
Citation: Smith, D.S., Jr.; Sevil, H.E.

Design of a Rapid Structure from

Motion (SfM) Based 3D

Reconstruction Framework Using a

Team of Autonomous Small

Unmanned Aerial Systems (sUAS).

Robotics 2022, 11, 89. https://

doi.org/10.3390/robotics11050089

Academic Editors: Charalampos P.

Bechlioulis and Panagiotis Vlantis

Received: 20 June 2022

Accepted: 31 August 2022

Published: 4 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

robotics

Article

Design of a Rapid Structure from Motion (SfM) Based 3D
Reconstruction Framework Using a Team of Autonomous Small
Unmanned Aerial Systems (sUAS)
Douglas Shane Smith, Jr. and Hakki Erhan Sevil *

Intelligent Systems & Robotics, University of West Florida, Pensacola, FL 32514, USA
* Correspondence: hsevil@uwf.edu

Abstract: The aim of this research effort was to develop a framework for a structure from motion
(SfM)-based 3D reconstruction approach with a team of autonomous small unmanned aerial systems
(sUASs) using a distributed behavior model. The framework is composed of two major goals to
accomplish this: a distributed behavior model for a team of sUASs and a SfM-based 3D reconstruction
using team of sUASs. The developed distributed behavior model is based on the entropy of the
system, and when the entropy of the system is high, the sUASs get closer to reducing the overall
entropy. This is called the grouping phase. If the entropy is less than the predefined threshold,
then the sUASs switch to the 3D reconstruction phase. The novel part of the framework is that
sUASs are only given the object of interest to reconstruct the 3D model, and they use the developed
distributed behavior to coordinate their motion for that goal. A comprehensive parameter analysis
was performed, and optimum sets of parameters were selected for each sub-system. Finally, optimum
parameters for two sub-systems were combined in a simulation to demonstrate the framework’s
operability and evaluate the completeness and speed of the reconstructed model. The simulation
results show that the framework operates successfully and is capable of generating complete models
as desired, autonomously.

Keywords: 3D reconstruction; structure from motion (SfM); small unmanned aerial systems (sUAS);
distributed behavior

1. Introduction

As technology advances and computational power increases for onboard equipment,
more tasks can be allocated on smaller mobile platforms. This translates well onto au-
tonomous small unmanned aerial systems (sUASs), allowing for increasingly complex tasks
to be assigned and completed without any human interaction. With the resources becoming
more affordable and available, it is possible to accomplish tasks that, when conducted by
humans, are cumbersome and in some cases impossible. These tasks can exist in a wide
range of applications, such as search and rescue, reconnaissance, post weather damage
assessment, and many other military and commercial applications. One of these tasks, 3D
reconstruction, is the focus of this study. Developing a framework that can rapidly deploy,
control, and build a model of a 3D environment provides the capability to investigate an
area in depth without the need for human interaction. For instance, one example mission
can be for a team of sUASs to go out and locate an area of interest, record video, and then
convert the video to a 3D model. In this study, this example mission is broken down into
two essential parts: (i) a distributed model for a team of sUASs, and (i) 3D reconstruction
of the model by combining the data from individual agents in the team. By using a team
of sUASs, the process is sped up to complete the recording of the area of interest and
share the computational load between agents, providing the benefit of being able to work
simultaneously on the same area of interest, focusing on different parts of it. All of these
points result in an efficient rapid framework with a low computational load on individual

Robotics 2022, 11, 89. https://doi.org/10.3390/robotics11050089 https://www.mdpi.com/journal/robotics

https://doi.org/10.3390/robotics11050089
https://doi.org/10.3390/robotics11050089
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://orcid.org/0000-0002-8333-342X
https://doi.org/10.3390/robotics11050089
https://www.mdpi.com/journal/robotics
https://www.mdpi.com/article/10.3390/robotics11050089?type=check_update&version=2

Robotics 2022, 11, 89 2 of 28

agents in the team. Hence, the focus of this study was to evaluate the developed framework
for 3D reconstruction using a team of sUASs.

The original contribution of this paper is that a single framework has been designed
and developed that has a pipeline including both SfM-based 3D reconstruction and the
distributed behavior of multiple sUASs together. The paper includes (i) the development
of a distributed behavior model with decentralized rules; (ii) the development of the algo-
rithm based on the entropy of the system to switch between different behaviors, such as
grouping and 3D reconstruction phases; (iii) implementation of 3D reconstruction using an
SfM approach with image data inputs from different sUASs. Additionally, an evaluation
of several parameters was used to maximize the benefit of using the open source soft-
ware, COLMAP [1], while reducing the computation time required to accomplish this task.
Several experiments were conducted in different situations to evaluate the optimum posi-
tioning and settings dependent on the scenario. Experiments were performed to evaluate
the optimum entropy threshold values that allow the team of sUASs to navigate effectively
without interfering with each other or failing to navigate along the desired course, and then
perform a coordinated 3D reconstruction mission in a distributed fashion. The intention of
this paper is to both present the framework design with extensive analysis, and to show
proof-of-concept results of the entire pipeline in an Unreal Engine simulator (AirSim) that
is very accurate at representing real-world applications. The demonstration of real-world
results using the developed framework is not included in the scope of originally intended
contribution in this article, and is left for a future work.

The remainder of the paper is organized as follows. In the next section, related work
from the literature is provided. In Section 3, details of the methods utilized in this study
are discussed, along with an explanation of why they were selected as part of the pipeline.
In Sections 4 and 5, parameter analyses for the distributed behavior model and the 3D
reconstruction method are presented, respectively. A validation model and experiment
results are described in Section 6. In Section 7, future directions and discussion are provided.
Finally, Section 8 presents the conclusion.

2. Related Work

In dynamic and extreme environments with various threats, obstacles, and restricted
areas, it is particularly challenging for multiple agents to operate autonomously. Most of
the contemporary distributed behavior technology is inspired by nature, which provides
good solutions for managing groups—i.e., fish schools, ant swarms, animal packs, bird
flocks, and so on—for applications including but not limited to precision agriculture,
infrastructure monitoring, security, telecommunication, and 3D model reconstruction.
Several examples of behavior-based methods are worth mentioning here. Formation testing
with reactive formation control that was divided into avoiding obstacles, avoiding robots,
moving to the goal, and maintaining formation was presented by Balch [2]. Lawton et al.
introduced three behavior control strategies: coupled dynamics formation control, coupled
dynamics formation control with passivity-based inter-robot damping, and saturated
control [3]. Monteiro et al. used nonlinear attractor dynamics to create a framework for
controlling a team of robots [4]. Xu et al. presented a variant of an initial formation and
a subsequent formation controller [5]. Other studies on formation control strategies have
been presented by Olfati-Saber [6], mixing potential field and graph-based ones, and, more
recently, by Vásárhelyi [7]. One method involved modeling behaviors by defining the
environment with attractors and repellers to maintain a triangle formation and avoid
obstacles [8]. A vision-based method where general formation control with local sensing
has also been presented in the literature [9].

Leader–follower and virtual leader–follower methods have also been presented in the
literature [10,11]. Zhang et al. proposed a cooperative guidance control method based on
backstepping that allows the desired formation and achieves a multi-UAV steady state [10].
A flocking-based control strategy for UAV groups was presented by Liu and Gao [11].
More similar to the developed method is an approach presented by Lee and Chwa that

Robotics 2022, 11, 89 3 of 28

is decentralized-behavior-based [12] and only uses relative distance information between
neighbors and obstacles. Another similar method is consensus formation control [13]. Lim-
ited work on entropy control or analysis of multi-agent systems exists in the literature,
aside from a recent paper on potentially using cross-entropy to determine the robustness
of a multi-agent group [14]. Areas of active research for applications in formation control
include, but are not limited to, the following: improvements towards autonomous farming
with swarm robotics for agricultural applications [15], satellites in space [16], and natural
disaster relief [17]. In [18,19], the researchers used a particle swarm optimization (PSO)-
based algorithm to optimize the coverage of an area using UAVs. In [20], a method of
labeling each UAV as it accomplishes tasks was used to track and coordinate movement
using a modified genetic algorithm (GA). Wildermuth and Schneider investigated computer
vision techniques to build a common coordinate system for a group of robots [21]. Re-
searchers from Carnegie Mellon University used dynamic role assignment through artificial
potential fields (APF) in [22] to coordinate the movement of a team for Robocup. Lakas et al.
used a leader–follower control technique to navigate and maintain a swarm formation for
an autonomous UAV swarm [23]. Moreover, a swarm formation method with a hetero-
geneous team including ground and aerial platforms is presented in [24]. Many of these
have applications in surveillance and reconnaissance, as shown in [25–27]. The approach
presented by MacKenzie allocates constrained subtasks, and during assignment, robots can
incorporate the cost of meeting constraints due to each other [26]. Li and Ma introduced
an optimal controller that is suitable for multi-agent cooperative missions based on the
idea of leader–follower methods [27]. Unlike these complex and complicated methods,
the main focus in this study was to implement entropy-based distributed behavior, which
demonstrates a simple means of coordination and can be easily applied to a sUAS.

In the literature, various studies have been presented that are related to 3D modeling
approaches. These studies can be grouped depending on their application areas and 3D
modeling techniques. Some of the applications of 3D modeling presented in the literature
include 3D building modeling [28], 3D city modeling [29], automatic registration for geo-
referencing [30], railroad center line reconstruction [31], automatic building extraction [32],
scene parsing [33], elevation mapping [34], species recognition, height and crown width
estimation [35], target localization and relative navigation [36], and visual localization [37].
Modeling techniques used in these studies involve automatic aerial triangulation, coarse-
to-fine methods [28], digital surface nodes application [29], the iterative closest-point (ICP)
algorithm [30], the random sample consensus algorithm [31], the binary space partitioning
(BSP) tree [32], the Markov-random-field-based temporal method [33], fuzzy logic and
particles [34], multi-scale template matching (MSTM) [35], dynamic bias estimation [36],
and localization-by-recognition and vocabulary-tree-based recognition methods [37].

Structure from motion (SfM) is one of several methods of analyzing and reconstruct-
ing a 3D model, as described in [1,38], and it is capable of reconstruction using frames
from unstructured imagery. Given that high-resolution cameras are now inexpensive
and installed on nearly every commercially available Unmanned Aerial Vehicle (UAV),
utilizing the methods described is a more practical solution. Furthermore, the methods
described in [1,38] have been developed in open source software, COLMAP, that can be
controlled via a graphical user interface (GUI) for human interaction and review, and
Command Prompt commands that can easily be utilized in the software. It can also be built
on various operating systems, which allows it to be easily applied to a host of possible
onboard computational units. This ability to run the software from Command Prompt also
allows it to be integrated as a sub-system into the general sUAS so that it can be executed
autonomously. A comparison of several SfM methods using a wide variety of software is
presented in [39–42] with a focus on comparing the speed and accuracy using a set number
of photos. In this paper, another focus is finding the most efficient camera poses and using
that information to reduce the time it takes to create a model.

One of the most relevant works was presented by Mentasti and Pedersini [43]. In that
study, control strategies for a single UAV were provided for 3D reconstruction of large

Robotics 2022, 11, 89 4 of 28

objects through a planned trajectory. Contrary to that study, in this study, a framework for
multi-agent sUAS is presented. The other most relevant work is demonstrated in [44]. It
accomplishes a similar task as presented in this paper, but it uses different reconstruction
software and object detection methods. More importantly, the framework presented in this
paper uses the developed distributed behavior model, which allows a multi-agent system
to coordinate their motion during 3D model reconstruction missions. Similarly, Daftry et al.
focused on the 3D reconstruction of a building using micro aerial vehicles (MAV); however,
their approach is not a complete autonomous system for reconstruction [45]. Gao et al.
used a simulated environment to reconstruct a 3D model from images, which is explored
in this research as well [46]. All of these methods contribute in some part, but there is no
single example of the framework developed in this research.

3. Methodology

The developed framework has two major parts: the distributed behavior model and
3D model reconstruction. The general scheme of the framework can be described as follows.
The developed distributed behavior model is based on the entropy of the system. In this
model, the goal is to keep the entropy less than a predefined threshold value, and the
sUASs, which have decentralized rule-based controller, reduce the entropy by grouping
together. As sUASs begin their application, the first thing they do is to come close to
each other until entropy is below the threshold (grouping phase). Once the entropy is
less than the threshold, the sUASs begin their 3D reconstruction mission (mission phase).
The sUASs are given the object in the location of interest, and they coordinate their motion
and formation automatically. They can switch grouping phase if they fall apart, and then
they can come closer and continue the 3D reconstruction mission. For 3D reconstruction,
the sUASs complete a circular orbit while taking photos. Finally, those photos are fed into
the SfM algorithm to create a 3D model of the object. The following sub-sections provide
details of the dynamic model of sUASs, the developed distributed behavior model, and the
3D reconstruction approach.

3.1. Dynamic Model of sUASs

In the simulation experiments, the sUAS model was used [47]. The sUAS was defined
as four connected vertices with thrust forces Fi, torques from the propellers τi, and control
inputs ui (Figure 1).

F1

F2

F3

F4
𝜏1, u1

𝜏2, u2

𝜏3, u3

𝜏4, u4

Figure 1. Representation of the sUAS model.

The forces and torques [47] are defined as

Fi = CTρω2
maxD4ui (1)

τi =
1

2π
Cpowρω2

maxD5ui (2)

where D is the propeller’s diameter, ρ is the air density, ωmax is the max angular velocity in
revolutions per minute, CT is the thrust coefficient, and Cpow is the power coefficient. In the

Robotics 2022, 11, 89 5 of 28

simulator, the magnitude (| · |) of the linear drag force on the body is used, and it is defined
as [47]:

|Fd| =
1
2

ρ|v2|Clin A (3)

where A is the vehicle cross-section, Clin is the linear air drag coefficient, v is the velocity
vector, and drag force acts in the opposite direction to the velocity vector. Consider an
infinitesimal surface area ds in the sUAS body with the angular velocity ω. The linear
velocity dv experienced by ds equals to rds × ω; thus, the linear drag equation for ds
becomes [47]

|dF| = 1
2

ρ|rds ×ω|2Clinds (4)

where direction of dF is −rds ×ω. The drag torque can now be computed by integrating
over the entire surface as τd =

∫
S rds × dF, and the body for the drag force is approximated

as a set of connected faces and then approximated as a rectangular box. Further, the net
force is calculated as [47]

Fnet = ∑
i

Fi + Fd (5)

and the torque is calculated as

τnet = ∑
i
|τi + ri × Fi|+ τd (6)

3.2. Distributed Behavior Model

Entropy was used as a form of distributive behavior model for the team of sUASs.
Specifically, Tsallis entropy was utilized, which is defined as [48]

ST =
1− Σi p

q
i

q− 1
(7)

When the sUAS are far apart, the entropy of the equation is high, which means
that system’s stability is low. Low stability is an indicator that the probability of the
system remaining cohesive is decreasing. This approach works for homogeneous and
non-homogeneous systems alike, because it generalizes the model as a system of particles.
Each agent has a case dependent variable, X, so that the probability density function is
calculated using [25,49–52]:

pi(X) =
1

Γ(k)θk Xk−1e
−X

θ (8)

where k and θ are shape and scale parameters, respectively. During execution, each agent
calculates the entropy for itself and shares it with all neighboring agents. The goal with
this method is to reduce the entropy of the system to the lowest value achievable while still
remaining stable. The algorithm takes the current location and heading (x,y,θ), the desired
coordinate (x, y), and the maximum velocity as inputs; and outputs command velocity
and heading, per sUAS. Distances and angles between each sUAS and the destination are
calculated, then the nearest and farthest agents are determined. Error is bounded between
a maximum and a minimum distance, and then the entropy of the system is calculated

by summing
ei

dq
max

divided by the q − 1. The pseudo-code representation is shown in

Algorithm 1.
More clearly explained, if the sUAS has a entropy value that is greater than the pre-

defined threshold, it is urged to group with its closest neighbor. This phase is called
“grouping” phase. Then, the formed sub-group(s) tries to get closer to the next farthest
sUAS agent or other sub-group, if the entropy values are still greater than the threshold.

Robotics 2022, 11, 89 6 of 28

One safety step is checking whether the sUASs are too close; if so, the algorithm commands
them to move apart. That allows sub-groups to come closer instead of agents inside a sub-
group to come very close to each. Moreover, if entropy values are less than the threshold
value, sUASs start moving to a global way-point. This phase is called the “mission” phase.

Algorithm 1: Pseudo-code representation of Tsallis-entropy-based distributed behavior
Input : [Xcur, Ycur,θcur] for each sUAS, (Xdes, Ydes) Global Waypoint, Vmax
Output : Vcom, θcom
Distances and Angles are calculated between each sUAS and then to the desired
waypoint

Distances between sUAS are compared and the closest and furthest sUAS are
identified

if dbetweensUAS > dmax then
e = dmax

else if dbetweensUAS < dmax & dbetweensUAS > dmin then
e = dbetweensUAS

else if dbetweensUAS ≤ dmin then
e = dmin

ST =
1−∑numsUAS

i (
ei

dmax
)q

q−1

Threshold←− ST
if ST < Threshold then

if dclosestsUAS < dmin then
θcom = θwaypoint − θcur

Vcom = Vmax

else
θcom = (θindex − θcur) + π
Vcom = Vmax

else if dclosestsUAS > dmin then
θcom = θindex − θcur
Vcom = 2 ∗Vmax

else if d f urthestsUAS > dmin then
θcom = θindex2 − θcur
Vcom = 2 ∗Vmax

else if dclosestsUAS or d f urthestsUAS < dmin then
θcom = (θindex − θcur) + π
Vcom = 1/2 ∗Vmax

Map all angles between −π to π

To test this model, simulations were run in AirSim [47]. To ensure the robustness and
scalability of the model, simulations were run with 3, 6, 9, 12, 15, 18, and 20 sUAS. Using
this method, it was possible to collect enough data to find suitable values to complete the
simulation missions. This capability led to the discovery that, along with the Tsallis entropy,
the developed model needs to have two other parameters to effectively control the sUAS
team. The additional parameters are:

• Minimum distance
• Entropy threshold

3.2.1. Minimum Distance

The minimum distance was added to avoid collisions between each sUAS in the team.
Since the goal is to reduce the overall entropy, the sUASs move closer together, and all of
them try to occupy the same physical space. This causes collisions and makes maneuvering
challenging. To avoid this, the minimum distance was set. This minimum distance makes it
possible for each sUAS to operate without interference from the others. Figure 2 represents

Robotics 2022, 11, 89 7 of 28

the three sectors within the minimum distance that the sUAS will monitor. If another
sUAS exists in any of the sectors, the sUAS will attempt to separate, but the sector will
determine how they will separate. If another sUAS is in the “front-left” sector, the sUAS
will determine the angle relative to other sUAS and subtract 90 degrees; thus, it will make
a right turn and avoid the other sUAS. Similarly, in the “front-right” sector case, the sUAS
will determine the angle and add 90 degrees to turn left. If a sUAS is determined to be in the
“behind” sector, 180 degrees will be added (and readjusted to between 0 and 360), making
the sUAS move directly away from the other sUASs. The reason for introducing different
sectors is that there are certain cases in which the distributed behavior model cannot be
stabilized. Those cases are (i) the sUAS being on the edge of the entropy threshold, (ii) the
sUAS being on the edge of the minimum distance threshold, and (iii) the sUAS being on a
nearly parallel path with its nearest neighbor. Outside of those cases, if the sUASs perform
a 180 degree maneuver, that leads to oscillating behavior and the whole system becomes
unstable. Consider two sUAS in such a situation. Both sUAS will be stuck in a loop of
turning 180 to get away from the minimum distance and then immediately turn back 180 to
get within entropy threshold value. By assigning quadrants, it is possible to make smaller
adjustments and let the sUAS “drift” closer together on their flight path.

Figure 2. Diagram illustrating the sUAS minimum distance.

To operate effectively, each sUAS needs to monitor three different ranges, as shown in
Figure 3. Within the minimum distance, no other sUAS should be present. If any sUASs
do enter this range (depending on where they are), then the sUASs will make adjustments
to separate, as shown in Figure 2. Within the maximum grouping distance, sUASs will
attempt to place all the other sUASs in this range. If they are too close, they will separate,
and if they are too far, they will move towards each other. Within the maximum distance,
the sUASs will measure their distances and attempt maneuvers to move closer. Anything
outside this distance is not weighted more heavily but will still contribute to high entropy.

Figure 3. Diagram illustrating the different ranges that a single sUAS will monitor for other sUASs.

Robotics 2022, 11, 89 8 of 28

3.2.2. Entropy Threshold

Similar to the way that the physical size of the sUAS interferes with reducing the
overall entropy, the physical size of the team interferes with occupying the required system
entropy. To make the solution scalable, the entropy threshold needs to be changed based
on the size of the team. The entropy threshold forms a “bubble” that the team must stay
inside of. A “bubble” that works for a team of three sUAS is physically too small for a team
of 20 sUAS to occupy. Therefore, the entropy threshold needs to be increased based on how
many sUAS are in the team. Figure 4 represents this concept in a 2D example.

(a) 3 sUAS (b) 6 sUAS
Figure 4. 2D representation of 3 and 6 sUAS teams occupying the same entropy “bubble”.

To determine a suitable entropy threshold, a simulation mission was run using dif-
ferent values for the entropy threshold. The simulation mission starts with the team in a
straight line with each sUAS separated. They are initialized, and then we move into the
“grouping” phase of the mission where the goal is to reduce the entropy below the threshold
value. Once this is achieved, the team moves into the “mission” phase that consists of
navigation through four waypoints. More details and results are provided in the parameter
analysis section.

3.3. 3D Model Reconstruction

The structure from motion method uses a series of images and builds a 3D represen-
tation of the environment or object in interest. This is done by first taking a set of input
images and extracting or detecting features in the images. Once these features are detected,
they are then matched with the same features in other images. Once enough features are
detected, it is possible to estimate both the 3D geometry of the point (structure) and the
camera pose (motion) [53]. This is represented as

g(X, R, T) =
m

∑
i=1

n

∑
j=1

Wij ·
∥∥∥∥P
(
xi, Rj, tj

)
−
[

ui,j
vi,j

]∥∥∥∥2
(9)

The solution of this equation is also known as bundle adjustment. There are several
proven techniques that can be used to accomplish each of these steps. For the 3D recon-
struction step of the framework, COLMAP [1] was adopted to complete the SfM-based
reconstruction using unordered images. It is well documented and allows the user to
incorporate it into an custom framework with minimal modifications. It is an end-to-end
application capable of taking multiple photos or videos and generating a model based on
some user defined parameters.

The method of implementing the SfM feature extraction process is improved by
augmenting the scene graph with appropriate geometric relations. For each image Ii,
algorithm detects sets Fi = {

(
xj, fj

)
j = 1 . . . NF} of local features at location xj ∈ R2

represented by an appearance descriptor fj. An initial fundamental matrix is calculated,

Robotics 2022, 11, 89 9 of 28

and if it is determined to have NF inliers, then the images are considered geometrically
verified. Next, the number of homographic inliers NH is used to classify the transformation
of the imaged pair. To approximate model selection methods such as the geometrical robust
information criterion (GRIC), it is assumed that a moving camera in a general scene is
NH/NF < εHF. In the case of correct calibration and NH/NF < εHF, the essential matrix
is decomposed, the points from inlier correspondences are triangulated, and the median
triangulation angle, αm, is determined. αm is used to differentiate between cases of pure
rotation and planar scenes. For valid pairs, the scene graph is labeled with its model type
(general, panoramic, planar) alongside the inliers of the model with maximum support
NH , NE, NF. Here, the model type is leveraged to seed the reconstruction only from the
non-panoramic with a preference for the calibrated image pairs. Triangulation from the
panoramic case is not calculated to avoid degenerative points and improve robustness of
triangulation, and follow on image registrations.

The following step in the framework is to improve next best view selection by keeping
track of the number of visible points and their distribution in each image. These two
parameters are used to determine a score S , where more distributed points and a more
uniform distribution result in a higher score. This allows for images with the highest score
to be registered first. This is achieved by discretizing each image into cells of Kl in both
dimensions. Then, each cell is labeled either empty or full. This step is repeated with each
cell being subdivided with the score S being updated.

To effectively triangulate images and handle arbitrary levels of outlier contamination,
multiview triangulation is performed using random sample consensus (RANSAC) [54].
The feature track is defined as T = {Tn; n = 1 . . . NT}, which is a set of measurements
with prior unknown ratio ε of inliers. A measurement Tn consists of normalizing image ob-
servation x̄n ∈ R2 and corresponding camera pose Pn ∈ SE(3). This defines the projection
from world to camera frame P =

[
RT − RTt

]
with R ∈ SO(3) and t ∈ R3. The objective is

to maximize support of the measurement conforming with two-view triangulation.

Xab ∼ τ(x̄a, x̄b, Pa, Pb) with a 6= b, (10)

where τ is any triangulation method and Xab is the triangulation point. A well conditioned
model must satisfy two constraints. First, a sufficient triangulation angle α:

cos α =
ta − Xab
||ta − Xab||2

· tb − Xab
||tb − Xab||2

(11)

Second, positive depths da and db with respect to the views Pa and Pb with the depth
defined as

d = [p31 p32 p33 p34]
[
XT

ab 1
]T

, (12)

where pmn denotes the element in row m and column n of P. A measurement Tn is
considered to conform with the model if it has positive depth dn and if its reprojection error,

en =

∣∣∣∣∣∣∣∣x̄n −
[

x′/z′

y′/z′

]∣∣∣∣∣∣∣∣
2

with

x′

y′

z′

 = Pn

[
Xab
1

]
, (13)

is smaller than a threshold t. RANSAC maximizes K iterativly and usually has a sample
size of two. This makes it likely to sample the same minimum set multiple times, so
COLMAP only generates unique samples. To ensure confidence of η that at least one
outlier-free minimum has been sampled, RANSAC must run for at least K iterations. This
process is run recursively until the consensus set is less than three.

At this point, bundle adjustment (BA) is performed when the growth model has
reached a certain percentage. To account for potential outliers, the Cauchy function is
utilized as the robust loss function. After the BA, any observations with large projection
errors are filtered out, and retriangulation (RT) is performed to improve the completeness

Robotics 2022, 11, 89 10 of 28

of the reconstruction. BA and RT are performed iteratively until the amount of filtered
out observations diminishes. The BA step is a major bottleneck for SfM, so to improve the
speed of the pipeline, similar images are clustered together. Given the application used in
this study, this is unlikely to be due to the fact that a very limited number of photos is used
in an effort to decrease computation time. Details of the approach and all of the equations
can be found in [1].

In this study, several trials were evaluated using different parameters. Those parame-
ters were:

• Processing quality;
• Number of photos;
• Camera angle;
• Multiview formation;

Using these parameters, it was possible to generate 184 trials using two datasets.
First, the benchmark dataset “Cat” was used from ToHoku University Multiview Stereo
(THU-MVS) Datasets [55]. This dataset consists of 108 images that include three sets of 36
images. Each set has 36 images taken from a circumferential camera position separated by
10 degrees. These image locations are depicted in Figure 5.

Figure 5. Camera Pose for benchmark dataset [55].

Using the observations from the benchmark dataset, a custom dataset consisting
of 96 images was created. The created dataset used an outdoor setting and a camera
phone. This new dataset was meant to represent a more realistic environment outside of a
controlled setting. The camera pose for these images was adjusted similarly to 32 images
separated by approximately 11.25 degrees. This dataset generated 124 trials that were each
evaluated similarly to the benchmark dataset. The third dataset was generated in the AirSim
environment [47]. Details of all datasets are given in more detail in the following sections.

In this study, COLMAP was utilized as a tool for reconstructing the 3D model. The fo-
cus was to optimize the developed framework by reducing the input to a functional level.
To determine the minimum data required to build a suitable model, camera locations were
changed and results were compared. The contribution in terms of 3D reconstruction was
determining the optimal locations to generate a 3D model rapidly.

4. Distributed Behavior Model Parameter Analysis

For analysis of the developed distributed behavior model, four parameters were tested
to characterize the behavior of the developed algorithm. In the analysis, three sUAS were
used, and the goal was for sUAS to group first and then to go a pre-defined waypoint.
The trials were run until all three sUAS were within 20 m of the waypoint. The following
were the cost functions used to compare different results.

f1 =
numUAVs

∑
i

√
V2

X + V2
Y (14)

Robotics 2022, 11, 89 11 of 28

f2 =
numUAVs

∑
i

√
∆X2

Total + ∆Y2
Total (15)

The sUAS were controlled via velocity control, so the cost function in Equation (14)
characterizes the summation of the total control inputs per sUAS. The cost function in
Equation (15) characterizes the summation of total distance traveled per sUAS. No exact
parameter set was the best in all cases for parameter analysis. The exact application dictates
which parameter set is preferred. The resulting cost function values and the parameters
used for each trial are given in Tables 1 and 2.

The parameters tested were threshold, maximum velocity (Vmax), maximum distance
(dmax), and q (Table 2). Minimum distance (dmin) was manipulated in the latter half of the
trials to prevent the entropy of the system from becoming negative. The q is the Tsallis
entropy constant given in Equation (7). Maximum distance is the divisor for the summation
of entropy of the system. Maximum velocity is the highest allowed velocity per sUAS.
Threshold is the transition point in system entropy to switch from the grouping phase to
the 3D reconstruction mission phase.

Trials 1–3 were performed by varying the threshold parameter. Depending on the
threshold value, the entropy of the system kept decreasing as sUASs got closer together
(grouping phase); then, they started going to the waypoint (mission phase). The sUASs
ended up closest in Trial 1 before going to the waypoint (Table 1). This resulted in the
highest cost for velocities, f1, and distance, f2, in comparison to Trials 2 and 3. As the
threshold increased, the cost functions f1 and f2 decreased because less grouping resulted in
lower velocities and lower overall distances traveled to the waypoint. Trials 4–6 varied the
maximum velocity parameter. Higher maximum velocity resulted in less stable individual
agent trajectories, but the system of agents still effectively reached the waypoint without
colliding. Trial 4 resulted in a similar trajectory to Trial 1, as is evident in the parameter
costs (Table 1). Trial 6 had the highest cost of f1 of any trial and the highest average f2.
Thus, the general trend is: as the maximum velocity increases, so do the cost functions f1
and f2.

Trials 7–9 varied the maximum distance parameter. Changing the maximum distance
had minor effects on the overall behavior because minimum distance must be increased to
prevent negative entropy in the system. The largest distinction is that the calculated overall
entropy of the system was smaller than in other parameter runs. Trials 10–12 varied the q
parameter, which is given in Equation (7). The q parameter greatly affects the scale of the
entropy of the system. With q of 0.6, 0.75, and 0.9, the highest entropy became 5, 8, or 20,
respectively. With a higher q, the trajectories become less smooth, which is undesirable in
most applications. As the parameter q increases, the cost functions f1 and f2 also increase.

Table 1. Parameter analysis results—cost function values, f1 and f2, in 12 trials.

f1sUAS1 f1sUAS2 f1sUAS3 f2sUAS1 f2sUAS2 f2sUAS3

Trial 1 1706 1706 1706 177 174 177
Trial 2 1632 1632 1632 168 166 170
Trial 3 1387 1387 1387 145 144 140
Trial 4 1747 1748 1748 180 176 181
Trial 5 1755 1755 1755 179 175 181
Trial 6 3105 3105 3105 237 219 249
Trial 7 1672 1672 1672 172 169 174
Trial 8 1778 1778 1778 180 168 181
Trial 9 1593 1593 1593 161 151 165

Trial 10 1730 1730 1730 178 175 180
Trial 11 2244 2179 2244 199 206 195
Trial 12 2856 2560 2865 248 188 245

Robotics 2022, 11, 89 12 of 28

Table 2. Parameter analysis results—parameter values used in 12 trials.

Threshold Vmax dmax q dmin

Trial 1 0.5 0.5 100 0.5 12
Trial 2 1.5 0.5 100 0.5 12
Trial 3 3 0.5 100 0.5 12
Trial 4 0.5 0.75 100 0.5 12
Trial 5 0.5 1 100 0.5 12
Trial 6 0.5 5 100 0.5 12
Trial 7 0.5 0.5 150 0.5 17
Trial 8 0.5 0.5 200 0.5 25
Trial 9 0.5 0.5 250 0.5 30

Trial 10 0.5 0.5 100 0.6 12
Trial 11 0.5 0.5 100 0.75 24
Trial 12 0.5 0.5 100 0.9 30

Additionally, multiple waypoint navigation tests were performed in a simulation
environment, and results are depicted in Figures 6 and 7 [56]. In the experiments, the team
of sUASs was commanded to navigate between defined waypoints. In Figure 6, the effect
of the entropy threshold value can be seen during the experiment with three sUAS. As the
selected entropy threshold increases, the smoothness of the sUAS trajectories increases.
Increasing the entropy threshold is another means by which to configure system grouping
and mission priorities. The results with a threshold of 1.0 were determined as the best
due to an adequate mix of smooth trajectory and early formation cohesion. The top plots
of Figures 6 and 7 depict the x− y position of each sUAS, and the lower plots depict the
entropy values over time.

(a) Threshold = 0.8 (b) Threshold = 1.0 (c) Threshold = 1.5

Figure 6. Parameter analysis with three sUAS.

In order to demonstrate the effect of an increased number of sUASs in the team, results
from simulations with six sUAS are depicted in Figure 7. As new sUAS agents are added
to the team, they populate the simulation environment in a linear pattern. As the team
grows, so must the entropy threshold value. Close inspection of the entropy values for each
sUAS show that as they move towards the first objective, they also reduce their entropy by
decreasing the distance between each other. Initially, the team grouped together to reduce
the entropy of each sUAS to below the threshold. Once this was achieved, they continued
to group as they moved to the waypoint one until they reached the minimum distance
limit. Once each sUAS reached its waypoint, the entropy of each sUAS increased so that it
was possible to reach its destination and form the echelon formation.

Robotics 2022, 11, 89 13 of 28

Figure 7. Parameter analysis with six sUASs.

Further, entropy threshold values for teams of 3, 6, 9, 12, 15, 18, and 20 were determined
by trial and error. A bracketing method was used where the entropy threshold values were
changed between low failure and high failure values until the mission was completed at
the minimum entropy threshold setting. Table 3 shows the team size and entropy threshold
values. The number of sUASs was plotted as a function of the entropy threshold, and
Equation (16) was derived. Using all of the values, the final entropy equation was found
to have an R2 value of 0.9984. Using Equation (16), entropy threshold values for 5, 8, 11,
14, 17, and 19 sUASs were calculated, and trials were run to confirm the accuracy of the
equation. In all cases, the mission was completed successfully with using the calculated
entropy threshold, and stability of the system was confirmed.

y = 1.11x− 2.57 (16)

Table 3. Entropy values for team by number of sUASs.

Number of sUAS in the Team Entropy Value

3 1
6 3.9
9 7.3
12 10.6
15 14.3
18 18
20 19.7

5. 3D Reconstruction Parameter Analysis

The COLMAP software was designed to take large datasets of photos (several thou-
sands) and reconstruct 3D models of environments from the images. For the application
addressed in this study, the goal is to reconstruct a model of just an area or object of interest
so that it can be inspected in some detail and a determination can be made based on that
information. The first step taken in this endeavor was to use a benchmarking dataset in
ideal circumstances to determine (i) the fewest required photos to build a model and (ii) the
best locations for the camera to take photos. This was done using the dataset available
in [55] provided by ToHoku University. A ground truth model is also provided within the
dataset [55]. This set of photos includes 108 images taken from three different levels; each
level has a set of 36 circumferential photos. Representative images are depicted in Figure 8.
Using this set of images, 60 trials were created for analysis by manipulation of the set of
input variables. The control variables were

Robotics 2022, 11, 89 14 of 28

• Quality;
• Number of photos;
• Camera angle;
• Multiview formation.

COLMAP allows for command line control of the program so that it can be written
into a script and each step individually so that the user has total control over the process.
It also has the ability to run an automatic re-constructor that runs the entire process from
start to end using presets. The benchmarking model was run on a computer (System A)
with the following specifications:

• Intel Core i7-8550U CPU @ 1.99 GHz;
• Four physical cores with eight logical processors;
• 32 Gb RAM;
• Nvidia GeForce MX130 graphics card.

Due to the limitations of the system, only the “Low” and “Medium” settings were
used for the benchmark dataset. The numbers of images used for the trials were 36,
54, 72, 90, and 108. Trials were run using 18 images as well, but did not result in any
successful models being constructed. The camera angle changes what position the photos
are taken from. Changing this allows for photos from only one level to an assortment
of photos from all three levels. This was used to generate “Low”, “Middle”, “High”,
“Low and Middle”, “Low and High”, “Middle and High”, and “Low, Middle, and High”
arrangements. The multiview formation is the formation the photos were used in. When
using less than the maximum number of photos, it is necessary to remove some from the
process. This was done using alternating photos from different levels and were labeled as
“Stacked”, “Staggered”, and “Stepped”.

Figure 8. ToHoku University dataset [55].

By manipulating these variables, it was possible to generate 60 different trials. Once
the test trials were completed, the data from each trial were recorded. The output models
were compared against each other for usability and computational time. Usability requires
the model have enough points to build a mesh without having too many outlying points
for it to cause interference. Examples of under-meshed and over-meshed are shown in
Figures 9 and 10, respectively.

Robotics 2022, 11, 89 15 of 28

Figure 9. Trial 31 resulted in an under-meshed model which does not display all of the object.

Figure 10. Trial 20 resulting in an over-meshed model with many outlying points that skewed the
model and make it difficult to use.

5.1. Case 1: Results with the Benchmarking Dataset

After all of the models were run, the computational times were compared. The min-
imum time required to generate a model was 4.16 min, and the maximum time was
70.97 min. The trial information of most complete models is given in Table 4. The results
in Figures 11 and 12 show that image count has a direct correlation with computational
time. Results also revealed that with less than a certain number of photos, the model does
not mesh. This was examined by trying to create a model using 18 photos and resulted
in a failure to mesh. From Figure 13, it can be seen that using the “Medium” setting
requires approximately the same time to compile 36 photos as the “Low” setting takes for
108. This can be effective if the limiting factor is the number of photos available. There is
also a subjective solution to what makes a model the “best”. In ideal circumstances, time
is not an issue, and camera placement can be effectively controlled. However, in a real
world implementation, the decision on what makes a model good enough could be entirely
dependent on the time available. It is also of note that using too much data has a negative
effect of adding too much noise to the model (Figure 10).

Robotics 2022, 11, 89 16 of 28

Table 4. Trial information for the most complete models.

Parameters Time
[Minutes]

Trial # Quality Number of
Photos

Camera
Angle

MultiView
Formation Total

13 Low 72 L&M All 11.366

14 Low 72 L&M All 11.494

17 Low 72 L&M&H Staggered 11.957

19 Low 108 L&M&H All 18.85

55 Low 90 L&M&H Stack 14.084

56 Low 90 L&M&H Staggered 14.292

25 Medium 36 L&H Stack 18.56

26 Medium 36 L&H Staggered 18.828

51 Medium 54 M&H Stack 34.387

53 Medium 54 L&M&H Stack 31.98

54 Medium 54 L&M&H Staggered 31.595

Figure 11. Average computational time in the “Low” setting.

Figure 12. Average computational time for the “Medium” setting.

Robotics 2022, 11, 89 17 of 28

Figure 13. Time chart of the “best” models.

Once an initial assessment of all of the models was performed, they were separated into
several groups for comparison. For further analysis, the “best” model was selected. This
was done by collecting all of the completed models together and then visually comparing
them against each other for completeness with the fewest number of outliers. Through this
comparison process, trial number 25 was determined to be the best model for this further
investigation. Only selecting the best model was done visually considering outliers and
completeness. However, after the initial selection, the model was compared against the
laser scanned ground truth data provided with the dataset. The computational time for
that trial was 18.56 min. The actual ground truth data were of a model that is roughly
300 mm from end-to-end at the widest part. Trial 25 generated 1,943,933 points with 97.02%
of the values within 3 mm. This investigation provided enough information for a starting
point for the next dataset. It also gives a good idea of what can be done to determine
optimal number of photos to be used and most effective camera orientations. Furthermore,
it should be noted that the design focus was to develop a rapid framework that could be
used in minutes. For more detailed models, it is possible to improve the model and add
a post-processing step, or even to run at a higher processing level to refine the model as
desired. However, all those will increase the computational time. For instance, the image
in Figure 10 took nearly twice as long as the “best” model which was accurate within 1%
and did not require post processing.

5.2. Case 2: Results with Custom Dataset

Once the benchmarking dataset was complete, a custom dataset was constructed for
validation. To accomplish this, a trashcan with exactly 1-foot pieces of tape on it was used
as the object to be reconstructed. The purpose of the tape on the trashcan was to create
ground truth information. It was placed inside of a circle with a diameter of 10 feet and
32 equally spaced markings for camera placement. Figure 14 depicts the circle and Figure 15
depicts the placement of the trashcan.

To complete the dataset, 96 photos were taken from three different levels of 32 circum-
ferential locations. The heights were set using a tripod and labeled low, middle, and high
having settings of 1′, 4′, and 6′4′′, respectively. The photos were taken using a phone
camera with 12MP resolution. For this dataset, a hardware improvement was made so that
the trials could be run on all of the available COLMAP ”Quality” settings which included:
“Low”, “Medium”, “High”, and “Extreme”. As the computational power of graphics card
in System A became insufficient to run custom dataset cases, a different computer (System
B) was used with the following specifications:

• Intel Core i9-10850K CPU @ 3.60 GHz.
• Ten physical cores with twenty logical processors.

Robotics 2022, 11, 89 18 of 28

• 128 Gb RAM.
• Nvidia GeForce RTX3070 graphics card.

Figure 14. Circle for custom dataset construction.

Figure 15. Object placement inside the circle.

A similar process to the previous parameter analysis was used to evaluate the custom
dataset. After all of the trials were completed, each model was evaluated for completeness.
Having the ability to evaluate the COLMAP software with the custom dataset led to several
new observations. With the “Cat” dataset, an “overmeshed” model resulted in outlier
points that appeared where no object could be, as shown in the cat model (Figure 10).

Robotics 2022, 11, 89 19 of 28

For the custom dataset, an overmeshed model resulted in too much information generated
far outside the area of interest; the reconstructed area ended up larger. For the custom
dataset, the area of interest was the 10’ diameter circle that the trashcan was situated inside.
A good example of this is depicted in Figure 16.

Figure 16. Desired area of interest.

Figure 17 depicts the overmeshed example where the modeled area was much too
large, which resulted in the object being so overmeshed that the detail of the trashcan was
diminished to just a rough cylindrical shape (Figure 18). As more images were given to the
system and run at a higher resolution, it allowed the algorithm to detect and match more
features. This resulted in the meshed area becoming larger. The trashcan is an object that
has a monocolor, symmetrical shape with few features. This results in a poor close up mesh
of the trashcan when the area is overmeshed.

Figure 17. Larger reconstruction than area of interest.

Robotics 2022, 11, 89 20 of 28

Figure 18. Close view of in larger area reconstruction.

The area that is too large shown in Figure 17 has a radius of roughly 75 ft, with the
furthest objects being over 150 ft away. The observable meshed area has a direct relationship
to the setting at which the software is being run. On the “Low” setting, the area is limited
to immediate area regardless of how many images. This also holds true for the “Extreme”
setting, where, regardless of how many images are used, the modeled area is very large.
This only applies to the completed models. A list of trials that constructed a usable model
are shown in Table 5.

Table 5. List of trials that created a model.

Parameters Time [Minutes]

Trial # Quality Number of
Photos

Camera
Angle

MultiView
Formation Total

2 Low 32 Middle All 1.599

3 Low 32 High All 1.615

4 Low 64 L&M Stack 1.657

5 Low 64 L&H Staggered 1.677

6 Low 64 M&H Stack 3.333

7 Low 96 L&M&H Staggered 3.418

15 Low 32 M&H Stacked 1.567

16 Low 32 M&H Staggered 1.588

18 Low 48 L&M&H Staggered 1.598

28 Low 22 M&H Stacked 0.96

29 Low 21 M&H Staggered 0.892

30 Low 22 M&H Stepped 0.951

Robotics 2022, 11, 89 21 of 28

Table 5. Cont.

Parameters Time [Minutes]

Trial # Quality Number of
Photos

Camera
Angle

MultiView
Formation Total

31 Low 32 L&M&H Step 0.936

33 Medium 32 Middle All 4.608

35 Medium 64 L&M Stack 7.576

36 Medium 64 L&H Staggered 4.901

37 Medium 64 M&H Stack 10.12

38 Medium 96 L&M&H Staggered 12.98

40 Medium 16 Middle Half 1.442

42 Medium 32 L&M Stacked 1.73

43 Medium 32 L&M Staggered 1.55

45 Medium 32 L&H Staggered 1.596

46 Medium 32 M&H Stacked 4.577

47 Medium 32 M&H Staggered 4.565

48 Medium 48 L&M&H Stacked 4.907

49 Medium 48 L&M&H Staggered 4.853

59 Medium 22 M&H Stacked 2.546

61 Medium 22 M&H Stepped 2.53

62 Medium 32 L&M&H Step 2.364

64 High 32 Middle All 37.063

66 High 64 L&M Stack 75.239

68 High 64 M&H Stack 80.84

73 High 32 L&M Stacked 25.277

74 High 32 L&M Staggered 25.848

77 High 32 M&H Stacked 36.53

78 High 32 M&H Staggered 36.441

79 High 48 L&M&H Stacked 52.196

80 High 48 L&M&H Staggered 52.004

90 High 22 M&H Stacked 18.923

91 High 21 M&H Staggered 19.619

92 High 22 M&H Stepped 18.839

96 Extreme 32 High All 75.788

97 Extreme 64 L&M Stack 155.417

99 Extreme 64 M&H Stack 183.944

100 Extreme 96 L&M&H Staggered 245.359

107 Extreme 32 L&H Staggered 35.039

108 Extreme 32 M&H Stacked 11.153

109 Extreme 32 M&H Staggered 74.884

110 Extreme 48 L&M&H Stacked 108.258

111 Extreme 48 L&M&H Staggered 111.694

124 Extreme 32 L&M&H Step 54.397

Robotics 2022, 11, 89 22 of 28

A comparison of the datasets revealed the most complete models were generated
when the system was set to the highest possible settings. However, using all of the images
in the dataset resulted in non-optimal models that were over-meshed with many outliers,
as shown in Figures 10, 17, and 18. Better models were generated when two levels of
images were used, and all of the images on those levels were used. At lower settings, good
models can be generated but require more images. For instance, 76 images were required
to generate an “excellent” model on the “Low” setting, but only 36 images were required
to generate a comparable model for the “Medium” setting for the “Cat” dataset. The best
model for the custom dataset is shown in Figure 19.

Figure 19. Best model from the custom dataset.

6. Validation Model Results

Using the components from the distributed behavior model and 3D reconstruction,
the complete framework was established. A representation of the pipeline of the developed
framework is depicted in Figure 20. A confirmation implementation was designed to
replicate a real world application. Given that the most robust models were constructed
using images from two levels, two sUASs were used in the team. The two sUASs took
off and move into the grouping phase. Once the entropy of the system fell below the
threshold value of 0.1, the team moved into the mission phase and started its movement
to the object of interest. When the team got closer to the object, they shifted into an orbit
pattern, with one sUAS moving into a higher position and the other moving into a lower
position, and started their orbit pattern. As the orbit began, so does the recording. A typical
orbit took approximately 2 min and 10 s, and approximately 500 images were recorded.

Figure 20. Complete pipeline of the developed framework.

Robotics 2022, 11, 89 23 of 28

AirSim provides the capability to take images from the perspective of the sUAS in
the simulation environment. These are the images that were used in the reconstruction
of the 3D model. The resolution of these images can be specified in the settings, and for
the validation model experiments, they were set to 3840 × 2160 pixels. Images from the
perspective of the sUAS are depicted in Figure 21.

(a) Front left—sUAS viewpoint (b) Front right—sUAS viewpoint

(c) Back left—sUAS viewpoint (d) Back right—sUAS viewpoint

Figure 21. Images taken from the sUAS in AirSim.

The 3D model of the object in interest, a house in these validation experiments, was
constructed using 71 images from the dataset (Figure 22). Figure 22a depicts that the area
around the house was limited to a reasonable area without the interference of multiple
outliers. By limiting the area to a small radius, it is possible to generate better models and
reduce the amount of time required to complete it. The reconstructed model has enough
details; the ones that can be noticed are entry and exit locations, the chimney, and windows.
Upon close inspection, the gutters can also be observed. It is clear enough that if a person,
car, or animals were in the example, they could also be recorded. This provides confidence
that the developed framework can perform well in real world applications. As presented
in 3D reconstruction parameter analysis section, in the virtual world, it is more difficult to
detect features because everything is perfectly simulated. In the real world, on the other
hand, there are more features to detect, as presented in Section 5.2.

The reconstruction of the model took 6 min 4 s from when the team completed their
orbits. Looking at the total time spent, depending on where the sUASs were spawned, it
could take up to 7 min for them to get through the grouping phase and then make their
way to the objective. From there, they made an orbit, which took 2 min and 10 s. Modern
off-the-shelf sUASs are capable of much faster physical operations that could accomplish
this movement portion of the mission much faster. The tradeoff would be the time it
takes to build the model, and it takes a little more than 6 min with the settings used in
the simulations.

Robotics 2022, 11, 89 24 of 28

(a) (b)

(c) (d)

Figure 22. Images of the 3D reconstructed model. (a) 3D reconstructed model—far view; (b) 3D
reconstructed model—closer view; (c) 3D reconstructed model—front view; (d) 3D reconstructed
model—vack view.

7. Discussions and Future Directions

In this paper, the aim was to present proof-of-concept results of the developed frame-
work for rapid 3D reconstruction using distributed model-based multi-agent sUASs. There
are several points that need to be addressed; those are worth mentioning here. In terms
of distributed behavior model, the parameters should be tuned very carefully; otherwise,
there might be cases of instability. One possibility is that sUASs may fail to group, and there
are two ways that can happen; either the entropy threshold value is set too low, or the
entropy is too high and the sUASs bypass the grouping phase all together. Another point
that should be considered is that sUASs may have “edge characteristics”. That resulted in
the entropy value being very close to the threshold value but not below the threshold, so
one or more of the sUASs had an erratic path that resembled a wave pattern. This possible
challenge was mostly solved by introducing sectors, described in Section 3.2.

In terms of 3D reconstruction, it should be noted that the sUASs in the simulation
environment each had one fixed camera. This makes it difficult to focus the cameras in
the correct orientation so that it can look down at the object. When investigating the best
camera poses, the best cases with just one angle were all done from the “Middle” or “High”
positions where more of the object was in view in each image. In the cases where only
perpendicular images were used, developed framework could not build a complete model.
This limitation could be experienced in the simulation models; the “High” position also
resulted in a much larger model radius. This is because when a sUAS is at the top of the
roof of the house model, it needs to be in a position where the roof is in the bottom of the
frame. When in this position, the rest of the image has a view out to the horizon. This
results in poor models with huge model radii and many artifacts. Using a sUAS with a

Robotics 2022, 11, 89 25 of 28

camera on a gimble would allow for maximizing the area in the field of view with the object
of interest.

One immediate future work for this study will be to apply the framework using actual
sUAS platforms in real world. Although parameter analysis in the real world with a fixed
camera was presented, it is necessary to validate the results by using sUAS platforms.
The goal of using fixed camera experiments is to eliminate all factors and a have controlled
experiment to focus on proof-of-concept results of the developed framework. However, it is
important to also test effects of real-world issues, such as vibration, coupled movement of
the sUAS and camera, and motion blur, on the presented framework’s performance. That is
why experiments with actual sUASs are planned for immediate future work of this study.

Additionally, the intent is to have all computations done by the onboard hardware
of the sUAS. The simulation times recorded in the experiments were for a machine that
is substantially better than the companion computers that could be placed on sUASs.
However, given that comparative models can be established using lower resolution with
more images, it is not likely that this would be much of an issue. Using twice or three
times the images would not be a difficult adjustment to make given that most available
off-the-shelf sUASs have high-resolution cameras mounted on them.

Another reason for plan future work with an actual platform is to see what kind of
images are able to be recorded in different weather conditions. The simulation environment
images were taken in a nearly motionless environment without wind, rain, platform
vibration, glare, and several other uncertainties. Incorporating the framework onto a
physical platform would undoubtedly bring up many challenges, some of which would
likely be unforeseen. Integration onto hardware would also give a better estimate of mission
completion time as well. The simulated sUASs are not designed to be high performance; as
a result, the navigation time to the object in interest is the longest part of the process. This
would not be the case when using an actual sUAS platform, and the mission completion
time could be even shorter with relatively faster platforms.

8. Conclusions

In this study, a rapid 3D reconstruction framework was presented using structure
from motion with images obtained from a team of sUAS. Details of the distributed behavior
model for a team of sUASs and 3D reconstruction steps were provided. For the distributed
behavior model that is based on the entropy of the system, a parameter analysis was con-
ducted with the intent of having a robust and scalable algorithm capable of navigating the
sUASs to the desired positions. Parameters used for evaluation were (i) minimum distance
between sUASs and (ii) entropy threshold. Simulations were run with various numbers
of sUASs to confirm scalability, robustness, and threshold values. A minimum distance
setting was confirmed, and a function for scaling the threshold value was determined.
For the 3D reconstruction step, COLMAP was evaluated with two separate datasets for
optimization with the intent of reducing the computational time required to build a model
that is usable. One dataset was a controlled environment for initial analysis, and the other
dataset was of a real world environment for applicability to hardware implementation.
The priorities are usability of the model and speed of reconstruction. During this evaluation,
four parameters were analyzed in software for evaluation: quality, image number, camera
angle, and multiview formation. As a validation experiment, a team of two sUASs was able
to use the entropy-based distributed behavior model to take off from different locations and
then group together in the simulation environment. Then, they made their way towards a
predefined object and recorded images of the object while in orbit. Once the orbit was com-
plete, the total of 71 images, which were separated by approximately 10 degrees and from
two levels, were used to reconstruct the model, and a rapid model could be constructed in
low resolution in as little as 6 min 4 s from when the team completed their orbit motion.
This would be helpful in emergency situations, such as wildfires, disaster relief efforts,
and search and rescue missions. In those situations, an in-depth, highly accurate model is

Robotics 2022, 11, 89 26 of 28

not necessarily required, but a rapid solution could be crucial. The planned future work
included transitioning the framework onto real hardware systems.

Author Contributions: Conceptualization, methodology, investigation, writing–original draft prepa-
ration, D.S.S.J.; supervision, project administration, writing–review and editing, H.E.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Schonberger, J.L.; Frahm, J.M. Structure-from-motion revisited. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4104–4113.
2. Balch, T.; Arkin, R.C. Behavior-based formation control for multirobot teams. IEEE Trans. Robot. Autom. 1998, 14, 926–939.

[CrossRef]
3. Lawton, J.R.; Beard, R.W.; Young, B.J. A decentralized approach to formation maneuvers. IEEE Trans. Robot. Autom. 2003,

19, 933–941. [CrossRef]
4. Monteiro, S.; Bicho, E. Attractor dynamics approach to formation control: Theory and application. Auton. Robot. 2010, 29, 331–355.

[CrossRef]
5. Xu, D.; Zhang, X.; Zhu, Z.; Chen, C.; Yang, P. Behavior-based formation control of swarm robots. Math. Probl. Eng. 2014, 2014,

205759. [CrossRef]
6. Olfati-Saber, R. Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Trans. Autom. Control. 2006, 51, 401–420.

[CrossRef]
7. Vásárhelyi, G.; Virágh, C.; Somorjai, G.; Nepusz, T.; Eiben, A.E.; Vicsek, T. Optimized flocking of autonomous drones in confined

environments. Sci. Robot. 2018, 3, eaat3536. [CrossRef]
8. Monteiro, S.; Bicho, E. A dynamical systems approach to behavior-based formation control. In Proceedings of the 2002 IEEE

International Conference on Robotics and Automation (Cat. No. 02CH37292), Washington DC, USA, 11–15 May 2002; IEEE:
Piscataway, NJ, USA, 2002; Volume 3, pp. 2606–2611.

9. Fredslund, J.; Mataric, M.J. A general algorithm for robot formations using local sensing and minimal communication. IEEE
Trans. Robot. Autom. 2002, 18, 837–846. [CrossRef]

10. Zhang, J.; Yan, J.; Zhang, P. Multi-UAV Formation Control Based on a Novel Back-Stepping Approach. IEEE Trans. Veh. Technol.
2020, 69, 2437–2448. [CrossRef]

11. Liu, W.; Gao, Z. A distributed flocking control strategy for UAV groups. Comput. Commun. 2020, 153, 95–101. [CrossRef]
12. Lee, G.; Chwa, D. Decentralized behavior-based formation control of multiple robots considering obstacle avoidance. Intell. Serv.

Robot. 2018, 11, 127–138. [CrossRef]
13. Qu, X.; Wan, Y.; Zhou, P.; Li, L. Consensus-Based Formation of Second-Order Multi-Agent Systems via Linear-Transformation-

Based Partial Stability Approach. IEEE Access 2019, 7, 165420–165427. [CrossRef]
14. Cofta, P.; Ledziński, D.; Śmigiel, S.; Gackowska, M. Cross-Entropy as a Metric for the Robustness of Drone Swarms. Entropy 2020,

22, 597. [CrossRef]
15. Albani, D.; Manoni, T.; Arik, A.; Nardi, D.; Trianni, V. Field coverage for weed mapping: Toward experiments with a UAV swarm.

In Proceedings of the International Conference on Bio-Inspired Information and Communication, Pittsburgh, PA, USA, 13–14
March 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 132–146.

16. Schranz, M.; Umlauft, M.; Sende, M.; Elmenreich, W. Swarm Robotic Behaviors and Current Applications. Front. Robot. 2020,
7, 36. [CrossRef]

17. Arnold, R.D.; Yamaguchi, H.; Tanaka, T. Search and rescue with autonomous flying robots through behavior-based cooperative
intelligence. J. Int. Humanit. Action 2018, 3, 18. [CrossRef]

18. Yuheng, Z.; Liyan, Z.; Chunpeng, L. 3-d deployment optimization of uavs based on particle swarm algorithm. In Proceedings of
the 2019 IEEE 19th International Conference on Communication Technology (ICCT), Xi’an, China, 16–19 October 2019; IEEE:
Piscataway, NJ, USA, 2019; pp. 954–957.

19. Cao, H.; Zhang, H.; Liu, Z.; Zhou, Y.; Wang, Y. UAV path planning based on improved particle swarm algorithm. In Proceedings
of the 2021 7th International Symposium on Mechatronics and Industrial Informatics (ISMII), Zhuhai, China, 22–24 January 2021;
IEEE: Piscataway, NJ, USA, 2021; pp. 284–287.

20. Deng, Q.; Yu, J.; Wang, N. Cooperative task assignment of multiple heterogeneous unmanned aerial vehicles using a modified
genetic algorithm with multi-type genes. Chin. J. Aeronaut. 2013, 26, 1238–1250. [CrossRef]

http://doi.org/10.1109/70.736776
http://dx.doi.org/10.1109/TRA.2003.819598
http://dx.doi.org/10.1007/s10514-010-9198-8
http://dx.doi.org/10.1155/2014/205759
http://dx.doi.org/10.1109/TAC.2005.864190
http://dx.doi.org/10.1126/scirobotics.aat3536
http://dx.doi.org/10.1109/TRA.2002.803458
http://dx.doi.org/10.1109/TVT.2020.2964847
http://dx.doi.org/10.1016/j.comcom.2020.01.076
http://dx.doi.org/10.1007/s11370-017-0240-y
http://dx.doi.org/10.1109/ACCESS.2019.2952924
http://dx.doi.org/10.3390/e22060597
http://dx.doi.org/10.3389/frobt.2020.00036
http://dx.doi.org/10.1186/s41018-018-0045-4
http://dx.doi.org/10.1016/j.cja.2013.07.009

Robotics 2022, 11, 89 27 of 28

21. Wildermuth, D.; Schneider, F.E. Maintaining a common co-ordinate system for a group of robots based on vision. Robot. Auton.
Syst. 2003, 44, 209–217. [CrossRef]

22. Vail, D.; Veloso, M. Multi-robot dynamic role assignment and coordination through shared potential fields. Multi-Robot. Syst.
2003, 2, 87–98.

23. Lakas, A.; Belkacem, A.N.; Al Hassani, S. An Adaptive Multi-clustered Scheme for Autonomous UAV Swarms. In Proceedings of
the 2020 International Wireless Communications and Mobile Computing (IWCMC), Limassol, Cyprus, 15 –19 June 2021; IEEE:
Piscataway, NJ, USA, 2020; p. 1567.

24. Barnes, L.; Garcia, R.; Fields, M.; Valavanis, K. Swarm formation control utilizing ground and aerial unmanned systems. In
Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September
2008; IEEE: Piscataway, NJ, USA, 2008; pp. 4205–4205.

25. Bayram, Ç.; Sevil, H.E.; Özdemir, S. A distributed behavioral model for landmine detection robots. In Proceedings of the
International MultiConference of Engineers and Computer Scientists 2007, IMECS 2007, Hong Kong, China, 21–23 March 2007;
International Association of Engineers: Hong Kong, China, 2007.

26. MacKenzie, D.C. Collaborative tasking of tightly constrained multi-robot missions. In Proceedings of the Multi-Robot Systems:
From Swarms to Intelligent Automata: Proceedings of the 2003 International Workshop on Multi-Robot Systems 2003, Washington,
DC, USA, 17–19 March 2003; Volume 2, pp. 39–50.

27. Li, R.; Ma, H. Research on UAV Swarm Cooperative Reconnaissance and Combat Technology. In Proceedings of the 2020 3rd
International Conference on Unmanned Systems (ICUS), Harbin, China, 27–28 November 2020; IEEE: Piscataway, NJ, USA, 2020;
pp. 996–999.

28. Zhang, Y.; Zhang, Z.; Zhang, J.; Wu, J. 3D building modelling with digital map, lidar data and video image sequences. Photogramm.
Rec. 2005, 20, 285–302. [CrossRef]

29. Abayowa, B.O.; Yilmaz, A.; Hardie, R.C. Automatic registration of optical aerial imagery to a LiDAR point cloud for generation
of city models. ISPRS J. Photogramm. Remote Sens. 2015, 106, 68–81. [CrossRef]

30. Yang, B.; Chen, C. Automatic registration of UAV-borne sequent images and LiDAR data. ISPRS J. Photogramm. Remote Sens.
2015, 101, 262–274. [CrossRef]

31. Beger, R.; Gedrange, C.; Hecht, R.; Neubert, M. Data fusion of extremely high resolution aerial imagery and LiDAR data for
automated railroad centre line reconstruction. ISPRS J. Photogramm. Remote Sens. 2011, 66, S40–S51. [CrossRef]

32. Sohn, G.; Dowman, I. Data fusion of high-resolution satellite imagery and LiDAR data for automatic building extraction. ISPRS J.
Photogramm. Remote Sens. 2007, 62, 43–63. [CrossRef]

33. Zhao, G.; Xiao, X.; Yuan, J.; Ng, G.W. Fusion of 3D-LIDAR and camera data for scene parsing. J. Vis. Commun. Image Represent.
2014, 25, 165–183. [CrossRef]

34. Sinsley, G.; Long, L.; Geiger, B.; Horn, J.; Niessner, A. Fusion of unmanned aerial vehicle range and vision sensors using fuzzy
logic and particles. In Proceedings of the AIAA Infotech@ Aerospace Conference and AIAA Unmanned... Unlimited Conference,
Seattle, WA, USA, 6–9 April 2009; p. 2008.

35. Korpela, I.; Dahlin, B.; Schäfer, H.; Bruun, E.; Haapaniemi, F.; Honkasalo, J.; Ilvesniemi, S.; Kuutti, V.; Linkosalmi, M.; Mustonen,
J.; et al. Single-tree forest inventory using lidar and aerial images for 3D treetop positioning, species recognition, height and
crown width estimation. In Proceedings of the ISPRS Workshop on Laser Scanning, Espoo, Finland, 12–14 September 2007;
pp. 227–233.

36. Song, H.r.; Choi, W.s.; Lim, S.m.; Kim, H.d. Target localization using RGB-D camera and LiDAR sensor fusion for relative
navigation. In Proceedings of the Automatic Control Conference (CACS), 2014 CACS International, Kaohsiung, Taiwan, 26–28
November 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 144–149.

37. Carlevaris-Bianco, N.; Mohan, A.; McBride, J.R.; Eustice, R.M. Visual localization in fused image and laser range data. In
Proceedings of the Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, San Francisco, CA, USA,
25–30 September 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 4378–4385.

38. Schönberger, J.L. Robust Methods for Accurate and Efficient 3D Modeling from Unstructured Imagery. Ph.D. Thesis, ETH Zurich,
Zurich, Switzerland, 2018.

39. Nikolov, I.; Madsen, C. Benchmarking close-range structure from motion 3D reconstruction software under varying capturing
conditions. In Proceedings of the Euro-Mediterranean Conference, Nicosia, Cyprus, 31 October–5 November 2016; Springer:
Berlin/Heidelberg, Germany, 2016; pp. 15–26.

40. Bianco, S.; Ciocca, G.; Marelli, D. Evaluating the performance of structure from motion pipelines. J. Imaging 2018, 4, 98. [CrossRef]
41. Stathopoulou, E.K.; Remondino, F. Open-source image-based 3D reconstruction pipelines: Review, comparison and evaluation.

In Proceedings of the 6th International Workshop LowCost 3D–Sensors, Algorithms, Applications, Strasbourg, France, 2–3
December 2019; pp. 331–338.

42. Maxence, R.; Uchiyama, H.; Kawasaki, H.; Thomas, D.; Nozick, V.; Saito, H. Mobile photometric stereo with keypoint-based
SLAM for dense 3D reconstruction. In Proceedings of the 2019 International Conference on 3D Vision (3DV), Quebec City,
Canada, 16–19 September 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 574–582.

43. Mentasti, S.; Pedersini, F. Controlling the flight of a drone and its camera for 3D reconstruction of large objects. Sensors 2019,
19, 2333. [CrossRef]

http://dx.doi.org/10.1016/S0921-8890(03)00071-X
http://dx.doi.org/10.1111/j.1477-9730.2005.00316.x
http://dx.doi.org/10.1016/j.isprsjprs.2015.05.006
http://dx.doi.org/10.1016/j.isprsjprs.2014.12.025
http://dx.doi.org/10.1016/j.isprsjprs.2011.09.012
http://dx.doi.org/10.1016/j.isprsjprs.2007.01.001
http://dx.doi.org/10.1016/j.jvcir.2013.06.008
http://dx.doi.org/10.3390/jimaging4080098
http://dx.doi.org/10.3390/s19102333

Robotics 2022, 11, 89 28 of 28

44. Lundberg, C.L.; Sevil, H.E.; Das, A. A VisualSfM based Rapid 3-D Modeling Framework using Swarm of UAVs. In Proceedings of
the 2018 International Conference on Unmanned Aircraft Systems (ICUAS), Dallas, TX, USA, 12–15 June 2018; IEEE: Piscataway,
NJ, USA, 2018; pp. 22–29.

45. Daftry, S.; Hoppe, C.; Bischof, H. Building with drones: Accurate 3D facade reconstruction using MAVs. In Proceedings of the
2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; IEEE: Piscataway,
NJ, USA, 2015; pp. 3487–3494.

46. Gao, K.; Aliakbarpour, H.; Fraser, J.; Nouduri, K.; Bunyak, F.; Massaro, R.; Seetharaman, G.; Palaniappan, K. Local Feature
Performance Evaluation for Structure-From-Motion and Multi-View Stereo Using Simulated City-Scale Aerial Imagery. IEEE
Sens. J. 2020, 21, 11615–11627. [CrossRef]

47. Shah, S.; Dey, D.; Lovett, C.; Kapoor, A. Airsim: High-fidelity visual and physical simulation for autonomous vehicles. In Field
and Service Robotics; Springer: Berlin/Heidelberg, Germany, 2018; pp. 621–635.

48. Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [CrossRef]
49. Bayram, C.; Sevil, H.E.; Ozdemir, S. Swarm and entropic modeling for landmine detection robots. In Trends in Intelligent Systems

and Computer Engineering; Springer: Berlin/Heidelberg, Germany, 2008; pp. 105–116.
50. Das, A.N.; Doelling, K.; Lundberg, C.; Sevil, H.E.; Lewis, F. A Mixed reality based hybrid swarm control architecture for manned-

unmanned teaming (MUM-T). In Proceedings of the ASME International Mechanical Engineering Congress and Exposition.
American Society of Mechanical Engineers, Tampa, FL, USA, 3–9 November 2017; Volume 58493, p. V014T07A019.

51. Das, A.; Kol, P.; Lundberg, C.; Doelling, K.; Sevil, H.E.; Lewis, F. A rapid situational awareness development framework for
heterogeneous manned-unmanned teams. In Proceedings of the NAECON 2018-IEEE National Aerospace and Electronics
Conference, Dayton, OH, USA, 23–26 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 417–424.

52. Sevil, H.E. Anomaly Detection using Parity Space Approach in Team of UAVs with Entropy based Distributed Behavior. In
Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020; p. 1625.

53. Szeliski, R. Computer Vision: Algorithms and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010.
54. Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and

automated cartography. Commun. ACM 1981, 24, 381–395. [CrossRef]
55. Mönnig, J. ToHoku University Multi-View Stereo (THU-MVS) Datasets. Available online: http://www.aoki.ecei.tohoku.ac.jp/

mvs/ (accessed on 8 October 2021).
56. Smith, D.S., Jr. A Rapid Structure from Motion (SFM) Based 3-D Modeling Framework Using a Team of Autonomous Small

Unmanned Aerial Systems (sUAS). Master’s Thesis, The University of West Florida, Pensacola, FL, USA, 2021.

http://dx.doi.org/10.1109/JSEN.2020.3042810
http://dx.doi.org/10.1007/BF01016429
http://dx.doi.org/10.1145/358669.358692
http://www.aoki.ecei.tohoku.ac.jp/mvs/
http://www.aoki.ecei.tohoku.ac.jp/mvs/

	Introduction
	Related Work
	Methodology
	Dynamic Model of sUASs
	Distributed Behavior Model
	Minimum Distance
	Entropy Threshold

	3D Model Reconstruction

	Distributed Behavior Model Parameter Analysis
	3D Reconstruction Parameter Analysis
	Case 1: Results with the Benchmarking Dataset
	Case 2: Results with Custom Dataset

	Validation Model Results
	Discussions and Future Directions
	Conclusions
	References

