
Citation: Al Younes, Y.; Barczyk, M.

A Backstepping Approach to

Nonlinear Model Predictive Horizon

for Optimal Trajectory Planning.

Robotics 2022, 11, 87. https://

doi.org/10.3390/robotics11050087

Academic Editor: Sunan Huang

Received: 26 July 2022

Accepted: 29 August 2022

Published: 31 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

robotics

Article

A Backstepping Approach to Nonlinear Model Predictive
Horizon for Optimal Trajectory Planning
Younes Al Younes and Martin Barczyk *

Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
* Correspondence: mbarczyk@ualberta.ca

Abstract: This paper presents a novel trajectory planning approach for nonlinear dynamical systems;
a multi-rotor drone, built on an optimization-based framework proposed by the authors named
the Nonlinear Model Predictive Horizon. In the present work, this method is integrated with a
Backstepping Control technique. The goal is to remove the non-convexity of the optimization problem
in order to provide real-time computation of reference trajectories for the vehicle which respects its
dynamics while avoiding sensed static and dynamic obstacles in the environment. Our method is
applied to two models of multi-rotor drones to demonstrate its flexibility. Several simulation and
hardware flight experiments are presented to validate the proposed design and demonstrate its
performance improvement over earlier work.

Keywords: trajectory generation and planning; nonlinear model predictive approach; backstepping
control; dynamic obstacle avoidance; unmanned aerial vehicles

1. Introduction

Planning collision-free trajectories for autonomous unmanned vehicles operating
within unknown, dynamic, 3D, geometrically complex, and GPS-denied environments is a
challenging and exciting research problem for both academia and industry. For agile drone
systems, generating efficient trajectories in real-time requires using trajectory planning
methods which respect the vehicle’s dynamics and input constraints as part of the predic-
tion process. Researchers are now studying trajectory planning approaches which can take
these considerations into account, for instance receding horizon-based methods [1–3].

Trajectory planning provides a parameterized path from a starting configuration to
a terminal setpoint while avoiding obstacles. It is sometimes called motion planning and
mistakenly referred to as path planning, since trajectory planning is a superset of path
planning by generating reference kinematics over the entire path instead of geometric paths
only [4]. Planning algorithms have received much attention from robotics researchers,
where most of the published algorithms fall under one of the following categories: search-
based, sampling-based, artificial potential field, artificial intelligence and optimization-
based methods.

Search-based methods, a.k.a. grid-based methods, use search algorithms to find
the best possible collision-free path in a discretized graph of grids. Some of the widely
used graph search algorithms include Dijkstra algorithm [5], A* [6], Lifelong Planning
A* (LPA*) [7], D* Lite [8], Anytime Repairing A* (ARA*) [9], and Hybrid-state A* [10].
The sampling-based approaches randomly sample a space of possible robot configurations
distributed in space and use search algorithms to form a directed graph of collision-free
motions. Probabilistic Road-Map (PRM) [11], Rapidly-Exploring Random Tree (RRT) [12],
RRT*, and Rapidly-Exploring Random Graph (RRG) methods [13] are some examples of
this thoroughly studied approach in the literature. The artificial potential field method
developed in [14] plans a path to a goal that avoids collisions by assigning an attractive
force to the desired goal and repulsive forces to obstacles [15]. A variety of artificial

Robotics 2022, 11, 87. https://doi.org/10.3390/robotics11050087 https://www.mdpi.com/journal/robotics

https://doi.org/10.3390/robotics11050087
https://doi.org/10.3390/robotics11050087
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://orcid.org/0000-0002-8295-8356
https://doi.org/10.3390/robotics11050087
https://www.mdpi.com/journal/robotics
https://www.mdpi.com/article/10.3390/robotics11050087?type=check_update&version=1

Robotics 2022, 11, 87 2 of 22

intelligence-based algorithms for path planning have been proposed in the literature,
for instance, Artificial Neural Network (ANN) [16], Genetic Algorithm (GA) [17], Ant
Colony Optimization (ACO) [18], Particle Swarm Optimization (PSO) [19], and Simulated
Annealing (SA) [20] algorithms. Reference [21] presents a comprehensive review of artificial
intelligence-based methods for path planning up to 2018. A recent line of research involves
trajectory generation for flexible space robots based on deterministic artificial intelligence,
which aims to use the dynamic equations of the system to autonomously determine an
optimal reference trajectory (c.f. [22] and the references therein).

However, the above-mentioned motion planning algorithms have analytical and
practical limitations, such as:

• Absence or limited consideration of the internal and external constraints imposed by
the system and dynamic environment;

• Lack of repeatability in generating trajectories between a starting and ending configu-
ration for a fixed initial vehicle state and environment scenario;

• Computational inefficiency in regenerating paths while moving between the start and
terminal point;

• For some approaches, generating non-smooth paths that lead to jerky motions and
create inefficiency in the vehicle’s power draw [23].

Recently, optimization-based motion planning methods have gained researchers’ at-
tention due to their ability to resolve some or all of the above-mentioned limitations.
The best-known optimization-based methods for motion planning are Covariant Hamil-
tonian Optimization for Motion Planning (CHOMP) [24] and Stochastic Trajectory Opti-
mization for Motion Planning (STOMP) [25]. The former uses gradient-based optimization
while the latter uses stochastic optimization, and both produce collision-free trajectories
that satisfy given constraints, but are computationally expensive. In addition, CHOMP
is prone to getting trapped in local minima, where it returns infeasible or sub-optimal
solutions. A very recent publication on optimization-based trajectory generation is [26],
which uses Pontryagin’s maximum principle to efficiently generate slew trajectories for
a spacecraft.

Our proposed approach, called the Nonlinear Model Predictive Horizon (NMPH) [27],
uses optimization for planning smooth, optimal, consistent, and computationally efficient
trajectories which respect the internal and external constraints of the vehicle. This approach
compensates for the nonlinearities of the trajectory planning dynamics and hence reduces
or removes the non-convexity of the optimization problem. This is performed by combin-
ing the nonlinear plant model with the Backstepping Control (BSC) method within the
optimization problem. It also accounts for static and moving obstacles as constraints in the
optimization problem.

In ref. [27], we proposed an NMPH formulation which used Feedback Linearization
(FBL) within its dynamics to compensate for nonlinearities. In that work, the state augmen-
tation process required to make the system state feedback linearizable created numerical
difficulties due to the need to obtain the second-order time derivative of the total thrust
of the drone. This difficulty with using the FBL design steered us to find an alternative
feedback design methodology to be used within the NMPH design, namely BSC. This new
NMPH-BSC formulation compensates for the system nonlinearities and guarantees global
asymptotic stability of the closed-loop system within the optimization problem used to
predict the reference trajectories for the drone vehicle.

The backstepping control algorithm was originally developed by [28] to design adap-
tive controllers for a special class of nonlinear dynamical systems. Backstepping is a
recursive Lyapunov-based design technique applied to a nonlinear strict-feedback system
with a series of cascaded subsystems, in which the choice of the Lyapunov functions for the
subsystems guarantees the global asymptotic stability of the overall controlled system [29].

One of the most important advantages of the BSC method is the systematic procedure
that the designer can follow to construct a feedback control law based on an appropriate

Robotics 2022, 11, 87 3 of 22

choice of Lyapunov functions [30]. This step-by-step procedure uses the system’s dynamics
model, which accounts for the system nonlinearities.

The flexibility of the BSC methodology and its ability to guarantee global asymptotic
stability [31,32] make it an excellent candidate to be used inside the NMPH approach,
as this integration compensates for the drone’s nonlinearities and leads to a less non-convex
optimization problem.

To demonstrate the versatility of our NMPH-BSC approach over the earlier NMPH-
FBL [27], a more detailed model of the drone vehicle dynamics, which includes linear and
angular velocity drag forces and rotor gyroscopic effects, is employed. The optimization
problem is also used to predict both the reference trajectory as well as its rates of change,
which provides higher-quality tracking performance.

The research contributions of this paper are:

• Implementing the BSC method within NMPH to compensate for nonlinearities in
order to reduce the non-convexity of the trajectory generation optimization problem;

• Demonstrating the versatility of the NMPH-BSC approach by using both a simplified
and a higher-fidelity dynamics model of the drone;

• Using the NMPH optimization problem to predict both the reference trajectory as well
as its rates of change for the onboard flight trajectory controller;

• Validating and evaluating the performance of the proposed approach in both simula-
tion and hardware drone flight experiments.

The remainder of this paper is arranged as follows: the design of the NMPH-BSC for
two variants of drone dynamics models is presented in Section 2. Section 3 evaluates the
proposed designs in simulation and hardware flight tests. Section 4 summarizes the paper
and proposes future work.

2. Problem Formulation

The Nonlinear Model Predictive Horizon (NMPH) is a recent approach to path plan-
ning proposed by the authors in [27]. In simple terms, NMPH integrates a linearizing
feedback law to reduce the non-convexity of the optimization problem handled by a Non-
linear Model Predictive Control (NMPC) algorithm. NMPH generates optimal reference
trajectories for the closed-loop system which steers an aerial drone’s 3D position, heading
angle, and their rates of change. The original NMPH [27] relied on state feedback lineariza-
tion [33], which required the addition of integral states to satisfy the conditions of the
method, translating to the need for numerical differentiation of measured outputs. In the
present work, we replace feedback linearization with Backstepping Control (BSC) [28] to
compensate for the system’s nonlinearities. The recursive structure of BSC provides stable
response of a dynamic system and makes it more robust to parameter uncertainties.

In this section, an overview of the NMPH framework is presented, both high-fidelity
and simplified drone dynamics models are presented, and finally a backstepping design
for each model is derived and integrated into the NMPH.

2.1. Nonlinear Model Predictive Horizon

NMPH is an optimization-based method whose objective is to generate optimal refer-
ence trajectories for closed-loop nonlinear systems. The optimization problem of NMPH
considers the nonlinear plant model, nonlinear control law, and user-specified constraints
to continuously solve for reference trajectories which are fed to the closed-loop system and
which respect its dynamics. An overview of the NMPH architecture is shown in Figure 1.

Embedding the nonlinear control law in the optimization problem is performed to
decrease the nonlinearity of the closed-loop system dynamics. Consequently, this will
reduce the non-convexity of the optimization problem and enhance convergence and
computational time of the solution, enabling real-time trajectory generation for purposes
such as motion planning and environmental exploration.

Robotics 2022, 11, 87 4 of 22

Closed-loop
System

current system state 𝑥 𝑡𝑛

optimized
variables
𝑥 , መ𝜉𝑟𝑒𝑓

(𝑡𝑛 … 𝑡𝑛 + 𝑇)

Nonlinear Model Predictive Horizon

Nonlinear
Control Law

𝑢 𝜏

Nonlinear
Plant Model

ሶ𝑥 𝜏 Optimization
Problem

Solver

Constraints

Cost Function, 𝐽 𝑥, መ𝜉𝑟𝑒𝑓

terminal
setpoint

𝑥𝑡𝑠

Figure 1. NMPH Architecture. The NMPH optimization process (gray box) considers models of the
nonlinear plant dynamics and nonlinear control law, as well as constraints representing performance
limits and environmental obstacles. The actual closed-loop system (blue box) tracks the optimized
reference trajectory calculated by NMPH.

For the closed-loop system, which is depicted by a blue box in Figure 1, assume that a
nonlinear plant is controlled by a nonlinear feedback law as follows:

ẋ = f (x, u) (1a)

ξ = h(x) (1b)

u = g(x, ξre f), (1c)

where x ∈ X ⊆ Rnx , u ∈ U ⊆ Rnu , and ξ ∈ Ξ ⊆ Rnξ are the system states, inputs,
and outputs, respectively. The system outputs considered in this work are the vehicle’s
3D position and heading angle and their rates, such that Ξ ⊆ X. The reference trajec-
tory ξre f ∈ Ξ is generated by our proposed algorithm, as will be presented below in (2).
The system dynamics are represented by a smooth map f : X×U → X, while the feedback
control law is the smooth map g : X× Ξ→ U which makes the system output to follow a
reference trajectory ξre f . In this work the control law is designed using the Backstepping
Control technique.

For the NMPH, which is represented by the gray box in Figure 1, a copy of (1) plus
assigned constraints are used in the optimization problem to compute two predictions over
a finite time horizon, from the current state x to a terminal stabilization setpoint xss . The first
prediction is the predicted system state trajectory x̃, which includes the predicted output
trajectory ξ̃ as a subset. The second one is the estimated reference trajectory ξ̂re f , which is
used as a (continuously updated) reference trajectory for the actual closed-loop system.

The online NMPH optimization problem for a stabilization setpoint xss is shown in
Equation (2) [34]. Let tn, n = 0, 1, 2, · · · represent successive sampling times. At every
sampling time, the optimization problem solves for x̃ and ξ̂re f as long as ‖xss − x(tn)‖ ≥ ∆:

min
x̃,ξ̂re f

(
J
(
x̃, ξ̂re f

)
= E

(
x̃(tn + T)

)
+
∫ tn+T

tn
L
(
x̃(τ), ξ̂re f (τ)

)
dτ

)
(2)

subject to x̃(tn) = x(tn) , (2a)
˙̃x(τ) = f (x̃(τ), ũ(τ)), (2b)

ũ(τ) = g
(
x̃(τ), ξ̂re f (τ)

)
, (2c)

x̃(τ) ∈ X , ũ(τ) ∈ U , ξ̂re f (τ) ∈ Z , (2d)

Oi(x̃) ≤ 0 , i = 1, 2, . . . , p, (2e)

for τ ∈ [tn, tn + T].

The stage L and terminal cost E functions in (2) can be selected as the terms (3a,b),
which allows the use of the Gauss–Newton method for quickly finding a good approxima-
tion of the Hessian matrix within the optimization problem:

Robotics 2022, 11, 87 5 of 22

L
(
x̃(τ), ξ̂re f (τ)

)
= ‖x̃(τ)− xss‖2

Wx
+ ‖ξ̃(τ)− ξ̂re f (τ)‖

2
Wξ

(3a)

E
(

x̃(tn + T)
)
= ‖x̃(tn + T)− xss‖2

WT
, (3b)

where the constraint sets for the state, control and output trajectory are X ⊆ X, U ⊆ U,
and Z ⊆ X, respectively. A total of p static and dynamic obstacles within the environment
are represented by the inequality constraint Oi(x̃) ≤ 0 in (2e). The deviation between
the predicted system state trajectory x̃ and the stabilization setpoint xss and between the
predicted output trajectory ξ̃ and the estimated reference trajectory ξ̂re f are penalized within
the stage cost function L (3a) by the weighting matrices Wx ∈ Rnx×nx and Wξ ∈ Rnξ×nξ ,
respectively. The terminal cost function E (3b), which represents the cost of steady-state
error, penalizes the deviation between the end value of the system state prediction x̃(tn + T)
and the terminal setpoint xss by the weighting matrix WT .

In words, the optimization process (2) runs as follows:

1. Measure or estimate the current state x(tn) of the actual closed-loop system;
2. Predict x̃ and ξ̂re f by minimizing the cost function J

(
x̃, ξ̂re f

)
over the prediction hori-

zon [tn, tn + T] subject to the system dynamics (2b), control law (2c), and assigned
constraints (2e);

3. Use the estimated reference trajectory ξ̂re f (or the predicted output trajectory ξ̃, as both
converge to each other) as the reference trajectory of the actual closed-loop system;

4. Repeat Steps 1–3 until the drone vehicle approaches the terminal setpoint xss or the
optimization problem produces an infeasible solution.

A comprehensive study about NMPH, including discrete-time representation, use of
constraints, and software implementation of the optimization problem can be found in our
recent work [27].

2.2. Drone Dynamics

The dynamics of a multi-rotor drone vehicle can be modeled using the Newton–Euler
equations [35], governing six degrees of freedom rigid-body motion, augmented with force
and torque generation models of the individual rotors. The model can either assume static
hover conditions for simplicity, or include linear and angular velocity drag forces and rotor
gyroscopic effects to yield a more complicated but higher-fidelity model.

To model rigid-body dynamics, two reference frames are used: a stationary ground-
fixed navigation frame N , and a moving body-fixed frame B. The origin of the latter is
placed at the drone’s center of gravity, as shown in Figure 2. The frame bases follow the
East, North, and Up (ENU) convention, with orthonormal basis vectors {n1, n2, n3} and
{b1, b2, b3} for the navigation and body frames, respectively.

𝑓3

𝑓1

𝑓2

𝑓4

𝑏1
𝑏2

𝑏3
𝑝𝑛

𝑛1

𝑛3

𝑛2

𝑚𝑔

Ω4

Ω1

Ω3

Ω2

Figure 2. Reference frames used for our quadrotor vehicle.

Rigid-body pose in space can be described as a member of the Special Euclidean
group SE(3) = SO(3)× R3, the product space of the orientation and position

(
Rnb , pn)

where Rnb ∈ SO(3) is the rotation matrix of the body frame with respect to the navigation
frame, pn = [x y z]T ∈ R3 is the position vector of the vehicle’s body frame with

Robotics 2022, 11, 87 6 of 22

respect to the navigation frame, and SO(3) is the Special Orthogonal group defined as
SO(3) = {R ∈ R3×3 | RRT = RT R = I, det(R) = +1}. The roll-pitch-yaw Euler angles
η = [φ θ ψ]T are employed to parametrize the rotation matrix as:

Rnb =

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

−sθ sφcθ cφcθ

, (4)

where s(·) = sin(·) and c(·) = cos(·). Similarly, t(·) = tan(·) which will be seen later.

Remark 1. The Euler angle parameterization exhibits singularities at θ = π/2 + kπ, k ∈ Z. One
solution is to maintain −π/2 < θ < π/2 by adding constraints within the NMPH optimization
problem under (2d).

Conversion between translational and rotational velocity vectors can be performed
using the transformations [36]:

ṗn = vn = Rnb vb (5a)

ωb = Wη̇, (5b)

where vn, vb ∈ R3 are the translational velocity vectors in frameN and B coordinates, respec-
tively, η̇ = [φ̇ θ̇ ψ̇]T is the vector of Euler angle rates, and ωb ∈ R3 is the angular velocity
vector in frame B coordinates. The rotational velocity transformation matrix W is given by:

W =

1 0 −sθ

0 cφ sφcθ

0 −sφ cφcθ .

 (6)

The time derivative of the rotation matrix is Ṙnb = RnbS(ωb), where S(·) : R3 → so(3)
maps a vector to a skew-symmetric matrix such that S(a)b = a× b for a, b ∈ R3. Taking
the time derivatives of (5a,b),

v̇n = Rnb v̇b + RnbS(ω
b)vb = Rnb

(
v̇b + ωb × vb) (7a)

ω̇b = Ẇη̇ + Wη̈, (7b)

where Ẇ = φ̇(∂W/∂φ) + θ̇(∂W/∂θ).
The Newton–Euler equations for a multi-rotor drone read [36]

mv̇b + ωb ×mvb = ū− Ktvb −mRT
nb

ḡ (8a)

Jω̇b + ωb × Jωb = τ̄ − Krωb −
4

∑
i=1

(
S(ωb)Jr qi

)
, (8b)

where m is the drone’s mass, ū = [0 0 u]T is the thrust vector with u = ∑4
i=1 fi the total

thrust generated in the direction of b3, τ̄ = [τb1 τb2 τb3]T is the vector of torques about
the b1, b2 and b3 frame axes, ḡ = [0 0 g]T is the gravitational acceleration vector where
g = 9.81 m/s2, J = diag(Jx, Jy, Jz) is the drone’s mass moment of inertia matrix which is
assumed to be diagonal, the scalar Jr is the rotor’s inertia, qi = [0 0 (−1)i+1ωi]

T where ωi
is the angular speed of the ith propeller, and Kt = diag(kt1, kt2, kt3), Kr = diag(kr1, kr2, kr3)
represent the translational and rotational drag coefficient matrices of the drone, respectively.

To express the drone’s dynamics with respect to the navigation frame, Equation (8)
are combined with (5) and (7) to yield:

Robotics 2022, 11, 87 7 of 22

mRT
nb

v̇n = ū− KtRT
nb

vn −mRT
nb

ḡ (9a)

JWη̈ + JẆη̇ + S(Wη̇)JWη̇ = τ̄ − KrWη̇ − S(Wη̇)
4

∑
i=1

Jr qi. (9b)

This leads to:

v̇n = − 1
m

Rnb KtRT
nb

vn − ḡ +
1
m

Rnb ū (10a)

η̈ = −(JW)−1(JẆη̇ + KrWη̇ + S(Wη̇)
(

JWη̇ +
4

∑
i=1

Jr qi
)
− τ̄

)
. (10b)

Remark 2. Each multi-rotor configuration (quadrotor, hexarotor, octorotor, and so on) has a
different expression for the net body-frame thrust and torque vectors ū and τ̄. These expressions are
algebraic and can be readily calculated. The dynamics presented in (10) thus model any multi-rotor
drone as long as the correct ū and τ̄ expressions are used.

The development of the proposed NMPH with a backstepping control design will
be based on the dynamics model presented in (10). We will also present a design based
on a simplified version of (10) to illustrate the ease of adapting the proposed approach
to different model representations. This is in contrast to the formulation of NMPH with
feedback linearization presented in our recent work [27] where this adaptation requires a
fundamental re-derivation of the expressions involved.

In the simplified version of (10), body and propeller gyroscopic effects are dropped
from the model, and the translational and rotational drags are neglected as well. The sim-
plified model can then be written as:

φ̇
θ̇
ψ̇
ẋ
ẏ
ż

 =

Jy−Jz
Jx

θ̇ψ̇ + 1
Jx

τb1

Jz−Jx
Jy

φ̇ψ̇ + 1
Jy

τb2

Jx−Jy
Jz

φ̇θ̇ + 1
Jz

τb3

(cφsθcψ + sφsψ)
u
m

(cφsθsψ − sφcψ)
u
m

−g + (cφcθ)
u
m

. (11)

2.3. Backstepping Control Design

Because a drone’s dynamics are nonlinear, solving the NMPC optimization problem
is challenging because of its non-convexity. Introducing backstepping control into the
optimization problem (within the framework of NMPH) will either remove or reduce the
nonlinearity of the overall system, and consequently the non-convexity of the optimization
problem. This will make it possible to find an optimal solution more quickly.

In this section, a backstepping control law is derived for the drone dynamics, which
will be used within the NMPH framework to enhance the performance of the reference
trajectory prediction. To demonstrate the versatility of this methodology, both the simpli-
fied (11) and high-fidelity (10) models of the drone dynamics will be considered.

Our backstepping control design consists of a coupling of inner and outer control
loops [37]. The inner loop controls the rotational dynamics of the drone and tracks desired
values provided by the outer loop, which controls the translational dynamics. In the
literature, many studies of backstepping control applied to multi-rotor drones considered
applying the design steps to each system output separately [36,38–40], but in our work
the method is first applied to the rotational dynamics subsystem by itself, then to the
translational dynamics subsystem. This approach will facilitate the integration of BSC
within the NMPH framework as discussed later in Section 2.4.

Robotics 2022, 11, 87 8 of 22

First, recall the terms:

η = [φ θ ψ]T , η̇ = [φ̇ θ̇ ψ̇]T , ηd = [φd θd ψd]
T , (12)

where ηd ∈ R3 are the desired Euler angles, to be provided by the outer loop design. Now,
define the tracking error vector δ1 ∈ R3 as:

δ1 = ηd − η, (13)

and choose a positive semi-definite Lyapunov function candidate V1 ≥ 0 ∈ R, such that

V1 =
1
2

δT
1 δ1. (14)

The time derivative of (14) is:

V̇1 = δT
1 δ̇1 = δT

1 (η̇d − η̇). (15)

Next, define the virtual tracking error rate δ2 ∈ R3 and the first virtual control
v1 = [vφ vθ vψ]T ∈ R3 as:

δ2 = v1 − η̇ (16)

v1 = η̇d + Λ1δ1, (17)

where Λ1 = diag(λ1, λ2, λ3) ∈ R3×3 is a diagonal gain matrix that contains positive entries
such that Λ1 is positive definite or Λ1 > 0. Using (16) and (17), the derivative of the
Lyapunov function candidate (15) can be written as:

V̇1 = δT
1 (v1 −Λ1δ1 − η̇) = δT

1 (δ2 −Λ1δ1) = δT
1 δ2 − δT

1 Λ1δ1, (18)

which by inspection may or may not be negative semi-definite. Therefore, a recursive step
must be performed. Note that the time derivatives of (13) and (16) are:

δ̇1 = η̇d − η̇ = v1 −Λ1δ1 + δ2 − v1 = −Λ1δ1 + δ2 (19)

δ̇2 = v̇1 − η̈ = η̈d + Λ1δ̇1 − η̈. (20)

Now define the new positive semi-definite Lyapunov function candidate V2 ≥ 0 ∈ R as:

V2 =
1
2

δT
1 δ1 +

1
2

δT
2 δ2, (21)

such that
V̇2 = δT

1 δ̇1 + δT
2 δ̇2

= −δT
1 Λ1δ1 + δT

1 δ2 + δT
2
(
η̈d + Λ1(−Λ1δ1 + δ2)− η̈

)
= −δT

1 Λ1δ1 + δT
2
(
δ1 + η̈d −Λ2

1δ1 + Λ1δ2 − η̈
)
,

(22)

where δT
1 δ2 = δT

2 δ1. To stabilize the tracking errors δ1 and δ2, the backstepping control
formulation will introduce a second virtual control v2 ∈ R3. We will define v2 based on the
system dynamics, and then recursively design it within the backstepping control structure.

As mentioned in Section 2.2, we will apply the backstepping technique to both the full
and simplified system dynamics presented in (10) and (11), respectively. For the full model,
the attitude dynamics in (10b) can be written as:

η̈ = f̄1(x) + ḡ1(x, τ̄), (23)

where

Robotics 2022, 11, 87 9 of 22

f̄1(x) = −(JW)−1(JẆη̇ + KrWη̇ + S(Wη̇)
(

JWη̇ +
4

∑
i=1

Jrqi
))

(24)

ḡ1(x, τ̄) = (JW)−1τ̄ =

1
Jx

τb1 + 1
Jy

sφtθτb2 + 1
Jz

cφtθτb3

1
Jy

cφτb2 − 1
Jz

sφτb3

1
Jy

sφ

cθ
τb2 + 1

Jz

cφ

cθ
τb3

 :=

τφ

τθ

τψ

. (25)

The second virtual control is defined as v2 = ḡ1(x, τ̄) = [τφ τθ τψ]T , where τφ, τθ

and τψ are the virtual inputs of the rotational subsystem.
We now design v2 to make the time derivative of the Lyapunov candidate Function (22)

negative semi-definite. Let

v2 = v̇1 + δ1 − f̄1(x) + Λ2δ2

= η̈d + Λ1δ̇1 + δ1 − f̄1(x) + Λ2δ2

= η̈d + Λ1(−Λ1δ1 + δ2) + δ1 − f̄1(x) + Λ2δ2,

(26)

where Λ2 = diag(λ4, λ5, λ6) ∈ R3×3 is the second diagonal gain matrix with positive
entries such that Λ2 > 0. By substituting (23) and (26) into (22) we obtain:

V̇2 = −δT
1 Λ1δ1 + δT

2
(
δ1 + η̈d −Λ2

1δ1 + Λ1δ2 − f̄1(x)− v2
)

= −δT
1 Λ1δ1 − δT

2 Λ2δ2 ≤ 0.
(27)

By (21) and (27), we can thus conclude the asymptotic stability of the error terms δ1
and δ2, and thus the rotational subsystem. Consequently, the physical control law for the
rotational subsystem can be found by returning to (26),

v2 = [τφ τθ τψ]
T = η̈d + (I −Λ2

1)δ1 + (Λ1 + Λ2)δ2 − f̄1(x), (28)

then solving (25) to obtain the physical control inputs as:
τb1

τb2

τb3

 =

Jx
(
τφ − sθτψ

)
Jy
(
cφτθ + sφcθτψ

)
Jz
(
− sφτθ + cφcθτψ

)
. (29)

We now perform the backstepping design for the translational dynamics of the drone.
The actual and desired position vectors with respect to the navigation frame are written as:

χ = pn = [x y z]T , χ̇ = vn = [ẋ ẏ ż]T , χd = pn
d
= [xd yd zd]

T . (30)

For the first step of the backstepping design, the position tracking error vector and its
time derivative are defined as:

δ3 = χd − χ , δ̇3 = χ̇d − χ̇ ∈ R3. (31)

Consider the Lyapunov candidate function V3 ∈ R and its time derivative,

V3 =
1
2

δT
3 δ3 (32)

V̇3 = δT
3 δ̇3 = δT

3 (χ̇d − χ̇). (33)

Define the virtual tracking error rate and the first virtual control for the translational
subsystem as:

Robotics 2022, 11, 87 10 of 22

δ4 = v3 − χ̇ (34)

v3 = χ̇d + Λ3δ3, (35)

where Λ3 = diag(λ7, λ8, λ9) ∈ R3×3 is a diagonal gain matrix with positive entries,
and v3 = [vx vy vz]T ∈ R3 is the virtual control vector. Substituting (34) and (35)
into the Lyapunov candidate function rate (33) yields:

V̇3 = δT
3 (v3 −Λ3δ3 + δ4 − v3)

= −δT
3 Λ3δ3 + δT

3 δ4,
(36)

which cannot be guaranteed to be negative semi-definite. Therefore, a new Lyapunov
candidate function V4 ∈ R is defined as:

V4 =
1
2

δT
3 δ3 +

1
2

δT
4 δ4 (37)

V̇4 = δT
3 δ̇3 + δT

4 δ̇4 (38)

= −δT
3 Λ3δ3 + δT

3 δ4 + δT
4
(
χ̈d + Λ3(χ̇d − χ̇)− χ̈

)
= −δT

3 Λ3δ3 + δT
4 δ3 + δT

4
(
χ̈d + Λ3(v3 −Λ3δ3 + δ4 − v3)− χ̈

)
= −δT

3 Λ3δ3 + δT
4
(
δ3 + χ̈d −Λ2

3δ3 + Λ3δ4 − χ̈
)
.

The translational dynamics of the full model (10a) can be written as:

χ̈ = f̄2(x) + ḡ2(x, u), (39)

where

f̄2(x) = − 1
m

Rnb KtRT
nb

vn − ḡ (40)

ḡ2(x, u) =
1
m

(cφsθcψ + sφsψ)u
(cφsθsψ − sφcψ)u

(cφcθ)u

 :=

ux
uy
uz

, (41)

and where u ∈ R is the total thrust of the propellers, a physical input.
The next step of the backstepping design introduces the second virtual control for the

translational system v4 = ḡ2(x, u) = [ux uy uz]T . Assign this control as:

v4 = v̇3 + δ3 − f̄2(x) + Λ4δ4

= χ̈d + Λ3
(
χ̇d − χ̇

)
+ δ3 − f̄2(x) + Λ4δ4

= χ̈d + Λ3
(
v3 −Λ3δ3 + δ4 − v3

)
+ δ3 − f̄2(x) + Λ4δ4

= χ̈d + δ3 −Λ2
3δ3 + Λ3δ4 + Λ4δ4 − f̄2(x),

(42)

where Λ4 = diag(λ10, λ11, λ12) ∈ R3×3 contains positive entries. Substituting (39) and (42)
into (38) yields:

V̇4 = −δT
3 Λ3δ3 + δT

4
(
v4 + f̄2(x)−Λ4δ4 − f̄2(x)− v4

)
= −δT

3 Λ3δ3 − δT
4 Λ4δ4,

(43)

such that V̇4 ≤ 0, meaning the error terms δ3, δ4 are asymptotically stable, and thus the
translational subsystem dynamics.

For our cascaded control design, the desired roll and pitch angles for the inner loop
system are extracted from (41) after computing (42). Assume ψ is a measured state of
the system. Then, the desired roll and pitch angles φd, θd and thrust u are obtained by
solving (41), which gives:

Robotics 2022, 11, 87 11 of 22

θd = tan−1
(

cψux + sψuy

uz

)
φd = tan−1

(
sψux − cψuy

uz
cos θd

)
u =

muz

cos φd cos θd
.

(44)

Remark 3. In addition to the Euler angles limitations mentioned in Remark 1, the outer loop
control law provides solutions if and only if the total thrust is a non-zero positive value, u > 0.
This condition must be included within the constraints of the optimization problem in (2d) to avoid
solution infeasibility.

We can also perform the backstepping control design using the simplified system
model (11). The second time derivative of the Euler angles vector η is written as:

η̈ = f̄3(x) + ḡ3(τ̄), (45)

where

f̄3(x) =

Jy−Jz

Jx
θ̇ψ̇

Jz−Jx
Jy

φ̇ψ̇
Jx−Jy

Jz
φ̇θ̇

, ḡ3(τ̄) =

1
Jx

τb1

1
Jy

τb2

1
Jz

τb3

. (46)

The terms δ1, δ2 and virtual input v1 are defined exactly as in the full model backstep-
ping design. Analogously to (28), the second virtual input v2 for the (simplified) rotational
dynamics is now assigned as:

v2 = η̈d + (I −Λ2
1)δ1 + (Λ1 + Λ2)δ2 − f̄3(x), (47)

and since v2 = [τφ τθ τψ]T = ḡ3(τ̄), the physical inputs are obtained from (46) as:

τ̄ =

τb1

τb2

τb3

 =

Jxτφ

Jyτθ

Jzτψ

 = diag(Jx, Jy, Jz) v2. (48)

For the translational dynamics, define the position vector χ, whose second time
derivative is written as χ̈ = f̄4(x) + ḡ4(x, u), where:

f̄4(x) =

 0
0
−g

 (49)

ḡ4(x, u) =

(cφsθcψ + sφsψ)
u
m

(cφsθsψ − sφcψ)
u
m

(cφcθ)
u
m

. (50)

The definitions of δ3, δ4 and virtual input v3 remain identical to the full model case.
Assign the virtual control v4 as in (42):

v4 = χ̈d + (I −Λ2
3)δ3 + (Λ3 + Λ4)δ4 − f̄4(x), (51)

where f̄4(x) is given in (49). Since v4 = [ux uy uz]T = ḡ4(x, u), assuming the yaw angle
ψ is known, we solve this expression for the desired roll and pitch angles φd, θd and the
total thrust u using Equation (44).

Robotics 2022, 11, 87 12 of 22

2.4. Backstepping Control Law Integration within NMPH

A copy of the full system model in (10) is used within the NMPH optimization problem
as ˙̃x = [p̃n ṽn η̃ ˙̃η]T . Let χ̃ = p̃n and ˙̃χ = ṽn below. The backstepping control design
representing ũ(τ) = g

(
x̃(τ), ξ̂re f (τ)

)
within the NMPH (2c) is implemented in two stages.

The first stage is the outer loop, which takes the desired position vector of the drone,
and computes the thrust plus the desired roll and pitch angles. The second stage is the
inner loop, which takes the computed roll and pitch angles plus a desired yaw angle,
and computes the torque inputs. The details of the two-stage process (implemented as
input constraints within the NMPH) are as follows:

1. For the first NMPH input constraint, define the virtual input for the translational
dynamics (42) as:

ṽ4 = ¨̃χd + (I −Λ2
3)δ̃3 + (Λ3 + Λ4)δ̃4 − f̄2(x̃), (52)

where δ̃3 = χ̃d − χ̃ from (31) and δ̃4 = ˙̃χd + Λ3δ̃3 − χ̃ from (34)
2. Associate the total thrust u and the desired roll and pitch angles φd, θd from (44) with

[ux uy uz]T = ṽ4 and ψ = η̃(3)
3. For the second NMPH input constraint, define the virtual input for the rotational

dynamics (28):
ṽ2 = ¨̃ηd + (I −Λ2

1)δ̃1 + (Λ1 + Λ2)δ̃2 − f̄1(x̃), (53)

where δ̃1 = η̃d − η̃ from (13) and δ̃2 = ˙̃ηd + Λ1δ̃1 − η̃ from (16).
4. Associate the input torques τb1 , τb2 and τb3 from (29) with [τφ τθ τψ] = ṽ2 and

φ = η̃(1), θ = η̃(2).
5. Let [u τb1 τb2 τb3] be ũ(τ) (2c) in the NMPH optimization problem, a function of

the NMPH states x̃ and the estimated reference trajectories ξ̂re f , where

ξ̂re f = [χ̃d
˙̃χd

¨̃χd η̃d(3) ˙̃ηd(3) ¨̃ηd(3)]
T . (54)

6. Solve the optimization problem (2), which leads to the prediction of the system states
x̃ and the estimated reference trajectories ξ̂re f . The latter is used as the reference
trajectory for the actual closed-loop system.

3. Evaluation of NMPH-BSC

For testing and validation, the NMPH-BSC approach was implemented and tested
in simulated and hardware flight tests on quadcopter and hexacopter drone vehicles,
respectively.

The algorithms are implemented within the Robot Operating System (ROS) [41],
a Linux-based software environment that handles communications between the vehicle’s
onboard computer and its hardware subsystems. The ACADO Toolkit [42] is used to
solve the optimization problem. For implementation, the overall NMPH problem (2) was
coded in C++, then converted into highly efficient C code by ACADO to be able to run the
calculations in real-time.

The set of continuous-time equations in (2) is a Nonlinear Programming (NLP) opti-
mization problem, which can be discretized using the direct multiple-shooting method.
NLP solves optimization problems, which include nonlinear functions and/or nonlin-
ear constraints using Sequential Quadratic Programming (SQP) [43], and in our case the
qpOASES solver is used to solve SQP numerically [44].

3.1. Simulation Environment

The proposed approach was first implemented in a simulation on a quadcopter drone
using the AirSim simulator [45]. AirSim is an open-source package which provides photo-
realistic rendered environments and a physics engine to enable performing lifelike sim-
ulations of drone vehicles. Moreover, we used the PX4 autopilot [46] running onboard

Robotics 2022, 11, 87 13 of 22

the drone for software-in-the-loop operation to make the simulated drone’s characteristics
more closely resemble the hardware unit.

In our work, an incremental volumetric mapping technique named Voxblox [47]
was used. Voxblox represents the environment volumetrically using a signed distance
field and classification into unknown, free, or occupied spaces. The drone then uses this
generated map to continuously build dynamic obstacle constraints that are used by the
NMPH optimization problem to generate collision-free trajectories [34].

A desktop computer equipped with an Intel Core i7-10750H CPU and an Nvidia
GeForce RTX 2080 Super GPU was used to run the optimization calculations and simulation
environment in conjunction with ROS. The prediction horizon of the optimization problem
was set to 8.0 s and discretized into 40 samples, which was found to be sufficient for motion
planning purposes. The cost function weights were empirically tuned to provide good
trajectory planning performance.

The drone’s pose and environmental sensor readings were obtained from the AirSim
simulator and communicated to our NMPH-based global motion planning system. The re-
sulting output was used as a reference trajectory for the drone vehicle’s flight controller.
This design enables the drone to explore an unmapped environment, as will be discussed
in Section 3.1.2.

3.1.1. Trajectory Planning

In this simulation, an optimal reference trajectory was planned and tracked within the Air-
Sim simulator as shown in Figure 3a. The quadcopter vehicle started at pn = [−9,−3.5, 2]T m,
ψ = 0◦ and the NMPH-BSC algorithm was used to generate an optimal trajectory to the
desired setpoint pn

d = [−5,−8, 5]T m, ψd = 90◦ while avoiding an obstacle as shown in
Figure 3b. The optimization problem within NMPH-BSC provided an estimate of the
reference output trajectory ξ̂re f and a prediction of the system state trajectory x̃, which
included the predicted output trajectory ξ̃ as a subset.

(a) (b)

Figure 3. Trajectory Planning using the NMPH-BSC approach. (a) AirSim simulation environment.
(b) Trajectory generation while avoiding static obstacle.

Figure 4 shows that the estimated reference trajectories of the vehicle’s position and
velocities ξ̂re f = [ξ̂x,re f , ξ̂y,re f , ξ̂z,re f , ξ̂

ψ,re f , ξ̂ ẋ,re f , ξ̂ ẏ,re f , ξ̂ ż,re f , ξ̂
ψ̇,re f

] perfectly match their corre-
sponding predicted reference trajectories ξ̃ = [x̃x,re f , x̃y,re f , x̃z,re f , x̃

ψ,re f , x̃ẋ,re f , x̃ẏ,re f , x̃ż,re f , x̃
ψ̇,re f

].
This confirms that using the stage cost function in (3a) minimizes the deviation between the
estimated and predicted reference trajectories, and thus ensures their convergence towards
each other. This validates the statement made in Section 2.1, that either the estimated or the
predicted trajectory can be used as the reference trajectory for the closed-loop system.

Robotics 2022, 11, 87 14 of 22

0 1 2 3 4 5 6 7 8
9

8

7

6

5

x
(m

)

x, ref

xx, ref

0 1 2 3 4 5 6 7 8
8

6

4

y
(m

)

y, ref

xy, ref

0 1 2 3 4 5 6 7 8
time (s)

2

3

4

5

z (
m

)
z, ref

xz, ref

0 1 2 3 4 5 6 7 8
time (s)

0.0

0.5

1.0

1.5

 (r
ad

)

, ref

x , ref

(a)

0 1 2 3 4 5 6 7 8
0.0

0.5

1.0

x
(m

/s
)

x, ref

xx, ref

0 1 2 3 4 5 6 7 8

2

1

0

y
(m

/s
)

y, ref

xy, ref

0 1 2 3 4 5 6 7 8
time (s)

0.0

0.5

1.0

z
(m

/s
)

z, ref

xz, ref

0 1 2 3 4 5 6 7 8
time (s)

0.0

0.5

1.0

 (r
ad

/s
) , ref

x , ref

(b)

Figure 4. NMPH reference trajectory generation. The estimated and predicted reference position
trajectories are depicted in (a), and the estimated reference velocity trajectories are shown in (b).

In the second simulation, tracking performance is assessed by having the vehicle move
from the initial position pn = [0, 0, 2]T m to the desired terminal point pd = [6,−4, 2]T m
using the optimized reference trajectory provided by the NMPH-BSC. The tracking per-
formance is plotted in Figure 5, showing the vehicle satisfactorily tracks the time-varying
reference trajectory generated by the NMPH-BSC algorithm. The small variation between
the desired and actual outputs is because the former are obtained from numerical inte-
gration of the drone dynamics (10), while the latter are obtained from the physics engine
of the simulation environment, which likely uses more complicated aerodynamic force
and torque models than our design. This modeling mismatch can also be expected for
real-world hardware testing, which will be covered in Section 3.2.

3.1.2. Exploration of Unknown Environment

In this simulation test, the drone explored an unknown environment by using a
modular global motion planner, as described by the authors of [34]. This graph-based
motion planner generated terminal setpoints within unexplored areas of an incrementally
built-up volumetric map of the environment [47,48], and the NMPH-BSC algorithm was
used to calculate optimal trajectories from the vehicle’s current pose to these terminal
setpoints. To achieve a smooth integration between the graph-based planner and the
NMPH-BSC trajectory planning approach, computationally efficient algorithms for obstacle
mapping and avoidance plus robust path guidance algorithms were used. Further details
of this methodology can be found in [34].

Robotics 2022, 11, 87 15 of 22

0 1 2 3 4 5 6 7 8
0

2

4

6

x-
ax

is
(m

)

x, ref

x

0 1 2 3 4 5 6 7 8

4

2

0
y-

ax
is

(m
)

y, ref

y

0 1 2 3 4 5 6 7 8
time (s)

0

1

2

3

4

z-
ax

is
(m

)

z, ref

z

Figure 5. Vehicle’s trajectory tracking performance between the start point (0, 0, 2) m and the terminal
setpoint (5.8, −4.5, 2) m.

Figure 6 depicts a part of the exploration mission performed by the drone. The vehicle
explored an unknown environment using the global motion planner in conjunction with
the NMPH-BSC for local trajectory planning, which led to smoother flight trajectories
than the stop-and-go patterns obtained from the motion planner alone. The data were
collected over an exploration time of 1002 s. Table 1 offers a comparison between three
approaches: graph-based planner only [48], graph-based planner plus NMPH-FBL [27],
and graph-based planner plus NMPH-BSC (this paper). Based on this comparison, it can be
seen that both NMPH algorithms have the effect of reducing the distance traveled, which
reduces the mission time and consequently the energy consumption of the vehicle. Using
the proposed NMPH-BSC leads to an improved performance over the NMPH-FBL. This
is in addition to NMPH-BSC’s advantages of avoiding numerical differentiation and its
ability to extend to more complicated plant models as compared to NMPH-FBL.

Table 1. Comparison between graph-based and graph-based-plus-NMPH approaches to motion planning.

Total Length of the
Generated Paths

Average Path Length
(between Terminal

Points)
Exploration Time Continuous Path

Generation

Graph-based 1252 m 8.03 m 1322 s No

Graph-based &
NMPH-FBL

977 m (22.0%
improvement)

6.25 m (22.2%
improvement)

1032 s (21.9%
improvement) Yes

Graph-based &
NMPH-BSC

949 m (24.2%
improvement)

6.08 m (24.3%
improvement)

1002 s (24.2%
improvement) Yes

3.2. Hardware Flight Experiments

For hardware experiments, a custom DJI FlameWheel F550 hexacopter was built and
instrumented to explore unknown environments using our proposed NMPH-BSC approach
in conjunction with a global motion planner. The drone was equipped with a Pixhawk 2.1
flight controller running the PX4 autopilot system [46], plus an Nvidia Jetson Xavier NX
system-on-module running ROS Melodic Morenia [41] under Ubuntu 18.04. A Velodyne
Puck LITE LiDAR sensor and an Intel RealSense T265 stereo camera were mounted on the
drone to provide 360◦ point cloud and estimated pose data, respectively. The drone system
used for testing is depicted in Figure 7.

Robotics 2022, 11, 87 16 of 22

Figure 6. Exploration of unknown environment using global motion planner using NMPH-BSC for
local trajectory planning.

Figure 7. DJI FlameWheel F550 hexacopter vehicle equipped with onboard sensors and comput-
ing systems.

Trajectory generation and tracking were evaluated by running the NMPH-BSC algo-
rithm onboard the vehicle. Figure 8a shows the planned trajectory between two setpoints
avoiding a sensed obstacle generated by the NMPH-BSC algorithm, while Figure 8b depicts
the flight trajectory achieved by the drone using its flight controller to track the planned
trajectory. The NMPH-BSC solver provides continuous updates of the estimated and
predicted reference trajectories as the vehicle moves towards its endpoint. In this way,
the system can handle uncertainties and disturbances such as dynamic environments and
moving obstacles. The regeneration rate was set to 5 Hz, although this can be set as high as
100 Hz with the presented hardware.

Trajectory planning using NMPH-BSC in the presence of dynamic obstacles was
evaluated experimentally as shown in Figure 9. In this Figure, it can be seen that the
drone was able to regenerate trajectories to avoid a moving obstacle while flying through a
constrained indoor environment. It is worth pointing out that the continuous trajectory
regeneration process of NMPH-BSC provided smooth transitions between the generated
trajectories, leading to smooth flight around the moving obstacle.

In a second flight test experiment, the navigation capabilities of the system were
tested within a confined indoor environment as illustrated in Figure 10. During this
test, the motion planner generated five terminal setpoints and the NMPH-BSC algorithm
provided continuously regenerating local reference trajectories between the successive
setpoints to ensure smooth flight.

Robotics 2022, 11, 87 17 of 22

(a) (b)

(c)

Figure 8. Trajectory planning with obstacle avoidance flight test using the NMPH-BSC algorithm.
(a) Trajectory generation. (b) Trajectory tracking. (c) The mapped obstacle as seen from the left fisheye
lens of the onboard camera.

⇓ ⇓

⇓ ⇓

(a) (b)

Figure 9. Hardware flight test for trajectory planning involving a dynamic obstacle using the NMPH-
BSC algorithm. (a) Hardware drone avoiding the moving obstacle. (b) RViz visualization of the
trajectory regeneration and flight path.

Robotics 2022, 11, 87 18 of 22

Figure 10. The hardware hexacopter vehicle navigating a confined indoor environment using a
graph-based planner to generate terminal setpoints and NMPH-BSC to generate local trajectories
between setpoints.

A final hardware flight test was performed outdoors in order to assess the trajectory
planning performance in the presence of wind, in this case approximately 15 km/h. As be-
fore, the graph-based motion planner provided multiple terminal setpoints, while our
NMPH-BSC planned smooth trajectories between them in real-time. The resulting flight
trajectory can be seen in Figure 11. Despite the presence of a wind disturbance, the drone
was able to smoothly navigate between generated setpoints as in the earlier tests.

Figure 11. Flight test employing the NMPH-BSC algorithm in an outdoor environment with a
15 km/h wind speed.

4. Conclusions and Future Work

This paper proposed an optimization-based trajectory planning approach for drones
operating in unknown environments. The proposed method embeds the Backstepping
Control technique within our recently-proposed Nonlinear Model Predictive Horizon
framework [27] for generating reference trajectories for nonlinear dynamical systems. This

Robotics 2022, 11, 87 19 of 22

integration reduces the non-convexity of the optimization problem and thus enables real-
time computation of optimal trajectories which respect the nonlinear dynamics of the
vehicle while avoiding static and dynamic obstacles.

The resulting NMPH-BSC design was tested in simulation and hardware flight experi-
ments on quadcopter and hexacopter drone vehicles, respectively. The results showed an
improvement in performance over a system previously proposed by the authors based on
Feedback Linearization [34]. The new design was shown to offer additional implemen-
tation advantages over our earlier work including the ability to readily extend to more
complicated plant models and avoid numerical differentiation.

Future work will include implementing an adaptation scheme allowing the online
updating of the optimization problem weights within the NMPH, and testing the developed
system in large-scale, unknown and GPS-denied environments such as subterranean mines.

Author Contributions: Conceptualization, Y.A.Y. and M.B.; methodology, Y.A.Y.; software, Y.A.Y.;
validation, Y.A.Y.; formal analysis, Y.A.Y.; investigation, Y.A.Y.; resources, M.B.; data curation, Y.A.Y.;
writing—original draft preparation, Y.A.Y.; writing—review and editing, M.B.; visualization, Y.A.Y.;
supervision, M.B.; project administration, M.B.; funding acquisition, M.B. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by NSERC Alliance-AI Advance Program grant number 202102595.
The APC was funded by NSERC Alliance-AI Advance Program.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

Variable Meaning
x, u, ξ System state, input and output vectors
X, U, Ξ State, input and output spaces
Rk Vector with k real-valued entries
ξre f Reference (output) trajectory
f , h, g System dynamics, system output and feedback maps
xss Stabilization setpoint
x̃, ũ, ξ̃ Predicted state, input and output trajectories
ξ̂re f Estimated reference trajectory
tn Sampling time
∆ Error tolerance
L, E Stage and terminal cost functions
X , U , Z State, input and output constraint sets
T Prediction horizon
Wx, Wξ , WT State, output and terminal cost weighting matrices
Oi ith obstacle constraint
N , B Navigation and body-fixed frame
(n1, n2, n3), (b1, b2, b3) Navigation and body frame basis vectors
SE(3), SO(3) Special Euclidean and Special Orthogonal groups
Rnb Rotation matrix of B relative to N
pn Position vector of vehicle’s B frame origin relative to N
η Vector of three Euler angles
φ, θ, ψ Roll, pitch and yaw Euler angles
s(·), c(·), t(·) Sine, cosine and tangent of angle

Robotics 2022, 11, 87 20 of 22

Z Set of integers
vn, vb Translational velocity vectors in frame N and B coordinates
ωb Angular velocity vector in frame B coordinates
W Transformation matrix (6)
S(·) Map from 3-element vector to 3× 3 skew-symmetric matrix
so(3) Lie algebra associated to SO(3)
m Mass of drone
fi, u Thrust of ith propeller, total thrust
τbk Torque about bk axis
g Acceleration due to gravity
ū, τ̄, ḡ Thrust, torque and gravity vectors in (8)
J = diag(Jx, Jy, Jz) Mass moment of inertia matrix of drone
Jr Rotational inertia of propeller
ωi Angular velocity of ith propeller
Kt = diag(kt1, kt2, kt3) Translational drag coefficient matrix
Kr = diag(kr1, kr2, kr3) Rotational drag coefficient matrix
ηd Desired Euler angles
δ1, δ2, δ3, δ4 Tracking error vectors
f̄k, ḡk Vectors (24), (39), (45), (49)
V1, V2, V3, V4 Lyapunov function candidates
v1, v2 Virtual control vectors
τφ, τθ , τψ Virtual inputs of the rotational subsystem
Λ1, Λ2, Λ3, Λ4 Positive-definite diagonal gain matrices
χ, χd Actual and desired position vectors of drone
Acronym Meaning
GPS Global Positioning System
LPA* Lifelong Planning A*
ARA* Anytime Reparing A*
PRM Probabilistic Road-Map
RRT Rapidly-Exploring Random Tree
RRG Rapidly-Exploring Random Graph
ANN Artificial Neural Network
GA Genetic Algorithm
ACO Ant Colony Optimization
PSO Particle Swarm Optimization
SA Simulated Annealing
CHOMP Covariant Hamiltonian Optimization for Motion Planning
STOMP Stochastic Trajectory Optimization for Motion Planning
NMPH Nonlinear Model Predictive Horizon
BSC Backstepping Control
FBL Feedback Linearization
NMPC Nonlinear Model Predictive Control
ENU East, North, Up
ROS Robot Operating System
NLP Nonlinear Programming
SQP Sequential Quadratic Programming
LiDAR Light Detection and Ranging

References
1. Bergman, K.; Ljungqvist, O.; Glad, T.; Axehill, D. An optimization-based receding horizon trajectory planning algorithm.

IFAC-PapersOnLine 2020, 53, 15550–15557. [CrossRef]
2. Manoharan, A.; Sharma, R.; Sujit, P.B. Multi-AAV Cooperative Path Planning using Nonlinear Model Predictive Control with

Localization Constraints. arXiv 2022, arXiv:2201.09285.
3. Wu, D.M.; Li, Y.; Du, C.Q.; Ding, H.T.; Li, Y.; Yang, X.B.; Lu, X.Y. Fast velocity trajectory planning and control algorithm of

intelligent 4WD electric vehicle for energy saving using time-based MPC. IET Intell. Transp. Syst. 2019, 13, 153–159. [CrossRef]
4. Gasparetto, A.; Boscariol, P.; Lanzutti, A.; Vidoni, R. Path planning and trajectory planning algorithms: A general overview.

In Motion and Operation Planning of Robotic Systems; Carbone, G., Gomez-Bravo, F., Eds.; Springer: Cham, Switzerland, 2015;
Volume 29, pp. 293–308.

http://doi.org/10.1016/j.ifacol.2020.12.2399
http://dx.doi.org/10.1049/iet-its.2018.5103

Robotics 2022, 11, 87 21 of 22

5. Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [CrossRef]
6. Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci.

Cybern. 1968, 4, 100–107. [CrossRef]
7. Koenig, S.; Likhachev, M. Fast replanning for navigation in unknown terrain. IEEE Trans. Robot. 2005, 21, 354–363. [CrossRef]
8. Al-Mutib, K.; AlSulaiman, M.; Emaduddin, M.; Ramdane, H.; Mattar, E. D* lite based real-time multi-agent path planning in

dynamic environments. In Proceedings of the 2011 Third International Conference on Computational Intelligence, Modelling &
Simulation, Langkawi, Malaysia, 20–22 September 2011; pp. 170–174.

9. Likhachev, M.; Gordon, G.J.; Thrun, S. ARA*: Anytime A* with provable bounds on sub-optimality. In Advances in Neural
Information Processing Systems; Thrun, S., Saul, L.K., Schölkopf, B., Eds.; MIT Press: Cambridge, MA, USA, 2004; Volume 16,
pp. 767–774.

10. Dolgov, D.; Thrun, S.; Montemerlo, M.; Diebel, J. Path planning for autonomous vehicles in unknown semi-structured environ-
ments. Int. J. Robot. Res. 2010, 29, 485–501. [CrossRef]

11. Siméon, T.; Laumond, J.P.; Nissoux, C. Visibility-based probabilistic roadmaps for motion planning. Adv. Robot. 2000, 14, 477–493.
[CrossRef]

12. LaValle, S.M.; Kuffner, J.J. Rapidly-Exploring Random Trees: Progress and Prospects. In Algorithmic and Computational Robotics:
New Directions; Donald, B.R., Lynch, K.M., Rus, D., Eds.; CRC Press: Boca Raton, FL, USA, 2001; pp. 293–308.

13. Karaman, S.; Frazzoli, E. Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 2011, 30, 846–894. [CrossRef]
14. Khatib, O. Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. Int. J. Robot. Res. 1986, 5, 90–98. [CrossRef]
15. Iswanto, I.; Ma’arif, A.; Wahyunggoro, O.; Cahyadi, A.I. Artificial Potential Field Algorithm Implementation for Quadrotor Path

Planning. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 575–585. [CrossRef]
16. Martin, P.; del Pobil, A.P. Application Of Artificial Neural Networks To The Robot Path Planning Problem. In Applications of

Artificial Intelligence in Engineering IX; Adey, R., Rzevski, G., Russell, D., Eds.; WIT Press: Southampton, UK, 1994; pp. 73–80.
17. Zhao, M.; Ansari, N.; Hou, E.S.H. Mobile manipulator path planning by a genetic algorithm. J. Field Robot. 1994, 11, 143–153.

[CrossRef]
18. Wang, H.J.; Xiong, W. Research on global path planning based on ant colony optimization for AUV. J. Mar. Sci. Appl. 2009,

8, 58–64. [CrossRef]
19. Qiaorong, Z.; Guochang, G. Path planning based on improved binary particle swarm optimization algorithm. In Proceedings of

the 2008 IEEE Conference on Robotics, Automation and Mechatronics, Chengdu, China, 21–24 September 2008; pp. 462–466.
20. Martinez-Alfaro, H.; Flugrad, D.R. Collision-free path planning for mobile robots and/or AGVs using simulated annealing. In

Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, San Antonio, TX, USA, 2–5 October 1994;
Volume 1, pp. 270–275.

21. Zhang, H.Y.; Lin, W.M.; Chen, A.X. Path planning for the mobile robot: A review. Symmetry 2018, 10, 450. [CrossRef]
22. Sands, T. Flattening the Curve of Flexible Space Robotics. Appl. Sci. 2022, 12, 2992. [CrossRef]
23. LaValle, S.M. Planning Algorithms; Cambridge University Press: New York, NY, USA , 2006.
24. Zucker, M.; Ratliff, N.; Dragan, A.D.; Pivtoraiko, M.; Klingensmith, M.; Dellin, C.M.; Bagnell, J.A.; Srinivasa, S.S. CHOMP:

Covariant Hamiltonian optimization for motion planning. Int. J. Robot. Res. 2013, 32, 1164–1193. [CrossRef]
25. Kalakrishnan, M.; Chitta, S.; Theodorou, E.; Pastor, P.; Schaal, S. STOMP: Stochastic trajectory optimization for motion planning.

In Proceedings of the 2011 IEEE international conference on robotics and automation, Shanghai, China, 9–13 May 2011;
pp. 4569–4574.

26. Sandberg, A.; Sands, T. Autonomous Trajectory Generation Algorithms for Spacecraft Slew Maneuvers. Aerospace 2022, 9, 135.
[CrossRef]

27. Al Younes, Y.; Barczyk, M. Nonlinear Model Predictive Horizon for Optimal Trajectory Generation. Robotics 2021, 10, 90.
[CrossRef]

28. Krstic, M.; Kokotovic, P.V.; Kanellakopoulos, I. Nonlinear and Adaptive Control Design; John Wiley & Sons, Inc.: New York, NY,
USA, 1995.

29. Vaidyanathan, S.; Azar, A.T. Backstepping Control of Nonlinear Dynamical Systems; Academic Press: San Diego, CA, USA, 2020.
30. Zhou, J.; Wen, C. Adaptive Backstepping Control of Uncertain Systems: Nonsmooth Nonlinearities, Interactions or Time-Variations;

Springer: Heidelberg, Germany, 2008.
31. Fadhel, F.S.; Noaman, S.F. The Generalized Backstepping Control Method for Stabilizing and Solving Systems of Multiple Delay

Differential Equations. Al-Nahrain J. Sci. 2018, 150–156. [CrossRef]
32. Ye, Z.; Mohamadian, H. Nonlinear backstepping control of multibody aerodynamic systems with equational modeling. In

Proceedings of the 2009 IEEE International Conference on Control and Automation, Christchurch, New Zealand, 9–11 December
2009; pp. 1775–1779.

33. Marino, R.; Tomei, P. Nonlinear Control Design: Geometric, Adaptive, and Robust; Prentice Hall: Hoboken, NJ, USA , 1995.
34. Al Younes, Y.; Barczyk, M. Optimal Motion Planning in GPS-Denied Environments Using Nonlinear Model Predictive Horizon.

Sensors 2021, 21, 5547. [CrossRef]
35. Murray, R.M.; Li, Z.; Sastry, S.S. A Mathematical Introduction to Robotic Manipulation; CRC Press: Boca Raton, FL, USA, 1994.
36. Madani, T.; Benallegue, A. Control of a quadrotor mini-helicopter via full state backstepping technique. In Proceedings of the

45th IEEE Conference on Decision and Control, San Diego, CA, USA, 13–15 December 2006; pp. 1515–1520.

http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.1109/TRO.2004.838026
http://dx.doi.org/10.1177/0278364909359210
http://dx.doi.org/10.1163/156855300741960
http://dx.doi.org/10.1177/0278364911406761
http://dx.doi.org/10.1177/027836498600500106
http://dx.doi.org/10.14569/IJACSA.2019.0100876
http://dx.doi.org/10.1002/rob.4620110302
http://dx.doi.org/10.1007/s11804-009-8002-7
http://dx.doi.org/10.3390/sym10100450
http://dx.doi.org/10.3390/app12062992
http://dx.doi.org/10.1177/0278364913488805
http://dx.doi.org/10.3390/aerospace9030135
http://dx.doi.org/10.3390/robotics10030090
http://dx.doi.org/10.22401/ANJS.00.1.20.
http://dx.doi.org/10.3390/s21165547

Robotics 2022, 11, 87 22 of 22

37. Al Younes, Y.; Drak, A.; Noura, H.; Rabhi, A.; Hajjaji, A.E. Quadrotor position Control using cascaded adaptive integral
backstepping controllers. In Applied Mechanics and Materials; Trans Tech Publications Ltd.: Durnten-Zurich, Switzerland , 2014;
Volume 565, pp. 98–106.

38. Bouabdallah, S.; Siegwart, R. Full control of a quadrotor. In Proceedings of the 2007 IEEE/RSJ international conference on
intelligent robots and systems, San Diego, CA, USA, 29 October–2 November 2007; pp. 153–158.

39. Basri, M.A.M.; Husain, A.R.; Danapalasingam, K.A. Enhanced backstepping controller design with application to autonomous
quadrotor unmanned aerial vehicle. J. Intell. Robot. Syst. 2015, 79, 295–321. [CrossRef]

40. Chen, F.; Jiang, R.; Zhang, K.; Jiang, B.; Tao, G. Robust backstepping sliding-mode control and observer-based fault estimation for
a quadrotor UAV. IEEE Trans. Ind. Electron. 2016, 63, 5044–5056. [CrossRef]

41. Quigley, M.; Gerkey, B.; Conley, K.; Faust, J.; Foote, T.; Leibs, J.; Berger, E.; Wheeler, R.; Ng, A.Y. ROS: An open-source Robot
Operating System. In Proceedings of the ICRA Workshop on Open Source Software in Robotics, Kobe, Japan, 12–17 May 2009 .

42. Houska, B.; Ferreau, H.; Diehl, M. ACADO Toolkit—An Open Source Framework for Automatic Control and Dynamic
Optimization. Optim. Control Appl. Methods 2011, 32, 298–312. [CrossRef]

43. Boggs, P.T.; Tolle, J.W. Sequential quadratic programming. Acta Numer. 1995, 4, 1–51. [CrossRef]
44. Ferreau, H.; Kirches, C.; Potschka, A.; Bock, H.; Diehl, M. qpOASES: A parametric active-set algorithm for quadratic programming.

Math. Program. Comput. 2014, 6, 327–363. [CrossRef]
45. Shah, S.; Dey, D.; Lovett, C.; Kapoor, A. AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles. In Field

and Service Robotics; Hutter, M., Siegwart, R., Eds.; Springer: Cham, Switzerland, 2018; pp. 621–635.
46. Meier, L.; Honegger, D.; Pollefeys, M. PX4: A node-based multithreaded open source robotics framework for deeply embedded

platforms. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA,
26–30 May 2015; pp. 6235–6240.

47. Oleynikova, H.; Taylor, Z.; Fehr, M.; Siegwart, R.; Nieto, J. Voxblox: Incremental 3d euclidean signed distance fields for on-board
mav planning. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Vancouver, BC, Canada, 24–28 September 2017; pp. 1366–1373.

48. Dang, T.; Mascarich, F.; Khattak, S.; Papachristos, C.; Alexis, K. Graph-based path planning for autonomous robotic exploration
in subterranean environments. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Macau, China, 4–8 November 2019; pp. 3105–3112.

http://dx.doi.org/10.1007/s10846-014-0072-3
http://dx.doi.org/10.1109/TIE.2016.2552151
http://dx.doi.org/10.1002/oca.939
http://dx.doi.org/10.1017/S0962492900002518
http://dx.doi.org/10.1007/s12532-014-0071-1

	Introduction
	Problem Formulation
	Nonlinear Model Predictive Horizon
	Drone Dynamics
	Backstepping Control Design
	Backstepping Control Law Integration within NMPH

	Evaluation of NMPH-BSC
	Simulation Environment
	Trajectory Planning
	Exploration of Unknown Environment

	Hardware Flight Experiments

	Conclusions and Future Work
	References

