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Abstract: Stiffness-adjustable snake-like robots have been proposed for various applications, in-
cluding minimally invasive surgery. Based on a variable neutral-line mechanism, previous works
proposed a class of snake-like robots that can adjust their stiffness by changing the driving cables’
tensions. A constant curvature hypothesis was used to formulate such robots’ kinematics and was
further verified by our previous work via rigorous force analysis and ADAMS simulations. However,
all these models and analyses have ignored the effect of the robot links’ gravity, resulting in significant
errors in real systems. In this paper, a static model considering gravity compensation is proposed
for the stiffness-adjustable snake-like robots. The proposed model adopts a nonlinear Gauss–Seidel
iteration scheme and consists of two parts: gravity update and pose estimation. In each iteration, the
former updates the payload of each link caused by gravity, and the latter estimates the pose of the
robot by refreshing the angle and position values. This iteration stops when the change in the tip
position is less than a pre-set error ε. During the above process, the only dependent information is
each cable’s tension. Simulations and experiments are carried out to verify the effectiveness of the
proposed model. The impact of gravity is found to increase with growing material densities in the
simulations. The experimental results further indicate that compared with a model without gravity
compensation, our model reduces the tip estimation error by 91.5% on average.

Keywords: snake-like robot; minimally invasive surgery; statics; gravity compensation

1. Introduction

Inspired by nature, snake-like robots [1,2] have been invented to provide higher
flexibility compared with traditional rigid manipulators. Usually designed with high
degrees of freedom in small sizes, snake-like robots are highly suitable for tasks requiring
traversing through narrow and tortuous passages or dexterous manipulation in confined
environments [3,4]. As such, they have been proposed for various applications, including
industrial inspection [5], search and rescue [6], and robotic surgery [7–10].

The capability of adjusting the robot’s stiffness has been a desired property in many
applications. For example, the robot may need to present low stiffness during compliant
and safe deployment and high stiffness for high-force and precise operations once reaching
target sites in minimally invasive surgery [11]. Different designs have been studied to ad-
dress this need, such as using compliant joints [12,13], shape memory alloy [14], and phase
change material alloy [15]. Among them, a cable-driven, curved-joint-based manipulator
was proposed that is simple in design and fabrication [16]. The robot achieves adjustable
stiffness by changing the driving cable’s tensions, which results in a varying neutral line
between adjacent links during bending. A system using this design was developed for
Single-Port Access Surgery, in which the main structure housing multiple instruments
could adjust its stiffness during surgery [17]. For the same purpose, [18,19] designed a
torsionally steerable flexible robot with an analysis of its dexterity and motion optimization.

Robotics 2023, 12, 2. https://doi.org/10.3390/robotics12010002 https://www.mdpi.com/journal/robotics

https://doi.org/10.3390/robotics12010002
https://doi.org/10.3390/robotics12010002
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://orcid.org/0000-0002-4554-7638
https://doi.org/10.3390/robotics12010002
https://www.mdpi.com/journal/robotics
https://www.mdpi.com/article/10.3390/robotics12010002?type=check_update&version=1


Robotics 2023, 12, 2 2 of 15

A similar mechanism has also been used in the SnakeRaven system for robotic arthroscopy
based on patient-specific design [20,21].

Static modeling relating the robot’s shape and tip position to its cable forces is im-
portant for predicting the robot’s behaviors, as the stiffness is adjusted by changing the
cables’ tensions. In our previous study [22], a static model for the stiffness-adjustable robot
ignoring the robot’s gravity was developed, which can accurately estimate the robot’s
bending angles and tip position given the cable tensions. The model also verified, through
a rigorous force analysis, the constant curvature hypothesis commonly adopted in the
kinematic modeling of such snake-like robots [16,23].

The hypothesis is valid when the robot is tiny in size and made of low-density material.
However, when the robot’s size is considerably large (such as the main structure design in [16])
or the robot uses high-density material (such as metal), the effects of gravity may not be ignored.
As shown in Figure 1, the robot’s real shape affected by gravity may deviate significantly from
the one estimated from a constant curvature hypothesis. Therefore, it is necessary to investigate
the effect of gravity in the static modeling of the stiffness-adjustable snake-like robot.
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Figure 1. Schematic of the ground-mounted snake-like robot platform affected (Tip) and unaffected
(Tip′) by gravity.

1.1. Related Works
1.1.1. Non-Static Modeling of Stiffness-Adjustable Rolling-Joint Snake-Like Robots

Early works on stiffness-adjustable rolling-joint snake-like robots have focused on
the design and kinematic modeling of the robots. Yong-Jae Kim et al. [16] first introduced
the rolling-joint snake-like robot capable of controlling stiffness by varying cable tensions.
The approximate correspondence between the stiffness and tensions is obtained by the
analysis of geometry and energy relying on the simplified geometric assumptions. In the
same year, Jongwon Lee et al. [24] designed a teleoperation platform for this kind of robot
and conducted a tension propagation analysis. In 2014, Jusuk Lee et al. [17] continued to
perform kinematic modeling on the robot to estimate the workspace and control its tip pose
through inverse kinematics.

Although the rough tip position and orientation of the robot could be achieved in
these studies under the constant bending-angle assumption, the accurate mapping between
the robot’s shape and the cable tensions still needs to be investigated.

1.1.2. Static Modeling of Stiffness-Adjustable Rolling-Joint Snake-Like Robots

In 2020, Jeongryul Kim et al. [25] first performed static modeling on a one-degree-of-
freedom plastic robot to estimate its stiffness. Here, blocks were added between adjacent
links to improve the performance of the stiffness for the rolling-joint snake-like robot
described in Section 1.1.1. The key point of the algorithm proposed in the paper is to
solve all the static equilibrium equations by optimization, i.e., by minimizing the sum
of the absolute value of moments. In the same year, Jeongryul Kim et al. [26] extended
the algorithm to the steel robot proposed by [16] to derive more accurate values of the
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shape. Independently from these two works, our group also achieved the shape of a similar
robot with generalized orientation angles by conducting static analysis in our previous
study [22]. The bending angle of each link is calculated quickly and iteratively from the
tip to the bottom. However, the existence of friction and gravity has still been neglected in
these studies.

In 2022, to enhance the accuracy of shape estimation, Jeongryul Kim et al. [27] contin-
ued to apply their previous algorithm to the modified steel snake-like robot by including
the Coulomb friction model. Although the materials of the prototype vary from plastic to
stainless steel, and the diameters of each link vary from 4.5 to 12 mm in the studies in this
section, the effect of gravity has still not been discussed.

1.1.3. Gravity Compensation in Static Modeling

Models without gravity compensation may yield significant estimation error [28],
especially when the robot is made of high-density material or is long or large in size.
Various studies have assessed the effect of gravity in the field of continuum robots. For
example, in 2009, Bryan A. Jones et al. [29] conducted a static analysis based on the Cosserat
rod theory to evaluate the shape of the continuum robot. Gravity was included in the
modeling and proved to be critical to the accuracy of the experiment by the comparison
of accuracy between the proposed model with the analytical one without gravity. In 2016,
Han Yuan, et al. [30] also performed static modeling incorporating gravity based on the
Newton–Euler method on continuum robots. The accuracy of the model was validated by
the simulations in ANSYS.

Despite these research efforts, gravity compensation is still absent in previous studies
on the modeling of this kind of rolling-joint snake-like robot [16,22,25–27,31].

1.2. Contributions

In this paper, a static model with gravity compensation is established for the stiffness-
adjustable snake-like robot. Given the forces of the driving cables, the proposed model can
accurately estimate the overall shape of the robot and its tip position. This is achieved by
conducting a static analysis of the force interaction between adjacent links and the driving
cables, followed by developing an algorithm iteratively updating the effect of each link’s
gravity and evaluating the bending angles between adjacent links. A group of simulations
is carried out in the MSC ADAMS (Automated Dynamic Analysis of Mechanical Systems)
to validate the model with various materials and robot configurations. The results show
that the hypothesis of constant curvature taken in previous studies is violated when
considering gravity’s effect. In particular, the disparity in the bending angles becomes
dominant when the robot’s material density increases. The results are further confirmed
in experiments with a real snake-like robot under ground- and ceiling-mounted setups.
In all the simulations and experiments, the developed algorithm can precisely estimate
the robot’s shape and tip position compared to the ground truth generated by ADAMS
(simulation) and a camera/optical tracking system (experiment).

The contributions of this work lie in two parts: (1) We propose a static model with
gravity compensation that can accurately predict the shape and tip position of a stiffness-
adjustable robot given the actuating cable forces. The model sets a foundation for further
development in stiffness control, external force estimation, and compliant motion control.
(2) Using the developed static model, we reveal the impact of gravity on the constant curve
hypothesis widely adopted in the modeling of such robots. It is found that the effect of
gravity cannot be ignored when the robot’s size is considerably large or dense materials are
used. Incorporating gravity compensation will significantly improve the accuracy of shape
estimation in such cases.

2. Modeling

The snake-like robot studied in this paper is illustrated in Figure 2a. Before we study
the relationship between the cable forces and the shape of the robot with gravity, each
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bending angle between adjacent links will be evaluated by a detailed analysis of the static
model on a single link in this section.
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Figure 2. Parameters and reference frames for static modeling. (a) presents the forces and moments
on link-i with respect to frame {i}. (b) presents the bending angle θi−1 of joint-(i− 1) between link-
(i− 1) and link-i. (c) presents the geometric parameters of link-i. Radius r is the distance between
cable-j (j = 1, 2, 3, 4) and the center line of the body. Orientation αi is the angle between the center
lines of the top and bottom cylindrical contact surfaces of link-i, which is also the angle between the
planes formed by two pairs of opposing tendons inside the link.

2.1. Static Model of One Link

This robot is composed of n links with n− 1 joints. They are connected in a staggered
manner with four driving cables. To simplify the calculations, the robot is assumed to be
stationary, rigid, and homogeneous without sliding motion between adjoining links. The
elasticity, weight, friction, and backlash related to the cables are also neglected. In this
paper, the length of each link is set as L, and the radii of both contact surfaces are R. The
orientation is α, where α ∈

[
−π

2 , π
2
]
. The bending angle of joint θ between two adjacent

links are shown in Figure 2b. Each link has a top and a bottom cylindrical contact surface,
as shown in Figure 2c. The index of each link is numbered from the base to the tip with
i ∈ {1, 2, . . . , n}, which is similar to that of each joint.

2.1.1. Coordinate System Definition

As shown in Figure 2a, there are two kinds of coordinate systems used in the paper:
The local coordinate system (LCS) and the world coordinate system (WCS). In this section,
the LCS (frame {i}) is adopted to estimate the bending angle θi−1 between link-(i− 1) and
link-i. The origin is located on the mass center of the link. The z-axis is co-linear with the
center line of the link body and toward the base, whereas its y-axis is parallel to the center
line of its curved contact surface that is closer to the base. The WCS (frame {w}) is used in
the next section to determine the tip position of the robot. Its origin is fixed in the center of
the base of the robot. Its z-axis is parallel with that of the LCS {1} but toward the body of
the robot. Its y-axis is also parallel with that of the LCS {1}.

2.1.2. Cable Tensions and Contact Forces
The variables in the LCS on link-i defined above are shown in Figure 2a. Ti,j is the

value of the tension applied on cable-j of link-i. ϕi,j is the phase angle of cable-j around the
center line in link-i, which determines the locations of the cables. The tension applied to
the bottom surface Ti,j

b and its displacement vector li,j
b in the Euclidean space R3 are:

Ti,j
b (θi) =

[
−Ti,j sin

θi
2

cos αi , Ti,j sin
θi
2

sin αi , −Ti,j cos
θi
2

]>
, (1)
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li,j
b =

[
r cos ϕi,j , r sin ϕi,j ,− L

2
+ R−

√
R2 −

[
r cos

(
ϕi,j + αi

)]2
]>

. (2)

The tension applied to the top surface Ti,j
t and its displacement vector li,j

t are:

Ti,j
t (θi−1) =

[
Ti,j sin

θi−1
2

, 0 , Ti,j cos
θi−1

2

]>
, (3)

li,j
t =

[
r cos ϕi,j , r sin ϕi,j ,

L
2
− R +

√
R2 −

(
r cos ϕi,j

)2
]>

. (4)

The contact force applied to the bottom surface Fi
cb, its displacement vector li

cb, and
corresponding torque Mi

cb are:

Fi
cb(θi, θi+1, . . . , θn−1) =

[
Fbx,i , Fby,i , Fbz,i

]>
, (5)

li
cb(θi) =

[
−R sin

θi
2

cos αi , R sin
θi
2

sin αi ,− L
2
+ R− R cos

θi
2

]>
, (6)

Mi
cb(θi, θi+1, . . . , θn−1) =

[
Mbx,i , Mby,i , Mbz,i

]>
. (7)

The contact force applied to the top surface Fi
ct, its displacement vector li

ct, and corre-
sponding torque Mi

ct are:

Fi
ct(θi−1, θi, . . . , θn−1) =

[
Ftx,i , Fty,i , Ftz,i

]>
, (8)

li
ct(θi−1) =

[
R sin

θi−1
2

, 0 ,
L
2
− R + R cos

θi−1
2

]>
, (9)

Mi
ct(θi−1, θi, . . . , θn−1) =

[
Mtx,i , Mty,i , Mtz,i

]>
. (10)

The gravity vector Fi
g in the LCS {i} and its torque Mi

g applied on the mass center of
link-i are:

Fi
g(θ1, θ2, . . . , θi−1) , Gi =

[
Gx,i , Gy,i , Gz,i

]>
, (11)

Mi
g(θ1, θ2, . . . , θi−1) = 0 . (12)

2.1.3. Constraint Equations
Since the robot is static, it should satisfy the constraints of static equilibrium. The

equilibrium equations of link-i are:

∑ Fi =
4

∑
j=1

(
Ti,j

b + Ti,j
t

)
+ Fi

cb + Fi
ct + Fi

g = 0 , (13)

∑ Mi =
4

∑
j=1

(
li,j
b × Ti,j

b + li,j
t × Ti,j

t

)
+ li

cb × Fi
cb + li

ct × Fi
ct

+ Mi
cb + Mi

ct + Mi
g = 0 .

(14)

For the distal link, we have Tn,j
b = 0, Fn

cb = 0, and Mn
cb = 0, since its bottom in the LCS {n}

is free.



Robotics 2023, 12, 2 6 of 15

3. Shape Estimation

To explore the relationship between the tension and the shape of the robot considering
gravity, an iterative method is developed in this paper. The proposed method consists
of two parts: gravity update and pose estimation. This section introduces these two
components followed by the tip position calculation and the integral algorithm.

3.1. Update of Gravity Vectors
The gravity of link-i in the LCS {i} should be obtained before performing the static

analysis on link-i. Its coordinate wGi in the WCS is already known at the beginning of each
iteration according to the installation form. Assuming that the mass of each link analyzed
is identical (except for the base link, which is not included in the calculation), the gravity of
link-i in the WCS is the same for i = 2, 3, . . . , n. Let Gi(u) be the gravity of link-i in the LCS
{u}, where u = 1, 2, . . . , i. As shown Algorithm 1, to achieve Gi(i), its coordinate should
be first transformed from WCS {w} to LCS {1}, i.e., Gi(1) = Rz(π − α1)Ry(π) wGi. Later,
it requires iterations to transform the coordinate from LCS {1} to LCS {i}. The iteration
function of u is:

Gi(u) = Ry(θu−1)Rz(−αu) Gi(u− 1) , (15)

where Rx(θ), Ry(φ), and Rz(ψ) are SO(3) rotation matrices about the x, y, z-axes, respectively.

Algorithm 1: Update of gravity vectors.

1 Function updateGravityVectors
(
[∗θk

1 ,∗θk
2 ,...,∗θk

n−1]
)

is
2 for i=1 to n do
3 θk

i ←− θk−1
i + ω

(
∗θk

i − θk−1
i

)
; // (θ0

i = 0.)

4 Gk
i ←−

wGi ; // (From WCS to LCS {i}.)
5 end

6 return
[
Gk

1, Gk
2, . . . , Gk

n

]
7 end

3.2. Evaluation of Bending Angles

After the update of the gravity vectors, a backward iterative process is performed to
calculate the bending angles. The calculation starts from the angle between the distal link
and its adjacent link. Then it continues to calculate the angles between intermediate links
iteratively. The complete evaluation process is presented in Algorithm 2.

Algorithm 2: Evaluation of bending angles.

1 Function getBendingAngles ([G1, G2, . . . , Gn−1]) is
2 for i=1 to n-1 do θn−i ←− fn−i+1(θn−i) = 0;
3 return [θ1, θ2, . . . , θn−1];
4 end

3.2.1. Single Bending-Angle Computation
Take the calculation of bending angle θi−1 as an example. The expressions of forces

are derived from Equation (13). As illustrated in Figure 1, we have Mty,i = 0 since the
contact force passes through the contact point on the top contact surface in the x–z plane,
and Mi

g = 0 since the gravity force passes through the origin (mass center). Thus, θi−1 can
be obtained from the y-axis component of the torque-balance equation; Equation (14):

a sin
θi−1

2
+ b cos

θi−1
2

+ c = 0 , (16)
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where:

a = R
(

cos θi
2

4
∑

j=1
Ti,j − Fbz,i − Gz,i

)
−

4
∑

j=1

[
Ti,j

√
R2 −

(
r cos ϕi,j

)2
]

b = r
4
∑

j=1

(
Ti,j cos ϕi,j

)
+ R

(
− sin θi

2 cos αi
4
∑

j=1
Ti,j + Fbx,i + Gx,i

)
c = cos θi

2

[
RFbx,i − r

4
∑

j=1

(
Ti,j cos ϕi,j

)]
− sin θi

2 cos αi

{
2
(

L
2 − R

) 4
∑

j=1
Ti,j

+
4
∑

j=1

(
Ti,j

√
R2 −

[
r cos

(
ϕi,j + αi

)]2
)
+ RFbz,i

}
+ 2
(

L
2 − R

)
Fbx,i +

(
L
2 − R

)
Gx,i −Mby,i

Equation (16) can be solved analytically or by applying the modified Anderson–Björck–
King method [32]. The value of θi−1, which is both within the range

(
−π

2 , π
2
)

and close to
the previous value is selected to be the answer. The remaining components of the torque
acting on the top contact surface are derived from Equation (14).

3.2.2. Transformation of Coordinates between Adjacent Links
During the iterative processes, coordinate transformations are needed before applying

the variables achieved in the last step to the current one. We assume that the tensions
applied to the cables passing through the base in counter-clockwise order in the WCS are
{T0,j}4

j=1. Then if i is odd, we choose αi = α, {Ti,j}4
j=1 = {T0,(j−1)}4

j=1 (where T0,0 = T0,4)

and {ϕi,j}4
j=1 = {0,−α, π, π − α} in the LCS. Otherwise, αi = −α, {Ti,j}4

j=1 = {T0,j}4
j=1

and {ϕi,j}4
j=1 = {0, π + α, π, α}. Moreover, we assume that the variables θi−1, Fi

ct and Mi
ct are

achieved in the last static analysis on link-i, then in the current analysis, we have θi−1 = −θi−1
and the bottom contact force and moment vectors are:{

Fi−1
cb = −Rz(αi)Ry(−θi−1)Fi

ct
Mi−1

cb = −Rz(αi)Ry(−θi−1)Mi
ct

. (17)

3.3. Calculation of Tip Position

Since the shape of the robot has been achieved in the previous step, we can easily
obtain the tip position, as illustrated in Algorithm 3. Let transformation matrices Tl(d) =

Tl(x, y, z) =
[

I3×3 d
01×3 1

]
be a pure translation of d, and Try(φ) =

[
Ry(φ) 03×1
01×3 1

]
& Trz(ψ) =[

Rz(ψ) 03×1
01×3 1

]
be pure rotation matrices about the y and z-axes, respectively.

Algorithm 3: Calculation of Tip Position.

1 Function getTipPosition ([θ1, θ2, . . . , θn−1]) is
2 w

1T ←− Tl
(
d1);

3 for i=2 to n do i−1
iT ←− [θ1, θ2, . . . , θi−1];

4 w
nT ←− w

1T 1
2T . . . n−1

nT;
5 wPtip ←−

w
nT nPtip;

6 return wPtip;
7 end

For the base link, the transformation matrix between LCS {1} and WCS {w} is:

w
1T = Tl

(
d1) ∗ Trz(−π + α1) ∗ Try(π) , (18)

where d1 is the displacement between their origins. For the following links, the transformation
matrix from LCS {i} to LCS {i− 1} (i = 2, 3, . . . , n) is:

i−1
iT = Trz(αi) ∗ Try(−θi−1) ∗ Tl(x0, 0, z0) , (19)
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where x0 = − 2ml
m2+1 , z0 = − 2l

m2+1 , m = tan θi−1
2 , l = L

2 − R
(
1− cos θi−1

2
)
+ mR sin θi−1

2 .
Hence, the transformation matrix from LCS {i} to WCS {w} is:

w
iT = w

1T 1
2T . . . i−1

iT , (20)

and the tip position in the WCS is: wPtip = w
nT nPtip , where nPtip is the tip of the distal

link in the LCS {n}.

3.4. Complete Calculation Procedures

Equation (16), which is used to calculate bending angles θi, can be regarded as a part
of the system of nonlinear equations:

F = ( f1, f2, . . . , fn−1) = 0 . (21)

To solve this nonlinear system, an iterative method is proposed in this paper. The
complete calculation process of the method is presented in Algorithm 4, including the
sub-processes described in Algorithms 1 and 2. It starts with an initial guess of the vector
θ0 =

[
θ0

1 , . . . , θ0
i , . . . , θ0

n−1
]> calculated in the case without gravity compensation. Then

the sequence of bending angle vectors
{

θk
i

}∞

k=0
is generated, which will converge to the

desired solution.

Algorithm 4: Complete process.

Input: [T1, T2, T3, T4],
w

Gi & Geometry parameters;
Output: [θ1, θ2, . . . , θn−1] & wPtip;

1 Initialization:
2 Assume :

[
G0

1, G0
2, . . . , G0

n−1
]
= [0, 0, . . . , 0];

3
[∗θ1

1 ,∗ θ1
2 , . . . ,∗ θ1

n−1
]
←− getBendingAngles();

4 wP1
tip ←− getTipPosition();

5 end
6 repeat
7

[
Gk

1, Gk
2, . . . , Gk

n−1

]
←− updateGravityVectors();

8

[
∗θk+1

1 ,∗ θk+1
2 , . . . ,∗ θk+1

n−1

]
←− getBendingAngles();

9 wPk+1
tip ←− getTipPosition();

10 until ‖wPk+1
tip −

w Pk
tip‖ < ε;

According to Equations (1)–(12) and (16), the function fi in the LCS on link-i is com-
posed of the cable tensions, contact forces, gravity, and torques. Let k be the number of
iterations for Equation (21) and ∗θk+1

i−1 be the solution of fi = 0 derived in the (k + 1)th
iteration. The parts of tension forces, contact forces and their torques are related to the
angles {θk+1

n−1, θk+1
n−2, . . . , θk+1

i , ∗θk+1
i−1 }, while those of gravity and its torque are related to the

angles {θk
1, θk

2, . . . , θk
i−2, ∗θk+1

i−1 }. Thus, each nonlinear function can be expressed as:

fi

(
θk

1, θk
2, . . . , θk

i−2, ∗θk+1
i−1 , θk+1

i , . . . , θk+1
n−1

)
= 0 , (22)

which is the primary step of the nonlinear Gauss–Seidel iteration scheme [33]. To simplify
the calculation, the parts of gravity and its torque can also be calculated by {θk

1, θk
2, . . . , θk

i−1}.
The relaxation parameter ω is also introduced to modify all the bending angles derived
from the kth iteration before updating the gravity vectors:

θk
i = θk−1

i + ω
(
∗θk

i − θk−1
i

)
. (23)

Usually, the value of relaxation parameter ω is chosen within (0, 1] [34]. The iteration
ends when the change in tip position is less than a predefined threshold ε, i.e., when



Robotics 2023, 12, 2 9 of 15

‖wPk+1
tip −

w Pk
tip‖ < ε. In all the simulations and experiments in this work, ε has been set to

1× 10−12.
During the calculation, the initial values of bending angles and the configuration of

the value of relaxation parameter ω both affects the convergence and the computational
time of the method. For example, the mean execution time for the ground-mounted steel-
material spatial-orientation simulation case in Section 4 with ε = 1× 10−12 was 0.1164 s for
ω = 0.1 and 0.0085 s for ω = 1 when calculated a thousand times in MATLAB R2021b on a
laptop with macOS 10.15.7, Intel Core i9 CPU (8-Core, 2.3 GHz), and 16 GB memory. To
quickly achieve the specified accuracy [33] in the application, we can choose ω = 1 as the
initial configuration for rapid convergence. Each time when the computation of the current
step does not converge; the step will continue to iterate under the updated configuration
with reduced relaxation parameter value (e.g., ωcurrent =

ωprevious
2 ) using the angle values

calculated in the last step.

4. Simulations and Experiments

Two sets of simulations and two sets of experiments were performed to validate the
proposed estimation method. In the simulations, the effect of gravity on the snake-like
robot’s shape with different material densities was analyzed for both planar- and spatial-
orientation cases under ground- and ceiling-mounted setups. In the experiments, the
accuracy of the proposed model was further validated using a real snake-like robot in
planar and spatial motions with both mounting configurations.

4.1. Simulations

In the simulations, we used ADAMS to simulate the behaviors of the snake-like robots
under different configurations and compared them with the calculated results in MATLAB
using the proposed method. The simulations consisted of two groups: planar (α = 0◦

with 1 degree of freedom) and spatial (α = 90◦ with 2 degrees of freedom) cases, with one
example for each group shown in Figure 3. In the literature, different materials have been
used to fabricate the snake-like robot, such as steel [35], aluminum [36], and acrylonitrile
butadiene styrene (ABS) [37]. To identify the effect of gravity on the robot with various
materials, four popular materials for 3D printing have been chosen to parameterize the
robot in simulation, and their densities were as follows: ABS (1.05 g/cm3), aluminum
(2.68 g/cm3), titanium (4.41 g/cm3), and steel (7.86 g/cm3).

In all the simulations, each robot has six links with the following link parameters:
Length L = 12 mm, radii of contact surfaces R = 6 mm, cable distance r = 3.5 mm, and
volume V = 0.851 cm3. All the simulations started from the initial guess {θ0

i } = 0 with the
gravitational acceleration g = 9.8 m/s2.

start

end

(a) (b)

start

end

Figure 3. Simulation processes of two example cases in ADAMS. In both cases, the materials used
were steel and the robots were ground-mounted. (a) One of the planar-orientation cases (α = 0◦).
(b) One of the spatial-orientation cases (α = 90◦).
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4.1.1. Planar-Orientation Case

In this group of simulations, the forces applied to each cable were [0, 2.4, 0, 5.1] N in
all cases. The simulation process of an example case (steel, ground-mounted) is illustrated
in Figure 3a. The results are summarized in Table 1, including the bending angles of each
joint and the displacement of the tip in the WCS.

Table 1. Estimation and simulation results of bending angles and tip positions for planar-orientation cases.

Platform − Ground-Mounted Case Ceiling-Mounted Case

Material − ABS Aluminum Titanium Steel ABS Aluminum Titanium Steel

Result Est.∗ Est. Sim. Est. Sim. Est. Sim. Est. Sim. Est. Sim. Est. Sim. Est. Sim. Est. Sim.

θ1(◦) 28.99 31.91 31.06 36.57 37.29 41.46 46.01 50.44 51.86 26.22 27.36 22.31 24.02 18.79 21.26 13.56 13.38
θ2(◦) 28.99 31.22 30.65 34.61 33.63 37.93 39.80 43.26 46.61 26.80 28.12 23.62 24.70 20.65 23.32 16.04 16.93
θ3(◦) 28.99 30.28 30.13 32.08 31.20 33.59 32.24 35.35 34.10 27.65 28.73 25.58 26.58 23.52 24.58 20.10 23.07
θ4(◦) 28.99 29.51 29.74 30.14 30.07 30.54 30.13 30.62 30.19 28.41 29.18 27.43 28.64 26.39 27.66 24.50 25.36
θ5(◦) 28.99 29.10 29.53 29.21 28.20 29.24 29.50 29.11 29.51 28.86 29.41 28.62 29.28 28.34 29.17 27.80 28.80

x(mm) 47.04 46.23 46.12 44.16 44.78 41.26 39.78 34.98 33.23 47.39 46.78 47.05 46.92 45.78 46.51 41.94 42.32
y(mm) 0.00 0.00 −0.04 0.00 0.06 0.00 0.10 0.00 −0.02 0.00 −0.12 0.00 0.17 0.00 0.10 0.00 −0.01
z(mm) 14.85 10.19 11.16 3.45 4.02 −2.67 −6.31 −11.45 −13.34 19.55 16.78 26.54 23.25 33.12 27.94 43.11 40.43

Est.∗: Estimation without gravity compensation [22]; Est.: Estimation with gravity compensation; Sim.: Simulation
of ADAMS.

In the ground-mounted cases, the z component of the tip position of simulation and
estimation with gravity compensation both decrease as the density of the material increases.
The mean position error between the estimation with gravity compensation and simulation
‖Pest − Psim‖ is 2.08 mm. The estimated positions without gravity compensation were
fixed, i.e., (x, y, z) = (47.04, 0.00, 14.85), as different material densities do not affect the
model when gravity is not considered. The mean position error between the estimation
without gravity compensation and the simulation is 17.16 mm, which is bigger than the
compensated one.

In the ceiling-mounted cases, since gravity pulls the links away from the base, the
z component of the tip position with gravity compensation enlarges while the density
increases. The mean position errors between the estimation and simulation results with and
without gravity compensation are 3.52 and 12.36 mm, respectively, showing the superior
accuracy of the estimation with gravity compensation.

For both mounting configurations, the bending angles estimated without gravity com-
pensation always kept the fixed value with the mean angle error ‖θi,est − θi,sim‖ = 4.39◦, while
they are distinct from each other and change with different materials in the simulation. In
comparison, the results with gravity compensation are more accurate, with a mean angle
error of 0.48◦ in the planar cases.

4.1.2. Spatial-Orientation Case

In this group of simulations, the tensions applied to each cable were [3.7, 2.4, 1.8,
5.1] N for all cases. The simulation process of an example case (steel, ground-mounted) is
illustrated in Figure 3b. The results of the simulations are shown in Table 2.

The variation trends of angles and positions under various materials estimated with
gravity compensation are consistent with those simulated in ADAMS. The mean position
errors between the simulation and the estimation results with and without gravity com-
pensation in ground-mounted cases are 3.10 and 6.28 mm, and those in ceiling-mounted
cases are 1.57 and 2.15 mm. The mean angle errors between them in both ground-mounted
and ceiling-mounted cases are 0.56◦ and 1.52◦. The influence of gravity is less vital when
the density is relatively low in spatial orientation cases. However, the position errors of
cases with and without gravity compensation under the highest density (steel) are 3.98 and
10.89 mm for the ground-mounted case and 1.28 and 3.69 mm for the ceiling-mounted case.
Thus, when the density is relatively high, it is critical to implement gravity compensation.
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Table 2. Estimation and simulation results of bending angles and tip positions for spatial-orientation cases.

Platform − Ground-Mounted Case Ceiling-Mounted Case

Material − ABS Aluminum Titanium Steel ABS Aluminum Titanium Steel

Result Est.∗ Est. Sim. Est. Sim. Est. Sim. Est. Sim. Est. Sim. Est. Sim. Est. Sim. Est. Sim.

θ1(◦) 10.58 11.08 11.32 11.92 12.63 12.94 13.65 15.40 17.17 10.12 10.06 9.47 9.28 8.84 8.61 7.77 7.68
θ2(◦) 15.48 15.88 17.34 16.54 18.39 17.28 19.49 18.89 21.26 15.09 16.21 14.51 15.49 13.94 14.71 12.90 13.48
θ3(◦) 10.58 10.85 11.26 11.29 11.87 11.82 12.52 13.08 13.70 10.33 10.66 9.98 10.28 9.63 9.91 9.03 9.32
θ4(◦) 15.48 15.63 16.97 15.87 17.35 16.14 17.75 16.71 18.65 15.33 16.55 15.11 16.27 14.88 15.97 14.47 15.43
θ5(◦) 10.58 10.62 10.99 10.68 11.05 10.75 11.15 10.91 11.34 10.55 10.90 10.50 10.86 10.45 10.78 10.36 10.68

x(mm) 18.56 19.13 19.60 20.09 21.04 21.23 22.14 23.88 25.55 18.02 18.23 17.24 17.28 16.48 16.54 15.17 15.36
y(mm) −18.47 −18.82 −20.61 −19.37 −21.49 −19.99 −22.33 −21.30 −23.71 −18.14 −19.67 −17.64 −19.02 −17.13 −18.36 −16.20 −17.25
z(mm) 64.41 64.03 62.70 63.37 61.60 62.58 60.59 60.60 57.91 64.76 63.72 65.25 64.37 65.72 64.93 66.50 65.79

Est.∗: Estimation without gravity compensation [22]; Est.: Estimation with gravity compensation; Sim.: Simulation
of ADAMS.

4.2. Experiments

The proposed method was further validated with experiments on a real snake-like
robot, which has 12 links with link length L = 12 mm, radii of contact surfaces R = 20 mm,
cable distance r = 7.5 mm, and link mass m = 3.8 g, as shown in Figures 4 and 5. The robot
has two degrees of freedom with the orientation α = 90◦. Similarly to the simulations, both
ground-mounted and ceiling-mounted setups were tested. In both configurations, a spirit
level was used to make sure the robot base was horizontal. Different weights were added
to the cables to adjust their tension.

All the data were collected at static equilibrium points along the paths. To reduce the
impact of friction, the tensions started in larger values before it came to the predefined
ones so that the robot could keep moving around before settling down. Tip positions
were obtained by a real-time tracking system OptiTrack with 10 cameras, whose mean
3D error for overall re-projection was 0.307 mm. The bending angles of the robot were
determined via images (6016× 4016 pixels) captured by a digital camera Nikon D750. Four
optical markers were mounted to the frame of both setups to calibrate the x, y, and z-axes
for the WCS. Another optical marker was attached to the tip of the robot to calibrate the
origin of the WCS when the robot was held straight and to record its tip position during
the experiment.
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Figure 4. The setups and experiments for planar-motion cases in Table 3 where only one tension
force was changed. (a) presents the setup with the ground-mounted robot in experiments 1, 2, and 3.
(b) presents the initial state of the ground-mounted robot in the WCS with a total height of 162 mm.
(c), (d), and (e) are the images captured in G-M experiments 1, 2, and 3, respectively. (f) presents the
setup with the ceiling-mounted robot in experiments 4, 5, and 6. (g) presents the initial state of the
ceiling-mounted robot in the WCS. (h), (i), and (j) are the images captured for C-M experiments 1, 2,
and 3, respectively.
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Figure 5. Experiments for all spatial-motion cases where only one tension force remained unchanged.
(a) is the image containing all the measured shapes of the ground-mounted snake-like robot under
static equilibrium. {P1, P2, . . . , P9} are the tip positions of the robot under different payloads shown
in Table 4. (b,c) are the results of estimations with and without gravity compensation (GC) and the
measurement in the experiments for (a). Similarly, (d) is the counterpart related to the ceiling-mounted
robot. (e,f) are the corresponding results.

4.2.1. Planar-Motion Case

The experiments performed in planar motions and WCSs for ground- and ceiling-
mounted platforms are illustrated in Figure 4a,b,f,g. As shown in Figure 4c–e,h–j, only
the values of θi (i = 2, 4, . . . , 10) have been recorded since θi = 0 for i = 1, 3, . . . , 11. The
payloads deployed in each experiment are shown in Table 3. From Figure 4 and Table 3, the
real shape (i.e., bending angles) of the robot in both ground-mounted and ceiling-mounted
setups have a similar tendency to the estimated shape with gravity compensation. The
result shows that the effect of gravity cannot be ignored here, and the shape varies with the
direction of gravity.

As shown in Table 3, the mean errors of total bending angles of each case ‖∑11
i=1 θi,est −

∑11
i=1 θi,exp‖ for the estimation with gravity compensation are 0.72◦ under ground-mounted

and 1.28◦ under ceiling-mounted configurations, and those for the cases without gravity
compensation are 40.71◦ and 19.23◦. The mean tip position errors of estimation ‖Pest−Pexp‖
with gravity compensation are 1.67 mm under ground-mounted and 2.69 mm under
ceiling-mounted configurations, and those without gravity compensation are 67.04 mm
and 29.12 mm.

Table 3. Estimated and measured results of bending angles for planar-motion cases.

Payloads(N) Experiment 1: [0.98,0.98,0.98,1.96]. Experiment 2: [0.98,0.98,0.98,2.94]. Experiment 3: [0.98,0.98,0.98,3.92].

Results Est*.1
G-M

Est.1

G-M

Exp.1

C-M

Est.1

C-M

Exp.1
Est*.2

G-M

Est.2

G-M

Exp.2

C-M

Est.2

C-M

Exp.2
Est*.3

G-M

Est.3

G-M

Exp.3

C-M

Est.3

C-M

Exp.3

θ2(
◦) 8.97 27.17 26.49 4.16 4.10 14.97 31.35 30.35 7.87 6.64 19.25 33.53 32.50 11.16 11.23

θ4(
◦) 8.97 23.42 22.93 4.85 4.83 14.97 27.82 27.12 8.94 8.50 19.25 30.33 29.34 12.44 11.79

θ6(
◦) 8.97 18.07 18.49 6.02 6.34 14.97 22.85 23.81 10.72 10.82 19.25 25.90 25.85 14.53 13.67

θ8(
◦) 8.97 13.23 13.78 7.38 7.74 14.97 18.54 19.24 12.72 13.70 19.25 22.16 22.13 16.80 16.31

θ10(
◦) 8.97 10.06 10.19 8.53 8.80 14.97 15.86 15.46 14.35 15.58 19.25 19.96 20.39 18.58 18.18

x(mm) 0.00 0.00 0.00 0.00 0.05 0.00 0.00 −0.22 0.00 −2.15 0.00 0.00 −0.36 0.00 −2.32
y(mm) −56.74 −106.23 −107.19 −35.87 −38.40 −84.84 −109.29 −110.68 −60.93 −62.41 −97.22 −106.43 −107.19 −77.57 −79.27
z(mm) 145.50 86.79 85.44 155.18 155.12 118.86 58.21 57.04 140.94 141.16 95.18 41.70 40.42 124.64 125.09

Est.∗: Estimation without gravity compensation [22]; Est.: Estimation with gravity compensation; Exp.: Experi-
ment; G-M: Ground-Mounted case; C-M: Ceiling-Mounted case.

4.2.2. Spatial-Motion Case

The experiments performed in spatial motions and WCSs for ground- and ceiling-
mounted platforms are illustrated in Figure 5a–f. Nine tip positions {p1, p2, . . . , p9} under
different payloads have been recorded for each installation form. Under ground-mounted
configurations, the tip of the robot tended to move outward, which is contrary to the
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ceiling-mounted configurations. The estimated tip positions are compared with the actual
tracked tip position. As shown in Table 4, the mean position errors of the estimation
with gravity compensation are 2.29 mm under ground-mounted and 3.14 mm under
ceiling-mounted configurations, and those without gravity compensation are 28.35 and
20.78 mm, respectively. From the results, it can be clearly seen that the introduction of
gravity compensation has significantly improved the accuracy of the estimation.

Table 4. Position errors (mm) between the estimated and measured tip positions for spatial-
motion cases.

Tip No. P1 P2 P3 P4 P5 P6 P7 P8 P9

Payload (N) [1.96, 1.96,
1.96, 6.86]

[6.86, 1.96,
1.96, 8.82]

[8.82, 1.96,
1.96, 6.86]

[6.86, 1.96,
1.96, 3.92]

[6.86, 1.96,
1.96, 1.96]

[6.86, 3.92,
1.96, 1.96]

[8.82, 6.86,
1.96, 1.96]

[6.86, 8.82,
1.96, 1.96]

[1.96, 6.86,
1.96, 1.96]

G-M Est.∗ 28.39 21.87 23.42 32.74 40.86 32.67 25.03 21.74 28.43
G-M Est. 2.21 3.05 2.42 1.22 2.60 2.69 2.66 3.01 0.79

C-M Est.∗ 20.34 15.03 19.25 20.79 30.40 20.89 19.76 20.19 20.35
C-M Est. 2.88 3.63 3.25 3.26 2.21 3.87 2.55 3.82 2.81

Est.∗: Estimation without gravity compensation [22]; Est.: Estimation with gravity compensation; G-M: Ground-
Mounted; C-M: Ceiling-Mounted.

5. Discussion and Conclusions

In this paper, we proposed a static model with gravity compensation to estimate
the bending shape of the snake-like robot according to the tension of each driving cable
and the mass of each link. The model employed an iterative algorithm with the effect of
each link’s gravity and the bending angles constantly updated until convergence. The
model works for a general installation configuration and has been verified by two special
cases: ground-mounted and ceiling-mounted. Through simulations, it was found that the
constant curvature hypothesis widely used in previous studies is violated when gravity is
considered. The difference between a model with gravity compensation and one without is
increasingly significant when the robot is made of denser materials. The superiority of the
gravity compensation model was further verified by experiments on a real snake-like robot.
The proposed model reduced the tip estimation error by 91.5% on average compared to a
model without gravity compensation.

In the future, the proposed method will be extended to multi-segment snake-like
robots with friction and clearance compensation, and the effect of other external forces will
be studied as well.
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