotational
transformation matrix, that describe the orientation of the end-effector in reference to the
base frame (frame 0). px, py and pz that indicates the coordinates of the end-effector’s
position along the

→
x0,
→
y0,
→
z0 axes.

Each set of values of these angles θi, i = 1, . . . , 7 results in a unique pose defined by
0T7. In the case of redundant robot manipulators where the number of degree of freedom
is higher than the sufficient end-effector’s active joints for a certain task [50], a particular
position of the end-effector might be reached through multiple different configurations of
the manipulator. Unlike the forward kinematics problem, the inverse kinematics problem
has infinite solutions.

The IK-BA is used in this study to determine the corresponding joint values θi,
i = 1, . . . , 7 that enable the end-effector to reach a desired pose defined by 0T7, along with
granting a minimal possible joints displacement from an initial configuration to the target
pose, using the proposed IK-BA.

5.2. Path Tracking Test

The path tracking test is proposed to evaluate the performance of the algorithm in
solving the IK problem for each point along a trajectory. The efficiency of the IK-BA in terms
of the accuracy of the solution and angles variation from point to point within the track,
is compared with the ordinary BA, Differential Evolution (DE), PSO, K-ABC and Multi
Objective PSO, and MO-PSO algorithm, which tackles the IK problem as a multi-objective
optimization problem, where the algorithm aims to minimize the positional error and the
angles variation simultaneously, as in [34].

The proposed path for this test, consists of 20 points distributed along a helical track
within the workspace of the KUKA LBR iiwa 14 R820 as shown in Figure 5. The helical trajec-
tory is defined by its center point from the bottom C = [xc = 60 cm, yc = 0 cm, zc = 10 cm]
relative to the base of the robot, a radius of the helix r = 20 cm, its length l = 50 cm, and
a number of helices h = 2. In this test, the required orientation of the robot’s end-effector
during the path tracking process is defined by Equation (27), which enables the end-effector
to be normal to the base floor.

0R7 =

−1 0 0
0 0 1
0 1 0

 (27)

The common parameters for all the compared algorithms used in this test are pop-
ulation size N = 50, and the maximum number of iterations tmax = 200. For reliability
inception, the path tracking test is run 20 times and the average position error, angles
variation and the computing taken time of the IK solution for each point of the trajectory is
recorded as evaluation’s criteria of the performance of the IK-BA in comparison with the
other algorithms, in path tracking task. Figure 6 shows the average error of the IK solutions
for each point. Figure 7 displays the angles variation from point to point of the trajectory,
noting that the angles variation of the 1st point is relative to the initial configuration of the
robot. Figure 8 reveals the average calculation time taken to provide an IK solution for each
point of the trajectory. Figure 9 represents the joints movement along the trajectory of the
first run of the path tracking test.
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Figure 6 demonstrates that the proposed IK-BA provides finer IK solutions in terms of
accuracy and repeatability since it has the least average position error among the compared
algorithms. Figure 7 shows that both the IK-BA and MO-PSO algorithms present IK
solutions with the least angles variation from point to point of the trajectory. This is
affirmed in Figure 9, which shows that IK-BA and MO-PSO generate smooth angles
variation along the trajectory, in contrary to the uneven angles variation generated by
the other used algorithms. In term of computing time, Figure 8 shows that PSO has the
least computational time in 200 iterations, whereas the MO-PSO ranks last in term of
computing time.

The performance of the compared algorithms is statistically analysed to give an
accurate measurement of the effectiveness of IK-BA compared to other algorithms. Table 3
shows the results of the statistical analyses of the employed algorithms for the path tracking
test. A one-way analysis of variance (ANOVA) is also suggested to check if there is a
statistical difference between the suggested algorithm and the other algorithms.

Table 3. Statistical analyses of the performance of the employed algorithms.

Algorithm Performance Mean Median Std Maximum Minimum

IK-BA
Position error [cm] 0.0019 0.0019 1.7824 × 10−4 0.0022 0.0016

Angles variation [deg] 87.1916 87.5779 7.8247 101.8740 72.8021
Computing time [s] 0.2439 0.2359 0.0229 0.3022 0.2195

BA
Position error [cm] 1.6849 1.5374 0.9069 3.9487 0.1830

Angles variation [deg] 301.5794 301.5530 25.2466 345.7477 260.4859
Computing time [s] 0.2800 0.2642 0.0335 0.3511 0.2462

DE
Position error [cm] 0.3653 0.2793 0.2929 0.9981 0.0387

Angles variation [deg] 303.6915 297.8383 32.8049 377.9527 264.5489
Computing time [s] 0.4154 0.3924 0.0617 0.5850 0.3534

PSO
Position error [cm] 0.4382 0.4019 0.3312 1.0384 0.0000

Angles variation [deg] 274.7692 276.8618 21.9459 314.8747 223.3415
Computing time [s] 0.2069 0.1946 0.0336 0.3029 0.1769

K-ABC
Position error [cm] 0.2318 0.2232 0.0722 0.3515 0.1270

Angles variation [deg] 276.6456 273.5645 20.9967 311.8878 233.6387
Computing time [s] 0.4591 0.4200 0.0926 0.7318 0.3980

MO-PSO
Position error [cm] 0.4075 0.3960 0.0891 0.7014 0.2871

Angles variation [deg] 89.9602 86.8036 25.6630 164.1794 25.7217
Computing time [s] 1.2853 1.2222 0.2282 1.9888 1.0135

Therefore, to inspect the significant difference among the compared algorithms, the
parametric statistical test ANOVA is employed, using 0.05 significance level. Tables 4–6,
show the ANOVA test results for position error, angles variation and computational
time, respectively.

Table 4. ANOVA test results for position error comparatives.

Source SS df MS F Prob > F

Algorithms 35.0338 5 7.0068 40.7685 7.2225 × 10−24

Error 19.5929 114 0.1719
Total 54.6267 119
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Table 5. ANOVA test for angles variation comparatives.

Source SS df MS F Prob > F

Algorithms 1.0877 × 106 5 2.1754 × 105 388.9396 7.1885 × 10−70

Error 6.3761 × 104 114 559.3091
Total 1.1514 × 106 119

Table 6. ANOVA test for computing time comparatives.

Source SS df MS F Prob > F

Algorithms 16.4700 5 3.2940 293.9766 2.1670 × 10−63

Error 1.2774 114 0.0112
Total 17.7474 119

The components of ANOVA tables are briefly explained as follows [51]:

• Source: stands for source of variation, which could be a variation between groups (al-
gorithms’ sample results), or error variation, indicating a variation within the groups.

• SS: stands for sums of squares.
• df: degrees of freedom, which indicates the number of independent data.
• MS: mean squares, they are calculated by dividing sums of squares (SS) by their

appropriate degrees of freedom.
• F: refers to the F-statistic, which used to test the null hypothesis that the means of

several groups are equal. It is calculated as the ratio of the variation between the
groups to the variation within the groups.

• Prop > F: indicates the p-value which is used to determine the level of significance
of the F-statistic and helps to decide whether the null hypothesis of equal means is
rejected or not.

The box plots for ANOVA tests are illustrated in Figures 10–12. They represent the
results of the performance of each algorithm in terms of position error, angles variation
and computing time, respectively.
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5.3. Time Assessment

Two-time assessments have been conducted to evaluate the potentials of IK-BA re-
garding time complexity and its real time potentials.

The first test was conducted using the following hardware configuration: Intel core i5
processor, with 8 Go RAM DDR3.

The time assessment for a possible evaluation of the IK-BA was done using the
following configuration: intel i7 processor, with 12 Go RAM (4 Go DDR4 + 8 Go DIMM)

5.3.1. Time Assessment of the IK-BA for Real-Time Path Planning

The time assessment for a possible evaluation of the IK-BA was carried out using the
following configuration: Intel i7 processor, with 4 Go RAM DDR4 + 8 Go DIMM memory.
The system was running under MS Windows 11 and using MATLAB 2019. The test was
performed using N = 12, 15 and 20 bats with the same intrinsic parameters of IK-BA
presented in Table 1.
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All data and variables used were cleared from one test to another. Only the operating
system and MATLAB were active during the tests. The termination criterion of the algo-
rithm processing was to a positional error εp = 0.1 cm. The algorithm had run 20 times,
where a random target point was generated at each run. All target points were generated
within the workspace of the KUKA LBR iiwa 14 R820 robot.

Statistical results of the time assessment test of the proposed IK-BA are presented in
Table 7. They show that IK-BA may be used as a real-time path planner when the number
of agents is about 12 or less; meanwhile, for higher configuration results confirmed, it can
be used offline only, meaning it can be used to plan the path before coding the robot.

Table 7. Statistical results of time assessment test (time is in ms).

Number of Bats Mean Time in ms Median Std Maximum Minimum

12 48.01 45.8 10.1 67.2 32.6
15 61.09 64.10 12.85 92.35 41.81
20 83.75 73.03 28.96 80.06 47.88
30 180,94 101.29 149.67 448.44 69.52

5.3.2. Discussion on Time Processing of MH Inverse Solvers

The industrial processing consists in reproducing the path for a needed task, as part of
a production plan. In general, the path planning is offline-generated, verified and tested
through simulations, then applied, for a real validation on the target robot.

In Table 3, the computing time comparatives correspond to the processing time, where
the termination criterion is defined by a maximum number of iteration tmax = 200 iterations.
The next section presents a time assessment of the IK-BA, where the termination criterion
is set according to a maximum acceptable IK positional error.

The configuration used in test detailed by Table 3 is based on 20 agents for all al-
gorithms. The termination criterion is used to ensure that the algorithm does not run
indefinitely. The termination criterion can greatly affect the performance of the algorithm.
Commonly, the termination criterion is defined by a maximum number of iterations, or
according to an acceptable quality of the provided solution. The algorithm is stopped when
the quality of the best solution found, while processing reaches a certain threshold [52].

Assuming this and in regards of the results in Table 7, it is evident that the proposed
algorithm is suitable for offline path planning. It shows better time processing than its
challengers, while not meeting a real-time path planning constraint (less than 50 ms). The
potentials of the IK-BA as a real-time path planner are discussed in the next paragraph.

A real-time system is one that is capable to procure a deterministic response in a
specified time frame. If this time frame is critical and must be strictly respected, the system
is assumed to be a hard real-time system. In contrast, when the time may be subject to
delay, the system is assumed to be a soft real-time system [53,54].

According to our previous experimentation, we proved that the proposal may respect
a real-time constraint for each given configuration; the most effective number of bats is the
one with 12 agents, where the response time is less than 50 ms.

6. Real Application

The proposed IK-BA is employed as an IK solver for the Dobot magician robotic arm.
The Dobot magician robot presented in Figure 13 is a desktop 4-Dof robot that could be
used for different tasks such as laser engraving, 3D printing, drawing and calligraphy.

In this application, the robot’s end-effector is intended to follow a circular trajectory
discredited by 20 points distributed along the trajectory as shown in Figure 14. The circular
path is defined by a center C = [16 cm, 16 cm, 0]. and a radius r = 7 cm, which is generated
along the workspace of the Dobot magician robotic arm as revealed in Figure 15.
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The points reached by the robot’s end-effector along with the actual trajectory points
are presented in Figure 15. Figure 16 shows the corresponding generated joint angles
for each point of the trajectory using IK-BA. θ4 is set to be equal to θ1, to obtain a fixed
orientation of the end-effector. The positional error of the robot’s end-effector is relative to
the trajectory points represented in Figure 17.
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The proposed IK-BA provided accurate solutions of an error in a range of 10−14 cm.
Figure 18 shows that the average error among the 20 points of the trajectory reaches
2.1196 × 10−14 cm along 1000 iterations. Table 8 represents the twenty joint positions used
for the test, the position error of the solver in respect to pen orientation. All returned
solutions obtained a precision higher than the system needs and the measured observed
positions can not exceed the mechanical frame constraints of the real robot as testified by
its provider.
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Table 8. Generated joint angles and their corresponding error using IK-BA for the 20 points of
the trajectory.

Trajectory Points
Joint Angles [deg]

Position Error [cm]
θ1 θ2 θ3 θ4

1 34.8 66.5 49.5 34.8 2.04 × 10−14

2 38.7 69.6 45.6 38.7 1.28 × 10−14

3 42.9 71.4 43.5 42.9 1.14 × 10−14

4 47.1 71.4 43.5 47.1 3.37 × 10−14

5 51.3 69.6 45.6 51.3 3.04 × 10−14

6 55.2 66.5 49.5 55.2 1.71 × 10−14

7 58.6 62.6 54.8 58.6 2.20 × 10−14

8 61.2 58.4 61.1 61.2 1.68 × 10−14

9 62.8 54.6 68.0 62.8 2.29 × 10−14

10 62.8 51.5 75.2 62.8 1.81 × 10−14

11 60.6 49.5 82.2 60.6 1.43 × 10−14

12 56.0 48.8 88.3 56.0 9.61 × 10−14

13 49.0 48.8 92.0 49.0 2.02 × 10−14

14 41.0 48.8 92.0 41.0 1.49 × 10−14

15 34.0 48.8 88.3 34.0 3.36 × 10−14

16 29.4 49.5 82.2 29.4 2.37 × 10−14

17 27.2 51.5 75.2 27.2 2.92 × 10−14

18 27.2 54.6 68.0 27.2 2.95 × 10−14

19 28.8 58.4 61.1 28.8 1.34 × 10−14

20 31.4 62.6 54.8 31.4 3.00 × 10−14

It is important to note that the proposed solver is retuning solutions which are much
higher in precision than the system can mechanically perform, since the mechanical system
precision is limited to 0.02 cm [55]. A solver should always produce solutions as precisely
as possible, but usually where the precision is higher than what the mechanical system
can perform.

7. Conclusions

A specially improved BA algorithm variant dedicated for the IK robotic problem is
suggested in this paper. The proposed method is called IK-BA; it stands for a specific bat
algorithm dedicated to robotic-arms’ inverse geometric solution, where the elongation
control mechanism is embedded in its update equations. The proposed IK-BA is qualified
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of giving accurate solutions while guaranteeing minimal joints variation from the initial
position towards the target point. The importance of this feature stands out in path tracking
tasks, which enables generation of smooth angle variation from point-to-point of the
trajectory. This improvement is established through adjusting the update equation in
such a way that it takes into account the initial angular position of the robot. When the
orientation of the end-effector is required in addition to a desired end-effector position, a
manipulator decoupling method is suggested, where the three last joints of the manipulator
are calculated deterministically; whereas, the remaining first joints are determined using
the proposed IK-BA. This methodology is tested using the simulation of path tracking task
of the KUKA LBR iiwa 14 R820, in which it is required to follow a helical trajectory. The
effectiveness of the proposed approach is proved by a comparative study with the standard
BA algorithm and other optimization algorithms from the literature, including DE, PSO,
K-ABC and MO-PSO. The statistical analyses supported by a one-way ANOVA test show
that the IK-BA has the best compromise between the accuracy of the solution, the angles
variation and the computing time.
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