
Citation: Srikonda, S.; Norris, W.R.;

Nottage, D.; Soylemezoglu, A. Deep

Reinforcement Learning for

Autonomous Dynamic Skid Steer

Vehicle Trajectory Tracking. Robotics

2022, 11, 95. https://doi.org/

10.3390/robotics11050095

Academic Editor: Sunan Huang

Received: 24 June 2022

Accepted: 17 August 2022

Published: 9 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

robotics

Article

Deep Reinforcement Learning for Autonomous Dynamic Skid
Steer Vehicle Trajectory Tracking
Sandeep Srikonda †, William Robert Norris *,† , Dustin Nottage and Ahmet Soylemezoglu

Autonomous and Unmanned Vehicle Systems Laboratory, Department of Industrial and Enterprise Systems
Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
* Correspondence: wrnorris@illinois.edu
† These authors contributed equally to this work.

Abstract: Designing controllers for skid-steered wheeled robots is complex due to the interaction of
the tires with the ground and wheel slip due to the skid-steer driving mechanism, leading to nonlinear
dynamics. Due to the recent success of reinforcement learning algorithms for mobile robot control,
the Deep Deterministic Policy Gradients (DDPG) was successfully implemented and an algorithm
was designed for continuous control problems. The complex dynamics of the vehicle model were
dealt with and the advantages of deep neural networks were leveraged for their generalizability.
Reinforcement learning was used to gather information and train the agent in an unsupervised
manner. The performance of the trained policy on the six degrees of freedom dynamic model
simulation was demonstrated with ground force interactions. The system met the requirement to
stay within the distance of half the vehicle width from reference paths.

Keywords: trajectory tracking; reinforcement learning; skid-steer robots; deep learning; dynamic model

1. Introduction

Mobile robots play an important role in modern daily life and in various industries
such as construction, logistics and transportation. Their influence has become even more
evident with the advancement in autonomous driving research. On-road vehicles operate
in a much more structured environment than off-road vehicles, where the environment
is complex, unstructured and mechanically taxing. Skid-steered robots have several ad-
vantages while operating in these tough environments by maintaining greater traction on
rough terrain. The same design can be used for both tracked and wheeled robots. Since
there are no steering wheels, there is no need for a steering mechanism. All the wheels on
each side drive in same direction so only two motors are sufficient for driving and steering
the robot.

Skid-steered robots, whether they are tracked or wheeled vehicles, have complex
dynamics associated with their motion. This arises from interaction with the road or the
contact surface and their joints which constrain their motion. This is not considered by
models without any slip descriptions or purely kinematic descriptions of their motion. This
makes it difficult to model them using simplistic models that have no slip assumptions or
purely kinematic descriptions of their motion.

One of the fundamental requirements for an autonomous system is to be able to follow
a trajectory provided by a path planner in a reliable manner. Due to limitations of existing
control schemes, the objective was to develop a controller to adapt to this complexity while
ensuring the vehicle followed a trajectory. Most of the previous approaches developed for
skid-steer robot path following use kinematic models of the robot. These models do not
account for wheel slip. For example, Ref. [1] used a terrain dependent kinematic model
whose parameters were experimentally evaluated. This might not be feasible for vehicles
operating in uncertain and dynamic environments. For example, Ref. [2] used a slip aware
model predictive component to correct the control signals generated by a pure pursuit path

Robotics 2022, 11, 95. https://doi.org/10.3390/robotics11050095 https://www.mdpi.com/journal/robotics

https://doi.org/10.3390/robotics11050095
https://doi.org/10.3390/robotics11050095
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://orcid.org/0000-0002-4940-4458
https://doi.org/10.3390/robotics11050095
https://www.mdpi.com/journal/robotics
https://www.mdpi.com/article/10.3390/robotics11050095?type=check_update&version=2

Robotics 2022, 11, 95 2 of 20

follower. This approach used linearized dynamics for estimating slip, which is not ideal for
some of the operating conditions of a field robot. A 6 Degrees of Freedom (DoF) dynamic
model of the vehicle with non-linear ground contact forces was employed. This improved
the accuracy of the vehicle motion modeling and enabled better training and tuning of the
reinforcement learning agent.

The remainder of the paper is organized as follows. Section 2 provides a literature
review. Section 3 provides a description of the nonlinear vehicle model. Sections 4 and 5
discuss the structure of the Deep Deterministic Policy Gradient and reinforcement learning
neural network setup and training. Section 6 provides the results of the trained policy as
evaluated on various trajectories in simulation to assess performance measurements and
errors. Lastly, Section 7 concludes the paper.

2. Background

In recent years, deep learning has been successfully used in computer vision, natural
language processing and speech recognition. Deep learning was developed from artificial
neural networks(ANNs), whose structure is explained in Figure 7. ANNs were originally
inspired by biological neuronal networks. Deep neural networks have intermediate layers of
neurons called hidden layers and they help a deep network form abstract representations
of the problem domain. This is evident within feature representations of various layers of a
trained deep neural network and in contrast to the traditional methods where the features
are designed by domain experts. Despite their success in many fields, deep neural networks
are trained with huge sets of labeled training data. This approach is prohibitively expensive
or impractical for problems involving real world robotic control due to safety concerns.
Reinforcement learning involves agents that learn to perform a task by interacting with the
environment without expert operation and guidance. Feedback to the agent is provided
through a reward function from which it learns the decision making policies to perform the
task. The advances made in reinforcement learning and deep learning in the past few years
to solve classic Atari games [3] inspired the research community to design algorithms to
address problems in vehicle control [4], motion planning [5] and navigation [6] related tasks.

In [7], the dynamics of a skid-steered vehicle was used for the path following task. The
controller needed to be tuned in a supervised manner. Using the reinforcement learning
paradigm allowed the designer to train the controllers in an unsupervised manner through
the use of a reward system. This removed the need for large databases or hand tuning of
controller parameters. Reinforcement learning has been successfully applied in control
problems developing policies for low level motor control such as [8], robot tracking [9]
and aircraft control [10]. The success of deep learning and reinforcement learning in
control problems led to the exploration of these approaches for path tracking of skid-
steered vehicles. Robotics control problems have continuous variables as outputs. Deep
Deterministic Policy Gradients [4] (DDPG) is one of the reinforcement learning algorithms
designed to accommodate continuous control actions. The DDPG was applied towards
designing a controller to perform the trajectory following task for a skid-steered robot. This
work is, given similar research, the first time that a reinforcement learning algorithm, as
demonstrated in Figure 1, is used to train a Deep Neural Network based controller for
the trajectory following of a dynamic skid-steer vehicle system in simulation and in a real
world application.

Robotics 2022, 11, 95 3 of 20

Figure 1. Reinforcement Learning overview. Source: Wikipedia.

3. Vehicle Model Description

Skid steering is a driving mechanism implemented on vehicles with either tracks or
wheels, which uses a differential drive concept. Common skid-steered vehicles are tracked
tanks and bulldozers. This driving method engages each side of the tracks or wheels
separately, and turning is accomplished by generating differential velocity on opposite
sides of the vehicle. The wheels or tracks are non-steerable. For example, a right turn can be
achieved by turning the left wheels forward and the right wheels backward or making them
stationary and vice versa for a left turn. Another advantage to this mechanism is that if the
velocities are applied continuously then the robot can theoretically complete a full 360◦.
turn with zero radius provided there is no wheel slip. Skid-steered robots have complicated
dynamics due to the nature of the interaction of wheels with the contact surface leading
to nonlinear forces acting on the vehicle. Much of the work performed in this area uses
simplified kinematic models or dynamic models that cannot incorporate ground contact
forces in a detailed manner. The dynamic model developed in the simulation environment
was based on a commercial skid-steer robot called the Jackal and made by Clearpath
Robotics. The Jackal, as seen in Figure 2, is a small, entry-level field robotics research
platform. It has an onboard computer, GPS and an IMU along with the Robot Operating
System (ROS) integration. This facilitates communication, algorithm development and
deployment of the final controllers. It has a long battery life and a rugged aluminum chassis
which enables all-terrain operation.

The dynamic model of the skid-steered vehicle has a wheelbase and four wheels
attached to it with 6 DoF. The forward dynamics is calculated using 6 DoF rigid body
dynamics, with torques and forces generated by normal forces and friction forces acting on
the wheels as well as the internal motor torques.

In this model, the vehicle was treated as a rigid body that interacted with a compliant
ground. This compliant ground was modeled as a uniform distribution of an infinite
number of non-linear spring-damper pairs. Further, these rigid body-ground interactions
were represented as a set of discrete contact points, each of which caused the ground to
deflect spherically.

Robotics 2022, 11, 95 4 of 20

Figure 2. Jackal robot. Source: Clearpath Robotics.

Ground forces were calculated by modeling the tires as pneumatic soft tires. The
wheel was approximated with a set of springs of given spring constant under compression
from ground forces. Skid-steered vehicles have fixed tire orientations which means that
during a turn, each tire has a different turn radius. Assuming a no slip condition would
geometrically constrain the vehicle and movement would be impossible. Therefore a skid-
steer vehicle relies on slipping to complete turns. A detailed dynamic model was required
to calculate the reaction forces and account for the effect of slipping. The tire-terrain model
proposed by [11] required slip ratio, slip angle, sinkage and tire velocity to compute at each
tire for the reaction forces in the x, y, and z directions as well as the reaction torque. Tire
slip ratio was defined as:

s = 1− µx

Rω
(1)

where µx is the forward velocity of the tire, R is the radius of the tire, and ω is the rotational
tire velocity. Slip angle is defined as:

β = tan−1
(

µy

µx

)
(2)

where µy is the lateral velocity of the tire. Sinkage is the depth the tire sinks, called zr. The
model detailed in [11] works by integrating the shear and normal stresses caused by the
soil displacement over the surface of the tire.

zu = (
pg

ku
)

1
n (3)

ze = (
pg

kc
b + kφ

)
1
n (4)

zu refers to the unloading height and ze is the sinkage of the flexible tire. pg is the tire
pressure,which is assumed constant and b is the tire width. kc, kφ, ku are soil parameters.

θ f = cos−1(1− zr

R
) (5)

θr = −cos−1(1− zu + zr − ze

R
) (6)

θc = cos−1(1− zr − ze

R
) (7)

where θ f , θr, θc are tire angles corresponding to z f , zr, zc. R is the radius of the tire. Equa-
tions from [11] demonstrate how the shear and normal stress can be calculated from the

Robotics 2022, 11, 95 5 of 20

deformation of the soil in these three zones. The result is a nonlinear relationship between
the input parameters and the reaction forces which can be observed in Figures 3–6.

The relative modulus of elasticity between the wheel(s) and the ground, E∗, was
computed using (8). In (8) the wheel(s) and ground had moduli of elasticity tied to Ew and
Eg, and Poisson ratios given by νw and νg, respectively.

1
E∗

=
1− v2

w
Ew

+
1− v2

g

Eg
(8)

Figure 3. Tire Reaction Force in the X Direction by Slip Angle at Various Slip Ratios.

Figure 4. Tire Reaction Force in the X Direction by Slip Ratio at Various Slip Angles.

Robotics 2022, 11, 95 6 of 20

Figure 5. Tire Reaction Force in the Y Direction at various slip ratios.

Figure 6. Tire Reaction Force in the Y Direction by Slip Ratio at Various Slip Angles.

The stiffness and damping coefficients were defined in Equation (9) where r was the
radius of the sphere and α was a constant.

K = −2E∗
√

r, D = 4πα (9)

The spatial velocity vector for F1, the main body reference frame, was given by
Equation (10). This vector was comprised of the angular and translational velocities
represented by ω and v respectively.[

ω1x ω1y ω1z v1x v1y v1z
]

(10)

Robotics 2022, 11, 95 7 of 20

Equation (11) was the velocity of each of the wheels. The motion transformation from
F1 to Fi was given by iX1, the subspace matrix of each wheel was Si , and the angular
velocity was q̇i.

vi =
i X1v1 + Si q̇i (11)

4. Deep Deterministic Policy Gradients

The DDPG is an actor-critic reinforcement learning algorithm and has separate neural
networks for actor and critic functions. In this section, multi layered neural networks, as
shown in Figure 7, are introduced including policy function µ and critic function Q.

Figure 7. Artificial Neural Network.

4.1. Fully Connected Layer

A fully connected layer can be represented by

y = σ(wTx + b) + ε (12)

where wT is the weights matrix and b is the bias. x is the input to the layer and y is the
output. The Rectified Linear Unit (ReLU) was chosen as the activation function and ε was
the error function. The entire network was made of multiple fully connected layers and it
can be shown from the universal approximation theorem [12] that

‖ε‖ ≤ b1, b1 ∈ Const (13)

4.2. Activation Function

The simplest activation function is referred to as linear activation, where no transform
is applied at all. A network comprised of only linear activation functions is quite easy
to train but cannot learn complex mapping functions. Nonlinear activation functions are
preferred as they allow the nodes to learn more complex structures in the data. Traditionally,
two widely used nonlinear activation functions are the sigmoid and hyperbolic tangent
activation functions.

The nonlinear activation functions, such as sigmoid and tanh, suffer from the problem
of vanishing gradients. Layers that are deep in large networks using nonlinear activation
functions do not receive useful gradient information. The error is back propagated through
the network and used to update the weights. The amount of error decreases dramatically
with each additional layer through which the gradients are propagated, given the derivative
of the chosen activation function. This is called the vanishing gradient problem that
prevents deep (multi-layered) networks from learning effectively. ReLU activation helps
deal with the vanishing gradients problem and enables the development and training of
deep neural networks. The ReLU function is a piece wise linear function that will output
the input directly if is positive, otherwise, it will output zero, as seen in Figure 8. It has
become the default activation function for many types of neural networks because a model
that uses it is easier to train and often achieves better performance.

Robotics 2022, 11, 95 8 of 20

Figure 8. Rectified Linear Unit(ReLU) activation function.

4.3. Control Policy

The control policy is represented by the following equation:

µ(st) = at (14)

where st is the state at time t and at is the action calculated by the policy function µ at time t.
The long term reward function was calculated by using the equation

R(st, at) =
∫ ∞

t
γ−(κ−t)r(st, at)dκ (15)

γ is the discount factor (0 < γ < 1), which was used to discount the future rewards
with respect to current reward. The problem was to find arg min

st ,at
{R(st, at)}. To solve the

above problem, the critic function was defined as

Q(st, at) = R(st, at) =
∫ ∞

t
γ−(κ−t)r(st, at)dκ (16)

An iterative approach was used to calculate the critic function, discretizing the above
equation to obtain

Q(st, at) = R(st, at) = ∑∞
i=t γ(i−t)r(st, at) (17)

and the optimal critic function was

Q̂(st, at) = max
st ,at

(Q(st, at)) (18)

The critic function Q(st, at) was replaced with a neural network

Q(st, at|ω) (19)

In order to obtain an optimal critic function, the loss function was defined as

Loss =
(yt −Q(st, at|ω))2

2
(20)

yt = r(st, at) + γQ(st, at|ω) (21)

The optimal critic function Q̂(st, at) was found by minimizing the value of the Loss
function.

Robotics 2022, 11, 95 9 of 20

Thus, the policy gradient algorithm [13] was applied by sampling a batch of (st, at)
and computing the average Loss function.

Lossavg =
1
N

N

∑
i=1

(yi −Q(si, ai|ω))2 (22)

The gradient of Loss was given by

∇ω Lossavg = − 2
N

N

∑
i=1

(yi −Q(si, ai|ω))
∂Q(si, ai|ω)

∂ω
(23)

The gradient descent method was used to update the weights

ωt+1 = ωt + α · ∇ω Lossavg (24)

where α is the learning rate which can be tuned according to need.

4.4. Actor Function

After obtaining the critic function, it was used to update the actor function by prop-
agating the gradients back to the actor. Then µ(st) was replaced using neural network
µ(st|θ) and substituting at = µ(st|θ) into Q(st, at|ω).

J = Q(st, µ(st|θ)|ω) (25)

The gradient was given by

∇θ J =
∂Q(st, µ(st|θ)|ω)

∂at
· ∂µ(st|θ)

∂θ
(26)

Similar to the critic function, the gradient from the above equation can be used to
update the actor function weights.

In order to update the actor and critic functions in a smooth fashion, the DDPG [4]
algorithm creates a copy of actor and critic networks, Q′(st, at|ω′) and µ′(st|θ′) and updates
them gradually. The stopping criteria can decided by a set reward value or number of
episodes during training.

5. Reinforcement Learning Setup and Training

Reinforcement learning consists of an environment and an agent. The agent performs
an action in the environment which leads to a change in the state. The environment then
supplies the next state and a scalar quantity called the reward.The reward is computed
and provided as feedback to the agent. In this case, state information derived from vehicle
position was used as an input to the agent, which outputs angular velocity. Both the inputs
and outputs were continuous variables.

5.1. DDPG Agent Structure

The DDPG agent consists of two component neural networks called the actor and the
critic. The actor network is the controller that maps the current state of the environment to
angular velocity. The critic network takes the state of the environment and the correspond-
ing actions predicted by the actor and outputs the Q value, or value of the corresponding
state-action pair.

5.1.1. Actor

The actor network, provided in Figure 9, was made of two intermediate layers with
128 and 64 neurons each, and the final output layer had 1 neuron (2 neurons if linear
velocity control was enabled). ReLU activation was used for the outputs of intermediate

Robotics 2022, 11, 95 10 of 20

layers and the final layer was a hyperbolic tangent (i.e., tanh activation to limit the action
output of the controller).

Figure 9. Actor network architecture.

5.1.2. Critic

The critic network, as illustrated in Figure 10, was made of two intermediate layers
with 128 and 64 neurons and the final output layer had 1 neuron . ReLU activation was
used for the outputs of intermediate layers. The critic network uses the reward values
given by the environment and the Hamilton Jacobi Bellman (HJB) equation to calculate
target Q values for training.

Robotics 2022, 11, 95 11 of 20

Figure 10. Critic network architecture.

5.2. State

Information regarding the state of the vehicle with respect to the trajectory was
supplied to the actor and critic neural networks to enable them to act upon the state. State
observations consisted of a 10-element array.The states provided were as follows:

1. Distance Error (DE);
2. Derivative of distance Error;

Robotics 2022, 11, 95 12 of 20

3. Heading Error (HE);
4. Distance to Look-Ahead Point 1 (Dlp1);
5. Angle to Look-Ahead Point 1 (θlp1);
6. Distance to Look-Ahead Point 2 (Dlp2);
7. Angle to Look-Ahead Point 2 (θlp2);
8. Distance to Look-Ahead Point 3 (Dlp3);
9. Angle to Look-Ahead Point 3 (θlp3);
10. Angular Velocity of the Vehicle.

State information was calculated from the vehicle position, heading and waypoint
positions. The information was acquired from the reference trajectory and sensors on-board
the vehicle. State information provided to the agent was broken down into three categories:
error information, predictive action information, and angular velocity. Figure 11 provides a
visual description of the state variables supplied to the agent.

Figure 11. State variable description.

5.2.1. State Information—States 1–3

The error information consisted of distance error, derivative of distance error and
heading error values, so that the agent could learn to associate these errors with action
outputs. The derivative of heading error was not supplied to the agent because of the
discontinuities in the derivative near the waypoints. These discontinuities introduced
instability in the training process, so the agent was supplied with angular velocity. This
provided similar information without the spikes and stabilized the training.

5.2.2. State Information—States 4–9

The predictive action information was supplied to the agent to encourage predictive
turning behaviors near a sharp turn to reduce overshoot and hence minimize overall
tracking error. A look-ahead point was defined as a point located at a specified constant
distance down the path from the point on the path perpendicular to the vehicle’s current
position. The angle to the look-ahead point was the angle between the vehicle’s current
heading and the line drawn between the vehicle and the look-ahead point. The intention
of the look-ahead point was to provide the controller with information describing the test
course that lay ahead of the vehicle’s current position. Three look-ahead points were used
with specified distances of 1, 2 and 3 m.

5.2.3. State Information—State 10

There was a difference between commanded angular velocity (ωc) and actual angular
velocity (ωa). Even though the agent had the information about predicted output angular
velocity, the internal motor controllers took a finite amount of time to converge to the new
angular velocity. This introduced a time delay between the predicted and actual output
velocities leading to a difference in predictions about vehicle motion. The goal of supplying

Robotics 2022, 11, 95 13 of 20

this state information was to create a smarter controller that learned to map its target
angular velocity to its actual angular velocity which was then mapped to desired actions in
the environment.

5.3. Rewards

The reward/penalty functions were used to evaluate performance and provide feed-
back during training. The outputs of these functions were summed to a scalar reward value
and supplied to the agent (penalty functions are simply negative reward functions). This
reward value, in addition to state information, enabled the DDPG algorithm to evaluate
the effectiveness of actions and train the neural networks.

5.3.1. Distance Error Penalty

The Distance Error (DE) Penalty function was very important for the training of agents
because it directly corresponded to the primary objective of reducing distance error. As the
agent strayed further away from the current trajectory, it accrued more DE Penalty which
forced the agent to begin creating a policy that would avoid this behavior.

5.3.2. Heading Error Penalty

As heading error (HE) increased, so did the HE Penalty, which allowed the agent to
create a policy that minimized heading error. In addition, there was a relationship between
the magnitudes of the HE Penalty and distance error. The HE penalty was scaled down
when distance error increased. This relationship was helpful in the scenario where the
vehicle found itself off track. The vehicle needed to accommodate some heading error as it
finds its way back to the track and continues its mission.

5.3.3. Steering Penalty

The steering penalty was implemented to reduce unnecessary turning. A small penalty
was added that was proportional to the absolute value of angular velocity. An added benefit
of the steering penalty was that it helped combat circular behavior. The steering penalty
dominated distance and heading error penalties when the vehicle was close to waypoints.
Large distance and heading error penalties overpowered the smaller steering penalty
causing the vehicle to follow the next path segment. Like the HE Penalty, the Steering
Penalty was related to distance error and it was scaled down as distance error increased.

DE Penalty = −Kd(|Ed|+ |Ed|sd) (27)

HE Penalty = −Kh
(|Eh |

π)sh

eRh |Ed |
(28)

Steering Penalty = −Kω
|ω|

eRω |Ed |
(29)

The reward scalar supplied to the agent was the sum of the values produced by
Equations (27)–(29). Modifying the values of constants changed what the controller per-
ceived as good and bad behavior. This affected the behaviors acquired during the training
process. Penalties were scaled by the gains (Kd, Kh, Kω). Ed and Eh were the distance error
and the heading error, respectively. The magnitudes of the gains in proportion to one
another enabled the Deep Neural Network (DNN) Controller to prioritize the behavior.
Penalty shapes (Sd, Sh) determined the rate of increase in penalties as their corresponding
error increased. Figures 12 and 13 demonstrate how varying penalty values affect the
unscaled distributions according to the corresponding error.

As simulations were terminated when distance error surpassed 1 m, the distribution
of the distance error penalty was bounded (from 0 to 1). The distribution of heading error
penalty was bounded between 0 and π because the absolute value of heading error could
not exceed π(−π < HE < π). The distance error relationship coefficients were used to

Robotics 2022, 11, 95 14 of 20

prioritize the vehicle to minimize the distance error rather than directly chase after the next
waypoint in a pure-pursuit-like manner. If the vehicle had an overshoot near a turn, it
would prioritize getting back to the track and then continuing its mission.

Figure 12. Distance Error penalty shapes.

These relationships were intended to discourage turning when the DE was small
but to allow the vehicle to return to the track when the DE was large by not penaliz-
ing HE when the vehicle was far from the track. An exponential function was used
in Equations (28) and (29) to determine the relationship between DE and other reward/
penalty functions. When DE = 0, the exponential function was equal to 1 and the re-
ward/penalty function was unaffected. However, as the absolute value of DE strayed from
0, the exponential function increased, with the corresponding decrease in reward/penalty.
The DE Relationship Coefficients (Rh, Rω) dictated the magnitude of decrease in reward/
penalty with respect to DE.

Robotics 2022, 11, 95 15 of 20

Figure 13. Heading Error penalty shapes.

5.4. Training and Reinforcement Learning Setup

The MATLAB Reinforcement Learning Toolbox [14] was used to implement the DDPG
algorithm. Once the dynamic model of the robot was built in Simulink, the models were
converted into an environment compatible with the toolbox. The network architecture for actor
and critic were specified using the Deep learning Toolbox as described in Section 4.1. The DDPG
agent can be constructed from actor and critic networks after specifying the learning rates and
losses for individual networks. A mean squared error loss function was implemented.

The Reinforcement Learning (RL) toolbox was used to specify and monitor the training
process with built in functionality to save and load trained agents. The training was
conducted for 1000 episodes. Each episode was terminated when the agent’s distance
error from the reference trajectory was above the threshold value 1 m or if the agent had
successfully completed the waypoint trajectory. Learning rates of 0.02 and 0.01 were chosen
for the critic and the actor, respectively, based on experimentation. Various values were
experimented with to improve the training time and maintain the stability of the learning
process. A discount factor of 0.95 was used to discount future rewards as described in
Section 3. The replay buffer size was set to 105 and the minibatch size used for training was
set to 32.

The trained agent was saved in the workspace and the policy was extracted from the
agent for evaluation. In order to deploy the trained policy on the Jackal, a feed forward
function was implemented to take the inputs coming from the robot and compute the
control outputs using the weights and biases of the policy. The communication with the
vehicle hardware was performed with the Robot Operating System(ROS) using various
ROS messages and topics.

6. Results

The trained policy was evaluated on various trajectories in simulation to identify the
performance measurements and errors. The test trajectories were based on the system level
test plan described in [15]. The objective of the controller was to stay within a distance of
half the vehicle width (0.22 m) from the trajectory.

In Figure 14, the vehicle started with an initial distance error of 1 m from the reference
trajectory and zero heading error. It was able to quickly converge back to the reference
trajectory within a distance of 1 m along the path.

Figures 15–17, demonstrate that the vehicle was able to track trajectories with sharp
turns of varying angles while maintaining the original objective of staying within the
distance of 0.22 m. In Figure 17, it can observed that it takes a distance of two vehicle
lengths to reacquire the trajectory due to a large turning angle of 120◦.

Robotics 2022, 11, 95 16 of 20

Figure 14. Convergence from offtrack starting position.

Figure 15. Controller following a 45 degree turn.

Figures 18–20 demonstrate that the vehicle was able to complete relatively complex
trajectories with straight line segments combined with consecutive left and right turns
while staying within the error bounds specified for the task. A finite phase lag was observed
in Figures 18 and 20. There was a consistent undershoot that can observed in the second
half of the Figure 8 path in Figure 20. These behaviors were due to the vehicle turning

Robotics 2022, 11, 95 17 of 20

early near the end of a path segment. This was to account for future path segments data
provided through the lookahead points. Table 1 provides a summary of RMS distance
errors for various trajectories discussed in this section.

Figure 16. Controller following a 60 degree turn.

Figure 17. Controller following a 120 degree turn.

Robotics 2022, 11, 95 18 of 20

Figure 18. Controller following testcourse 3.

Figure 19. Controllerfollowing testcourse 2.

Figure 20. Controller following Figure 8 path.

The performance of the controller deteriorated with larger turn angles as it needed to
deviate from the trajectory to accommodate for the next segment as can be seen in Figure 17

Robotics 2022, 11, 95 19 of 20

with a 120 degree turn which is expected for a steering controller that does not control
linear velocity. Even though the vehicle is able to track the trajectory, the performance
could be further improved with more tuning and training.

Table 1. RMS errors for various test courses.

Trajectory RMS Error (m)

45◦ turn 0.08063
90◦ turn 0.1183
120◦ turn 0.2

testcourse 3 0.1674
testcourse 2 0.1629

Figure 8 path 0.159

7. Conclusions and Future Work

A continuous control reinforcement learning algorithm was implemented to train a
path tracking controller for the dynamic model of a skid-steered vehicle. The controller
was able to adapt effectively to the complex nonlinear forces and torques acting at the
wheel-ground interface. The trained controller’s performance was demonstrated on a series
of complex trajectories while maintaining the objective of keeping the vehicle within half
the vehicle width of the desired trajectory. The convergence of vehicle motion towards the
desired trajectory from a variety of initial conditions was also demonstrated.

The model based development approach enables the extension of this work to other
vehicles of varying size and complexity without major changes to the development tools
and framework. Using the code generation capabilities of MATLAB, the trained agents can
be deployed directly onto the real vehicle without spending significant amounts of time
coding the controllers in other programming languages.

The performance of the trajectory tracking controller can be improved by adding linear
velocity control in addition to angular velocity. This would help the system better navigate
sharper turns and ensure the convergence of the vehicle towards the trajectory in case of
initial off-track errors.

This approach was successful but it has some limitations. The limitations of this
approach included the need for an accurate simulation model for training and long training
times for the reinforcement learning algorithm to explore and learn useful behaviors.
Even though the model takes into account the effect of nonlinear forces and torques,
some aspects of the model were lacking when compared to the real-world robot. More
importantly, a neural network path tracking controller does not guarantee asymptotic or
globally asymptotic stability over the operational range. This makes it difficult to deploy
the controllers in safety critical applications where the autonomous robots are operating
along with or near human operators.

There are other control schemes designed to satisfy stability conditions such as human
operator models which are nonlinear and classical state space optimal controllers. Many of
the state space nonlinear controllers suffer from instability outside their linearized operating
region. A logical step for future work would be to combine some of these techniques to
bound the exploration process of the RL agent with constraints or leverage the advantages
of deep neural networks for tuning controller models that have stability guarantees.

Author Contributions: S.S. implemented the reinforcement learning algorithm on the skid-steer
vehicle and tested the algorithm. W.R.N. conceptualized the test plan and research that would be
implemented while providing supervision and direction for the research. D.N. and A.S. provided
project supervision, direction, and funding. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the U.S. Army Engineer Research and Development Center
(ERDC) through their Construction Engineering Research Laboratory (CERL).

Institutional Review Board Statement: Not applicable

Robotics 2022, 11, 95 20 of 20

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples of the compounds are available from the authors.

References
1. Huskic, G.; Buck, S.; Zell, A. Path following control of skid-steered wheeled mobile robots at higher speeds on different terrain

types. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017;
pp. 3734–3739.

2. Rajagopalan, V.; Meriçli, Ç.; Kelly, A. Slip-aware Model Predictive optimal control for Path following. In Proceedings of the 2016
IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 4585–4590.

3. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Joel, V.; Marc, G.B.; Alex, G.; Martin, R.; Andreas, K.F.; Ostrovski, G.; et al.
Human Level Control through Deep Reinforcement Learning. Nature 2015, 518, 529–533. [CrossRef]

4. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep
reinforcement learning. ICLR 2015. [CrossRef]

5. Everett, M.; Chen, Y.F.; How, J.P. Motion Planning among Dynamic, Decision-Making Agents with Deep Reinforcement Learning. In
Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018;
pp. 3052–3059.

6. Mirowski, P.; Grimes, M.; Malinowski, M.; Hermann, K.M.; Anderson, K.; Teplyashin, D.; Simonyan, K.; Zisserman, A.; Hadsell,
R. Learning to navigate in cities without a Map. Adv. Neural Inf. Process. Syst. 2018, 2419–2430. [CrossRef]

7. Nazari, V.; Naraghi, M. Sliding mode fuzzy control of a skid steer mobile robot for path following. In Proceedings of the 2008 10th
International Conference on Control, Automation, Robotics and Vision, Madeira, Portugal, 17–20 December 2008; pp. 549–554.

8. Sheikhlar, A.; Fakharian, A. Adaptive optimal control via reinforcement learning for omni-directional wheeled robots. In Proceedings
of the 2016 4th International Conference on Control, Instrumentation, and Automation (ICCIA), Qazvin, Iran, 27–28 January 2016;
pp. 208–213.

9. Fan-Cheng, M.; Ya-Ping, D. Reinforcement learning adaptive control for upper limb rehabilitation robot based on fuzzy neural
network. In Proceedings of the 31st Chinese Control Conference, Heifei, China, 25–27 July 2012; pp. 5157–5161.

10. Lee, D.; Choi, M.; Bang, H. Model-free linear quadratic tracking control for unmanned helicopters using reinforcement learning. In
Proceedings of the 5th International Conference on Automation, Robotics and Applications, Wellington, New Zealand, 6–8 December
2011; pp. 19–22.

11. Tang, S.; Yuan, S.; Li, X.; Zhou, J. Dynamic modeling and experimental validation of skid-steered wheeled vehicles with
low-pressure pneumatic tires on soft terrain. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2020, 234, 840–856. [CrossRef]

12. Kurt, H.; Stinchcombe, M.; White, H. Universal approximation of an unknown mapping and its derivatives using multilayer
feedforward networks. Neural Netw. 1990, 3, 551–560.

13. Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; Riedmiller, M. Deterministic policy gradient algorithms. In Proceedings of
the 31st International Conference on Machine Learning, Bejing, China, 22–24 June 2014.

14. The MathWorks, Inc. MATLAB and Reinforcement Learning Toolbox Release 2019b; The MathWorks, Inc.: Natick, MA, USA, 2019.
15. Norris, W.; Patterson, A. System-Level Testing and Evaluation Plan for Field Robots: A Tutorial with Test Course Layouts.

Robotics 2019, 8, 83. [CrossRef]

http://doi.org/10.1038/nature14236
http://dx.doi.org/10.48550/arXiv.1509.02971
http://dx.doi.org/10.48550/arXiv.1804.00168
http://dx.doi.org/10.1177/0954407019847302
http://dx.doi.org/10.3390/robotics8040083

	Introduction
	Background
	Vehicle Model Description
	Deep Deterministic Policy Gradients
	Fully Connected Layer
	Activation Function
	Control Policy
	Actor Function

	Reinforcement Learning Setup and Training
	DDPG Agent Structure
	Actor
	Critic

	State
	State Information—States 1–3
	State Information—States 4–9
	State Information—State 10

	Rewards
	Distance Error Penalty
	Heading Error Penalty
	Steering Penalty

	Training and Reinforcement Learning Setup

	Results
	Conclusions and Future Work
	References

