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Abstract: Improving the strategies employed to control robotic arms is of great importance because
of the increase in their use in advanced supervisory control strategies, such as digital twins. The
inverse kinematic (IK) control of manipulators requires an IK solution and an awareness of the
singular configurations. This work presents a complete IK calculation system with singularity
analysis for the UR5 robotic arm created by Universal Robots. For a specific robot pose, different
angle solution sets are obtained, and one of these solution sets has to be selected to achieve
movement continuity and avoid singularities. Two methods for this double purpose are proposed:
one calculates all the solution possibilities, and the other obtains only one solution set by following
a sequence of decisions and calculations clearly stated by a finite state machine (FSM). Both
methods are effective in managing singularities. The FSM-based method complements the IK
solution procedure with advantages in the number of computations and performance by producing
results that would not lead the joints to move abruptly. The results prove that the presented
methods select an IK solution that does not result in a singular configuration, and that most of the
time, they lead to the same valid IK solution.

Keywords: inverse kinematics; singularity analysis; finite state machine; complete kinematic solu-
tion analysis

1. Introduction

Robots are used to increase production and improve product quality; because of
this, Industry 4.0 uses technologies such as robotic manipulators and their digital twins
to create cyber–physical systems that are advanced supervisory control systems that
improve the overall performance of the physical systems. An inverse kinematic (IK)
solution of a robot is required when controlling robots and their digital twins. The
twin-in-the-loop architecture [1] is one example of how digital twins can be used. The
extensive use of robots and the fact that they interact with their users make it necessary
to improve their behavior; this can be achieved by using control strategies such as the
IK control and the model reference adaptive control [2]; however, singularities must be
avoided for the robot to be free to move in any direction within its workspace and with
reasonable joint speed; the latter is necessary because joint velocities tend to infinity as a
singular configuration is approached.

Improving the behavior of collaborative robots (cobots) is important because they
should safely interact with their users. This is the case of the UR5 robotic arm, a 6-
degree-of-freedom (DOF) manipulator created by Universal Robots, and other cobots
that have been produced with the same geometry by companies such as Smokie Robotics,
Techman Robot, AUBO Robotics, and Doosan Robotics. The kinematics of the UR5 robot
has been studied in [3–9], some solutions have been statistically compared in [10], and a
method to classify IK branches of the UR-type robot has been recently proposed [11]. The
forward or direct (DK) and inverse kinematics (IK) can be studied with different methods;
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a well-known technique uses the original or the modified Denavit–Hartenberg (DH)
parameters [12]. An IK solution allows for computing the configurations that lead to a
specific pose, which is necessary when the position and orientation of the end effector
are controlled. Even though works such as [13–18] studied the IK of the general 6R
serial manipulator that results in 16 solutions, robots with the UR5 geometry only have
8. However, in the analytical and numerical IK solutions of serial robot architectures,
it is required to avoid singular configurations; therefore, singularity analysis needs to
be considered as a part of the complete IK solution, as in [19]. Although singularity
analyses for the UR robot geometry were performed [20,21], a simplified expression is
more appropriate for implementations. A code that allows for computing the Jacobian
and its determinant can be found in [22], and only a few changes are necessary to adapt it
to other robots; in [23], the same authors presented the Denavit–Hartenberg parameters
for the Open Unit Robot (OUR) manipulator created by Smokie Robotics.

To the best of the authors’ knowledge, a complete IK solution that integrates the
calculation of singularities and a strategy to circumvent them has not been published.
Therefore, this work provides a practical IK solution that manages singularities besides the
multiplicity of angle solutions inherent to the IK problem, and constitutes a ready-to-use
tool for developing, simulating, and controlling robotic systems.

Additionally, two modalities or methods for dealing with singularities and multiple
solution sets are proposed. A finite state machine (FSM) is used to tailor one of the methods
for complementing the IK analysis with the direct production of an appropriate nonsingular
solution without calculating all the possible solutions. An IK solution that avoids singular
configurations is helpful in designing and controlling a robot and its digital twin [24], and
in image-based visual servoing [25].

This paper presents a complete IK solution, a compact expression for the determinant
of the Jacobian that can be easily implemented, and two effective methods with their
corresponding algorithms for handling singularities and choosing a set of angles or calcu-
lating a single one. The rest of this paper is organized as follows: Section 2 shows a set
of expressions used to compute the IK solution, and presents the singularity analysis for
robots with the UR geometry and two algorithms that can be used to choose a set of angles.
The results obtained with the two algorithms are compared in Section 3. Lastly, conclusions
are presented in Section 4.

2. Materials and Methods

First, this section shows the IK solution on which the selection algorithms are based;
then, it describes the singularity problem and presents the singularity analysis for robots
with the same geometry as the UR5; lastly, the proposed selection algorithms are described.

2.1. Inverse Kinematic Solution

The UR5, which is the specific robot that was used for the experiments, is a 6-degree-
of-freedom (DOF) cobot that only has rotational joints. Table 1 presents its DH parameters,
which are illustrated in Figure 1. However, the IK solution and the singularity analy-
sis only use variables, because this allows for using them for any other robot with the
same geometry.

Table 1. Denavit–Hartenberg (DH) parameters of the UR5.

i αi(rad) ai(mm) 1 di(mm) 1 θi

1 π/2 0 d1 = 89.2 θ1
2 0 a2 = 425.0 0 θ2
3 0 a3 = 392.0 0 θ3
4 π/2 0 d4 = 109.3 θ4
5 −π/2 0 d5 = 94.75 θ5
6 − − d6 = 82.5 θ6

1 The values for these parameters were obtained from [26].
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From the different IK solutions found in the literature, only one was considered to
define the algorithms presented here; however, these algorithms can be easily modified to
use a solution that calculates the angles in a different order. The following notation is used
in this work: si = sin θi, ci = cos θi, sij... = sin

(
θi + θj + ...

)
and cij... = cos

(
θi + θj + ...

)
.

The homogeneous transformation matrix from Equation (1) is composed of a rotational
submatrix (elements represented by r) and a position vector (p elements); these define the
orientation and position of frame 6 with respect to the base (frame 0). Since the DK solution
is required to compute the IK solution, the resulting transformation matrix and its elements
are shown next [10]:

0
6T =


r11 r12 r13 px
r21 r22 r23 py
r31 r32 r33 pz
0 0 0 1

 (1)

r11 = c1c234c5c6 + c6s1s5 − c1s234s6 (2)

r21 = c234c5c6s1 − c1c6s5 − s1s234s6 (3)

r31 = c5c6s234 + c234s6 (4)

r12 = −c1c234c5s6 − s1s5s6 − c1c6s234 (5)

r22 = −c234c5s1s6 + c1s5s6 − c6s1s234 (6)

r32 = −c5s234s6 + c234c6 (7)

r13 = −c1c234s5 + c5s1 (8)

r23 = −c234s1s5 − c1c5 (9)

r33 = −s234s5 (10)

px = r13d6 + c1(s234d5 + c23a3 + c2a2) + s1d4 (11)

py = r23d6 + s1(s234d5 + c23a3 + c2a2)− c1d4 (12)

pz = r33d6 − c234d5 + s23a3 + s2a2 + d1 (13)
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Figure 1. Coordinate frame assignment using the original DH convention (θi = 0 for i = 0, 1, 2, 3, 4, 5, 6).

Although some equations are expressed differently, the IK solution used in this work
consists of the following expressions that were proposed in [8]:

A = py − d6r23 (14)

B = px − d6r13 (15)

C = c1r11 + s1r21 (16)

D = c1r22 − s1r12 (17)

E = s1r11 − c1r21 (18)

F = c5c6 (19)

θ1 = ± atan2

(√
B2 + (−A)2 − d2

4, d4

)
+ atan2(B,−A) (20)

θ5 = ± atan2
(√

E2 + D2, s1r13 − c1r23

)
(21)

θ6 = atan2
(

D
s5

,
E
s5

)
(22)

θ234 = atan2 (r31F− s6C, FC + s6r31) (23)

KC = c1 px + s1 py − s234d5 + c234s5d6 (24)

KS = pz − d1 + c234d5 + s234s5d6 (25)

c3 =
K2

S + K2
C − a2

2 − a2
3

2a2a3
(26)
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s3 =
√

1− c2
3 (27)

θ3 = ± atan2(s3, c3) (28)

θ2 = atan2(KS, KC)− atan2(s3a3, c3a3 + a2) (29)

θ4 = θ234 − θ2 − θ3 (30)

2.2. Singularities

The Jacobian is a matrix that relates the joint velocities to the linear and angular veloci-
ties of the end effector. This matrix is used to find singularities because, for nonredundant
robots such as the UR5, they exist when det(J) = 0; the Jacobian can be computed using
different methods, one of which is shown in [27].

In [28], the authors mentioned that a robot is at a singularity or singular config-
uration when it is impossible to move the end effector in at least one direction; there,
the Jacobian was computed as in Equations (31) and (32) for prismatic and rotational
joints, respectively.

J =

[
JLi
JAi

]
=

[
bi−1

0

]
(31)

J =

[
JLi
JAi

]
=

[
bi−1 × ri−1,e

bi−1

]
(32)

In the previous equations, bi−1 is the unit vector representing the z-axis of joint i− 1
with respect to the base (frame 0), ri−1,e is the end-effector position with respect to frame
i− 1, and JLi

and JAi
represent the parts of the Jacobian that relate the joint velocities to the

linear and angular ones, respectively. An example of how the Jacobian matrix is computed
using this method can be found in [28].

Vectors bi−1 and ri−1,e can be obtained from the DK study because bi−1 is equal to
0ẑi−1 (third column of rotational matrix 0

i−1R), and ri−1,e can be obtained by subtracting
the translation vector 0

i−1P from the end-effector position.
Since joint velocities tend to infinity as the robot approaches a singular configura-

tion, studying and avoiding singularities is necessary to help in rendering the interaction
between robot and user safer.

2.3. Singularity Analysis

Only Equation (32) is necessary to compute the Jacobian because the UR5 consists
exclusively of rotational joints. Adapting the Jacobian matrix with the corresponding UR5
parameters, the following can be expressed:

JA =

0 s1 s1 s1 c1s234 r13
0 −c1 −c1 −c1 s1s234 r23
1 0 0 0 −c234 r33

 (33)

r0,e =

px
py
pz

 (34)

r1,e =

 px
py

pz − d1

 (35)
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r2,e =

 px − c1c2a2
py − c2s1a2

pz − s2a2 − d1

 (36)

r3,e =

 px − c1c23a3 − c1c2a2
py − c23s1a3 − c2s1a2
pz − s23a3 − s2a2 − d1

 (37)

r4,e =

r13d6 + c1s234d5
r23d6 + s1s234d5
r33d6 − c234d5

 (38)

r5,e =

r13d6
r23d6
r33d6

 (39)

The previous results allow computing JL as shown next:

JL1
=

−py
px
0

 (40)

JL2
=

−c1(pz − d1)
−s1(pz − d1)
s1 py + c1 px

 (41)

JL3
=

c1(s234s5d6 + c234d5 − s23a3)
s1(s234s5d6 + c234d5 − s23a3)
−c234s5d6 + s234d5 + c23a3

 (42)

JL4
=

c1(s234s5d6 + c234d5)
s1(s234s5d6 + c234d5)
−c234s5d6 + s234d5

 (43)

JL5
=

−d6(s1s5 + c1c234c5)
d6(c1s5 − c234c5s1)
−c5s234d6

 (44)

JL6
=

0
0
0

 (45)

As previously mentioned, to verify if the combination of joint angles results in a
singularity, the determinant of the Jacobian matrix must be computed to determine if it is
equal to or close to zero. This can be conducted with the following expression:

det(J) = s3s5a2a3(c2a2 + c23a3 + s234d5) (46)

Three types of singularities (shoulder, wrist, and elbow) exist for this robot. Informa-
tion about them can be found in [20,21], and they are briefly described next.

A shoulder singularity happens when the last factor in Equation (46), which involves
angles θ2, θ3, and θ4, is equal to zero. One example can be seen in Figure 2, which shows
that the end effector cannot be moved along z6.

Wrist singularities exist when s5 = 0, which mathematically happens when θ5 = 0 or
θ5 = ±π. This renders z4 and z6 parallel.

An elbow singularity is present when s3 = 0, which happens when θ3 = 0 or
θ3 = ±π. This means that the arm is fully stretched or bent; however, only the former case
is physically possible.
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Figure 2. Example of shoulder singularity.

2.4. Algorithms to Select a Solution

This section presents two complete algorithms that can be used to select one set of
angles that does not result in a singularity. In this work, angles close to 0 were considered
to be 0, and angles close to ±π were defined as π; 2π was added or subtracted until the
computed angle was within [−π, π].

Not all values computed by the IK solutions are valid, i.e., some of them lead to
computational errors. The cases in which this happens are described next:

• Computed θ1 angles are not acceptable if they are complex and no valid set can be
computed. For the used IK solution, it is enough to validate the result of the square
root in Equation (20).

• θ5 is not acceptable if it is complex or if |s5| ≤ 1× 10−12; since the IK solution uses
atan2, only the latter validation is necessary. The value of the limit for |s5| was chosen
because if the other sines and cosines in Equation (46) are equal to 1, it results in
det(J) = 1.5190× 10−4, which can be considered equal to zero. The other reason
was that although sin (0) = sin (π) = sin (−π) = 0, the computational tools do not
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always give the exact value, e.g., in MATLAB R2021a sin (π) = 1.2246× 10−16; this
means that the determinant is not always exactly 0.

• The angles for θ3 are not valid if |s3| ≤ 1× 10−12, or when either θ3 or s3 is complex.
For the used IK solution, it is enough to validate s3. The value defined for θ3 to be
valid was obtained using the same considerations described previously for θ5.

• Angles θ2 and θ4 are not considered to be acceptable if |d5s234 + a2c2 + a3c23| ≤
1× 10−9; the value of the limit was chosen because if s3 and s5 are both equal to
1 and this term is 1× 10−9, then det(J) = 1.6660× 10−4, which can be considered
to be zero.

• Lastly, a complete set of angles is not considered to be valid when the manipulator
reaches the outer limit of its workspace, which happens when θ3 = 0 and θ4 = π/2.
However, this leads to s3 = 0, which was already defined as not valid.

Modifications to the following algorithms may be necessary depending on the ap-
plication and the order in which the IK solution that is used computes the angles. These
algorithms do not consider the presence of obstacles.

2.4.1. Algorithm 1

The first algorithm computes all the sets of angles that take the end effector to a
previously specified pose, and then selects the one that requires moving the joints the
least overall.

To select a set of variables, some works maximize a cost function depending on the
objective (avoiding singularities, joint limits, or obstacles) [29] or find trajectories that do
not include the mutation of any joint angles at 180◦ [30]; however, this algorithm selects
the set as in [31], where the total joint displacement is minimized. Although something
similar was performed in [32], where the solution that minimized joint movement was
selected, weights were used to prioritize moving smaller joints, which were assigned
smaller weights.

Even though a specific selection criterion is used, depending on the objective, it is
possible to change it without affecting the rest of the steps.

This algorithm consists of the following steps:

1. Both θ1 solutions are computed, and complex angles are discarded.
2. The previously obtained values for θ1 are used to compute θ5. The sets containing

values of θ5 that are not considered valid are rejected.
3. θ6 is computed for the remaining sets.
4. The values of θ3 are computed and verified. Again, the solutions with angles that are

not acceptable are discarded.
5. Lastly, θ2 and θ4 are computed, and the sets of angles that are not valid are rejected.
6. The algorithm selects the solution with the minimal difference with respect to the

current joint positions, which is computed with the following equations:

∆θi = θi,p − θi,j (47)

and

di f f j =

√√√√ 6

∑
i=1

∆θ2
i , (48)

where p refers to a previous value, i to a joint, and j to the computed set.

2.4.2. Algorithm 2

When there are two possible solutions for an angle, the second algorithm chooses the
one that moves the specific joint less and verifies it does not result in a singularity. This is
to compute only one complete set of angles that results in the desired pose.
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This algorithm uses the FSM shown in Figure 3; this technique was used because
it is a comprehensible computational model. The FSM technique defines the steps that
have to be followed to complete a specified sequential task; a state is triggered by an
event or completion signal activated in the previous state. In the proposed FSM, each
step computes one or two angles, selects the closest option (if two possibilities exist),
and verifies if the chosen angles are valid. If a value is not acceptable, it is modified, and
a previous state is triggered. In this case, the task is to compute and select angles that do
not result in singular configurations.

Figure 3. Finite state machine (FSM) for Algorithm 2; chijk refers to the number of times that angles i,
j, and k have been changed to try a different set of angles.

The states are described next:

• State 1: The values of θ1 are computed and verified, and the one closer to the previous
θ1 is selected. If a valid θ1 is found, State 5 is next.

• State 5: As for θ1, the two possible angles for θ5 are computed and verified, and the
one closer to the previous value is selected. If an acceptable θ5 is found, State 6 is
next. Since the difference between the values of θ5 is the sign, only one of them is
necessary for the validation. If the computed angles are not valid, State 5 is repeated
using the other θ1; however, no solution exists if θ1 has already been changed.

• State 6: Here, θ6 is computed. This is followed by State 3.
• State 3: As for θ1 and θ5, both θ3 values are computed and verified, and the one closer

to the previous θ3 is selected; State 24 is run if an acceptable θ3 exists. Again, it is only
necessary to verify one of the calculated angles; if θ3 is not valid, one of the following
states is next:

– State 6: if θ5 has not been modified, the other value for θ5 is used.
– State 5: if θ5 has been changed and θ1 has not, the other possible angle for θ1

is tested.
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– End: no set of angles exists if, after changing θ1, both possibilities for θ5 result in
unacceptable values for θ3.

• State 24: θ2 and θ4 are computed in this state; for this reason, it is called State 24. If the
resulting set of angles is valid, the algorithm has found a solution (“End” is the next
state); otherwise, one of the following states is run:

– State 24: if the value of θ3 has not been changed, it is modified, and the state
is repeated.

– State 6: if both θ3 angles have been used and only one θ5 has been used, the other
possible θ5 is tested.

– State 5: if θ5 has been changed and both θ3 options have been tested, but θ1 has
not been modified. The other angle θ1 is used.

– End: if the manipulator cannot be taken to the desired pose even after changing
θ1, θ5, and θ3.

• End: this last state is reached when a valid set of angles is found or if it is impossible
to find one.

3. Results and Discussion

This section compares the results obtained with the algorithms presented in Section 2.4.
For the comparison, the desired poses are shown in Table 2 (only sets 7 and 9 do not

result in singularities). However, to choose a set of angles for said poses, the previous ones
were assumed to be θ1 = θ2 = θ3 = θ4 = θ5 = θ6 = 0.

Table 2. Joint angles used to compute the desired poses (rad).

Test θ1 θ2 θ3 θ4 θ5 θ6

1 π π/4 π/2 π/2 0 π/5

2 π −π/2 0 π π/3 0
3 π 0 π/2 π π 0
4 π/2 π/2 0 −π/2 π/3 π
5 π/2 0 π/4 π −π 0
6 −π/3 3π/4 0 π −π 0
7 π/3 π/3 π/2 π/4 π/3 0
8 π/5 π/2 π/2 π/2 π π/2

9 −π π/3 −π/2 π/2 π/6 π/2

10 −π/2 π/2 0 π −π π/2

Both algorithms were programmed in MATLAB R2021a. Other results can be ob-
tained depending on how the algorithms and IK solutions are programmed (e.g., if values
close to −π are defined as −π and not as π, or if the joint angles are not limited to be
within [−π, π]).

Tables 3 and 4 present the sets of angles selected by Algorithms 1 and 2, respectively.
Different results were chosen only in three tests (7, 8, and 9).

Table 3. Joint angles selected by Algorithm 1 (rad).

Test θ1 θ2 θ3 θ4 θ5 θ6

1 2.3815 0.7054 1.6608 0.7755 0.7601 1.4137
2 −1.7132 −2.0438 0.5154 2.5800 1.4998 1.4473
3 −0.6392 1.4741 1.9941 −0.3266 0.6392 −1.5708
4 1.5708 0.9088 1.3914 0.8414 −1.0472 0
5 −1.9116 2.2113 1.1655 −0.2352 0.3408 −0.7854
6 2.4303 0.2367 0.7022 2.2027 −0.3359 −2.3562
7 1.0472 1.0472 1.5708 0.7854 1.0472 0
8 −2.0715 −0.1327 1.5357 1.7386 −0.4418 0
9 3.1416 −0.4429 1.5708 −0.0807 0.5236 1.5708

10 −2.9992 0.9905 0.9407 1.2104 −1.7132 0
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Table 5 shows the computed determinants and proves that the final sets did not result
in singular configurations.

Table 4. Joint angles selected by Algorithm 2 (rad).

Test θ1 θ2 θ3 θ4 θ5 θ6

1 2.3815 0.7054 1.6608 0.7755 0.7601 1.4137
2 −1.7132 −2.0438 0.5154 2.5800 1.4998 1.4473
3 −0.6392 1.4741 1.9941 −0.3266 0.6392 −1.5708
4 1.5708 0.9088 1.3914 0.8414 −1.0472 0
5 −1.9116 2.2113 1.1655 −0.2352 0.3408 −0.7854
6 2.4303 0.2367 0.7022 2.2027 −0.3359 −2.3562
7 −0.8445 0.5569 1.3797 2.0214 2.8289 0.9248
8 −2.0715 0.3281 1.0257 −1.3537 0.4418 3.1416
9 −0.3414 2.5392 0.8718 −1.9651 2.6900 −2.2975

10 −2.9992 0.9905 0.9407 1.2104 −1.7132 0

Table 5. Determinants computed with the selected joint angles (rad).

Test Algorithm 1 Algorithm 2

1 4.9919× 106

2 −7.7601× 106

3 −2.9926× 107

4 −0.1915
5 −3.2505× 107

6 −2.2865× 107

7 −2.1859× 107 0.7623× 107

8 −3.4649× 107 2.9645× 107

9 5.2815× 107 −3.5288× 107

10 −1.2625× 107

Table 6 presents the differences between the selected angles and the previous ones;
these were computed as in Algorithm 1 using Equation (48) and prove that Algorithm 2
sometimes chose a set that required moving the joints more than Algorithm 1.

Table 6. Differences computed with the selected joint angles (rad).

Test Algorithm 1 Algorithm 2

1 3.4792
2 4.2870
3 3.0888
4 2.6521
5 3.2697
6 4.1197
7 2.5247 3.9838
8 3.1441 4.1651
9 3.9091 4.8683
10 3.9066

3.1. Discussion

The results show that the algorithms did not always choose the same angles. However,
selecting any of the computed sets that did not result in a singularity render it safer for the
user to interact with the robot.

Although Algorithm 1 selected the angles that moved the robot the least, which means
that the robot would reach the desired pose faster, Algorithm 2 would not lead to abrupt
movements, which is even safer for the user.

It is recommended to use Algorithm 1 when it is necessary to choose the set of angles
that moves the joints the least; however, the memory of the device used to compute the IK
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solution should be enough to store up to eight possibilities. Algorithm 2 is suggested for ap-
plications using devices with low computational resources and when the new configuration
does not need to be as similar as possible to the previous one.

The derived expression and proposed methods to compute the determinant of the
Jacobian require fewer parameters and calculations than the ones found in other works;
this implies a computational advantage particularly useful for real-time applications. The
proposed methods need modifications to use the solution in [20]. Even though it is possible
to use the equation in [21] in the proposed algorithms, the determinant does not result in
zero when either θ3 or θ5 is equal to π; these mathematical singularities exist and can be
detected with Equation (46).

3.2. Applications

A complete IK solution that avoids singularities is helpful in different applications;
one of them is robot design, particularly to implement the inverse kinematic control of a
robot with the same geometry. Other more advanced applications include image-based
visual servoing and the control of robotic digital twins.

Image-based visual servoing, as seen in Figure 4, refers to the use of features extracted
from images to move the robot to a desired feature or pose. In the latter case, it is necessary
to include the IK solution as a part of an external controller to choose one set of angles that
can move the end effector as desired while avoiding singularities.

Using a digital twin as supervisory control of a physical robot requires the IK solution
to be implemented in the digital twin controller to verify that the physical system is working
as expected and under safe conditions, which is particularly important for cobots. The
proposed validated IK solution that uses the FSM is suitable because it avoids abrupt
changes in the joint motion, this also renders the system safer because joint velocities can
be safely controlled if singularities can be detected and avoided.

Controller
with IK 
solution

Joint
controllers

Feature
extraction / Pose 

estimation

Encoders

Camera

−
+

Desired
feature / 
pose

Figure 4. Image-based visual servoing control loop adapted from [33].

4. Conclusions

Inverse kinematic solutions can be used to control real and virtual robots. How-
ever, when an IK solution is used, it is also necessary to consider the robot’s singular
configurations to have complete and validated robot control algorithms. For that reason,
this study used the Jacobian matrix of the UR5 robot and its determinant; the latter was
used in two algorithms to select a set of angles that takes the robot to the desired pose
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without resulting in a singularity. In this way, the main contribution of this work is the
definition of two alternative methods for the complete and validated computational
implementation of IK solutions for the UR5 robot. Since reaching singularities leads
to faster joint velocities, methods that help in avoiding singular configurations and in
making it safer for people to interact with this kind of robot are essential additions to the
IK solution and can be considered to be enhanced alternative inverse IK solutions for
robotic arms with the UR geometry.

The results show that, although the two algorithms could lead to the same set of
angles, this is not always true, which means that one of the presented algorithms can
be more suitable depending on the application. For example, if one objective is to reach
the desired pose faster, Algorithm 1 can be used to ensure that the set of angles that
requires moving the joints the least overall is selected; however, by using an FSM and
not computing all the possibilities, Algorithm 2 requires less storage space, which means
that it can be used in devices with low computational resources; this algorithm also
avoids abrupt joint movements.

As a final remark, the FSM-based method complements the IK solution procedure
with advantages in the number of computations and performance by producing results
that would not move the joints abruptly, which is desired for collaborative robots, and this
method is helpful when using devices with low computational resources.

Future work will focus on using the IK solution and one of the selection algorithms
to control a virtual UR5 that will later be used to control a physical UR5 robot. The
chosen algorithm will be modified to select the set of angles that consumes the least
power or to evaluate which one results in the trajectory that moves the robot as far as
possible from singularities.
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