
����������
�������

Citation: Ugurlu, H.I.; Pham, X.H.;

Kayacan, E. Sim-to-Real Deep

Reinforcement Learning for Safe

End-to-End Planning of Aerial

Robots. Robotics 2022, 11, 109.

https://doi.org/10.3390/

robotics11050109

Academic Editors: Xiaowei Huang,

Wenjie Ruan and Xingyu Zhao

Received: 30 August 2022

Accepted: 10 October 2022

Published: 13 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

robotics

Article

Sim-to-Real Deep Reinforcement Learning for Safe End-to-End
Planning of Aerial Robots
Halil Ibrahim Ugurlu , Xuan Huy Pham and Erdal Kayacan *

Artificial Intelligence in Robotics Laboratory (AiR Lab), The Department of Electrical and Computer Engineering,
Aarhus University, 8000 Aarhus C, Denmark
* Correspondence: erdal@ece.au.dk

Abstract: In this study, a novel end-to-end path planning algorithm based on deep reinforcement
learning is proposed for aerial robots deployed in dense environments. The learning agent finds an
obstacle-free way around the provided rough, global path by only depending on the observations
from a forward-facing depth camera. A novel deep reinforcement learning framework is proposed to
train the end-to-end policy with the capability of safely avoiding obstacles. The Webots open-source
robot simulator is utilized for training the policy, introducing highly randomized environmental
configurations for better generalization. The training is performed without dynamics calculations
through randomized position updates to minimize the amount of data processed. The trained policy is
first comprehensively evaluated in simulations involving physical dynamics and software-in-the-loop
flight control. The proposed method is proven to have a 38% and 50% higher success rate compared
to both deep reinforcement learning-based and artificial potential field-based baselines, respectively.
The generalization capability of the method is verified in simulation-to-real transfer without further
training. Real-time experiments are conducted with several trials in two different scenarios, showing
a 50% higher success rate of the proposed method compared to the deep reinforcement learning-
based baseline.

Keywords: deep reinforcement learning; obstacle avoidance; quadrotors; sim-to-real transfer

1. Introduction

Autonomous aerial robots are increasingly deployed in applications that require safe
path planning in dense environments, such as a greenhouse covered with dense plants,
search and rescue operation in an unstructured collapsed building or navigation in a forest.
Traditionally, autonomous navigation is solved under separate problems such as state
estimation, perception, planning, and control [1]. This approach may lead to higher latency
combining individual blocks and system integration issues. On the other hand, recent
developments in machine learning, particularly in reinforcement learning (RL) and deep
reinforcement learning (DRL), enable an agent to learn various navigation tasks end-to-end
with only a single neural network policy that generates required robot actions directly
from sensory input. These methods are promising for solving navigation problems faster
computationally since they do not deal with the integration of subsystems that are tuned
for their particular goals.

This study attempts to address the end-to-end planning problem of a quadrotor UAV
in dense indoor environments. The quadrotor deployed with a depth camera is required
to find its way around the global trajectory. We propose a DRL-based safe navigation
methodology for quadrotor flight. The learned DRL policy, utilizing the depth images
and the knowledge of a global trajectory, generates safe waypoints for the quadrotor. We
develop a Webots-based simulation environment where the DRL agent is trained with
obstacle tracks where the obstacle locations, shapes, and sparsity are randomized for every
episode of policy training for better generalization. Furthermore, we introduce safety

Robotics 2022, 11, 109. https://doi.org/10.3390/robotics11050109 https://www.mdpi.com/journal/robotics

https://doi.org/10.3390/robotics11050109
https://doi.org/10.3390/robotics11050109
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://orcid.org/0000-0002-1609-5783
https://orcid.org/0000-0001-8218-9326
https://orcid.org/0000-0002-7143-8777
https://doi.org/10.3390/robotics11050109
https://www.mdpi.com/journal/robotics
https://www.mdpi.com/article/10.3390/robotics11050109?type=check_update&version=4

Robotics 2022, 11, 109 2 of 15

boundaries to be considered during training in addition to collision checks. The safety
boundaries enable the agent to prevent risky situations that make the method more robust
to uncertainties.

Contributions

The contributions of this paper are fourfold:

• A novel DRL simulation framework is proposed for training an end-to-end planner
for a quadrotor flight, including a faster training strategy using non-dynamic state
updates and highly randomized simulation environments.

• The impact of continuous/discrete actions and proposed safety boundaries in RL
training are investigated.

• We open-source the Webots-based DRL framework, including all training and evalua-
tion scripts (the code, trained models, and simulation environment will be available at
https://github.com/open-airlab/gym-depth-planning, accessed on 1 July 2022).

• The method is evaluated with extensive experiments in Webots-based simulation envi-
ronments and multiple real-world scenarios, transferring the network from simulation
to real without further training.

The remainder of this paper is organized as follows. Section 2 reviews the related
literature. Section 3 explains the end-to-end planning methodology for a quadrotor UAV
with the formalization of the RL problem. Section 4 provides the experimental setup and
the comprehensive tests of the proposed method in the simulation environment. The
section also provides the results of the real-time tests. Finally, Section 5 concludes this work
with future research directions.

2. Related Work

As a machine learning paradigm, RL aims to solve sequential decision-making prob-
lems through the interaction of a learning agent with its environment [2]. With the success
of the deep learning models in machine learning, it is also applied to RL, which brings
about the DRL field with success in several benchmark problems such as video games [3]
or continuous control tasks [4]. Several methods are proposed to optimize deep neural
networks to learn the value function [3], policy function [5], or both [4,6] in the RL domain,
such as the proximal policy optimization (PPO) [7] algorithm, a state-of-the-art method uti-
lized in this work. RL and its successor DRL have gained attention in robotics applications
as it is encouraging a complete framework for intelligent robots to learn by interacting with
their environment.

Since deep learning-based methods require plenty of data, they have emphasized
using simulation data as an alternative to expensive real-world data. The usefulness of
simulations becomes more crucial for DRL considering potential hardware failures dur-
ing exploration in the real-world [8]. However, there is a gap between simulation and
real-world data, as sensor signal qualities may not be preserved due to the lack of realistic
noise. Earlier works have shown that certain data modalities provide a better abstrac-
tion for sim-to-real transfer, such as using depth images [9] or applying morphological
filters [10]. Another gap between simulation and reality comes from the limitations in
modeling real-world dynamics, which are generally countered by domain randomization,
e.g., randomizing physical parameters [11] or randomizing observations gathered by visual
sensors [12].

Deep neural network-based methods are utilized in the control and navigation of
several robotics applications, including real-world demonstrations. Those applications
can be classified into two categories considering the input to the neural network: the
state information, such as positions and velocities, or raw sensory data, such as color
or depth images. Using state information directly, neural network policies have similar
functionality with a controller block in quadrotor UAVs, such as in attitude control [13]
or position control [11,14] level. Furthermore, various output configurations from motion
primitives [15] to lowest-level motor voltage commands [16] for the learned policies are also

https://github.com/open-airlab/gym-depth-planning

Robotics 2022, 11, 109 3 of 15

investigated. Compared to conventional control theoretic approaches, those methods are
lacking in providing mathematical guarantees such as stability analysis [17]. However, it is
an active research area where the most recent works promisingly show that DRL-based cas-
caded control outperforms classical proportional-integral-derivative (PID) controllers [18]
and demonstrates challenging control tasks such as high-speed flight control [19].

Prior to deep learning-based methods, the planning methods for robotics have been
extensively studied. In particular, graph-based (e.g., A* [20] and D* [21]), potential field-
based [22], and sampling-based [23] methods can be counted as subfields of conventional
planning algorithms, which require a graph or map representation of the configuration
space. Conventional planning algorithms are also an active research area for the application
of quadrotor flight [24], as well as other fields, such as collision avoidance of near-Earth
space systems [25]. Unlike conventional planning algorithms, DRL enables the learning of
so-called neural network end-to-end planners or visuomotor controllers that can generate
actions directly from sensory input without any map. Although several applications for
ground robots utilize lidar sensors for obstacle avoidance tasks [26,27], visual sensors
are more commonly used in aerial applications such as color or depth images. End-
to-end navigation is broadly investigated for quadrotor UAVs in several domains such
as corridor following [28], drone racing [1,29], aerial cinematography [30], autonomous
landing [31,32] or obstacle avoidance [33,34], which is the application in this paper. A
recent study demonstrates the capabilities of DRL in a safety critic mission, leveraging
the depth and semantic images for an emergency landing [32]. Similarly, a high-speed
quadrotor flight with obstacle avoidance has been shown with an imitation learning-based
neural network policy recently [35]. In the context of the present study, safe navigation is
considered rather than agility. Furthermore, instead of imitation learning, DRL is studied.
More similar to the present study, Camci et al. [36] utilize a quadrotor with a depth camera
for obstacle avoidance but with discrete actions. Dooraki et al. [37] also propose a similar
application with continuous actions in the position domain. The present research differs by
proposing safety boundaries and enabling heading angle steps together with position steps.

3. End-to-End Motion Planning of UAV
3.1. Reinforcement Learning Formalization of the Environment

An RL problem is generally formalized as a Markov decision process (MDP) with
state, action, and reward components with discrete timesteps, t. The common variables are
shown in Appendix A. For the problem of end-to-end local planning, the state is defined
as multi-modal data containing the depth image and the vector representing the moving
target point,

st = (Idepth,t, pt), (1)

where Idepth,t is 64× 64 matrix representing depth image and pt = [xt, yt]T is 2× 1 vector
representing the position of the target point with respect to the body frame. As shown in
Figure 1c, x-axis and y-axis represent the forward and the left direction, respectively.

The MDP environment is constructed for both continuous and discrete action spaces
for comparison purposes. For the formation of continuous action space, a vector of length
two is selected,

at ∈ {[a1, a2]
T | − π/8 ≤ a1, a2 ≤ π/8, a1, a2 ∈ R} (2)

where a1 defines the direction of 1 m position step and a2 defines the rotation in yaw
angle with respect to the current body frame. The distribution of actions is illustrated in
Figure 1a. The boundaries of the action space are selected to match the information from
the single-depth camera by assuring that all the actions are taken into a known area. On
the other hand, yaw angle change enables a sharper turn around an obstacle, as well as a
change in point of view if required.

Robotics 2022, 11, 109 4 of 15

a1

a2

(a) Continuous actions. (b) Discrete actions.

x

y

z

minor safety boundary

major safety boundary

collision boundary

(c) Safety boundaries.

Figure 1. The actions and the safety boundaries of the end-to-end planning agent are illustrated.
(a) Continuous actions from the top view are defined by two angles: a1 represents the direction of
the position step (dashed lines), and a2 represents the heading angle (red arrow). FOV of the depth
camera is presented as blue lines. (b) Seven possible discrete actions: position and yaw angle steps.
(c) Illustration of quadrotor body reference frame where the x-axis is the forward-looking direction
and circular safety and collision boundaries considered in the simulation environment. The diameter
of collision, major and minor safety boundaries are 1, 2, and 3 m, respectively.

The discrete action space, which is a subset of the aforementioned continuous action
set, is comprised of seven actions, defined as a combination of a 1 m position step in three
possible directions and a turn in yaw angle with respect to the drone’s reference frame, as
shown in Table 1. The possible actions are also illustrated in Figure 1b. Both the direction
of position step and heading angle are a combination of the spatial limits of a continuous
action set and forward direction while moving and opposite turning sides are neglected.

The discrete action set is mainly constructed for comparison with previous work [36],
with some modifications. First, the position step direction, a1, is kept small in order to fit
with the field-of-view (FOV) of the depth camera so that the UAV does not hit an unseen
object. Second, yaw angle change is enabled to match the capabilities of continuous actions.
Finally, since we restrict the problem definition for constant altitude flight, we disable the
actions that change altitude. We believe these updates facilitate a fair comparison between
continuous and discrete action selections in such a problem domain.

Table 1. Discrete actions: each action is applied as a position step and a turn in heading angle with
respect to the drone’s reference frame.

Choice Corresponding Continuous Action [a1, a2]

Action 1 [π/8, π/8]
Action 2 [π/8, 0]
Action 3 [0, π/8]
Action 4 [0, 0]
Action 5 [0,−π/8]
Action 6 [−π/8, 0]
Action 7 [−π/8,−π/8]

An episode begins when the UAV is at the beginning of a track defining a global
trajectory of length L and obstacles placed. At each timestep, an action is applied to the
UAV, then the depth image and next target point are obtained as the new state. Figure 2
illustrates the selection of the target point projected on the global path and 5 m ahead of
the drone for consecutive timesteps. The episode is terminated under three conditions:
crashing into an obstacle, deviating from the global trajectory, and finalizing the route.

Robotics 2022, 11, 109 5 of 15

time step:

x

y
5m

1 2

5m

3

5m

k

Obstacle
Target point
UAV
Global path

Figure 2. Moving target generation for the end-to-end agent. The target point is located 5 m ahead of
the current location of the UAV projected onto the global path. The obstacles, generated target points,
UAV, and global path are represented as shown in the legend. The UAV takes a position step at each
timestep and is informed by the vector showing the generated target point. The overall trajectory is
demonstrated at the k’th timestep.

A circular boundary is defined around the quadrotor with a diameter of 1 m to
encounter collisions. Whenever a part of this boundary is violated by an obstacle, the
collision is counted, and the episode is terminated. In addition to the collision boundary,
two safety boundaries, major and minor, are defined with diameters 2 m and 3 m, centered
at [0.5, 0, 0] and [1, 0, 0] on the quadrotor body frame. These safety boundaries are located
toward the frontal area of the drone to detect risky objects in the short-term action path, as
shown in Figure 1c. Unlike the collision, the violation of safety boundaries is not resulting
in the termination of the episode, but it adds a negative reward to avoid being close to
obstacles. Since the quadrotor motion is considered in the forward direction, these safety
boundaries are chosen to be tangent with the collision boundary from the reverse direction.
The diameters of major and minor safety boundaries are chosen to occupy the regions in
two and three consecutive action steps, respectively.

The reward signal is based on the UAV’s relative motion and the occupation of safety
boundaries at every timestep if the episode is not terminated. For termination of an episode,
both the collision and excessive deviation are punished with constant values. On the other
hand, finishing a route without a crash is rewarded. The reward signal is defined as,

rt =

2∆x− dy − 0.3dθ − 101major−sa f ety − 21minor−sa f ety, for non-terminal steps,
Rdp, for dy > 5 m,
Rcp, for collision,
R f r, for finishing normally,

(3)

where ∆x, dy and dθ are the distance traveled forward, the distance to the global trajectory
and the yaw angle difference from forward-looking; Rdp = −10, Rcp = −20 and R f r = 20
are punishment for excessive deviation, punishment for collision, and reward for finishing
an episode without any crash; 1major−sa f ety and 1minor−sa f ety are indicator functions return-
ing one or zero when corresponding safety boundary is occupied or not. This reward logic
enables the agent to learn to avoid obstacles while quickly navigating toward the goal, as
well as keeping a distance from obstacles thanks to safety boundaries.

3.2. Randomization of the Environment

For every episode of training, the obstacles in the environment are randomized. The
randomization strategy is summarized in Algorithm 1. The algorithm randomly creates a
corridor and places obstacles with varying shapes, sizes, orientations, and locations.

Robotics 2022, 11, 109 6 of 15

Algorithm 1 Randomized obstacle environment.

with_wall ∼ U ({True, False})
if with_wall then

wall_width ∼ U (4, 10)
end if
#obstacles ∼ U (2, 7)
for each obstacle do

obstacle_shape ∼ U ({Box, Sphere, Cylinder})
obstacle_position.x ∼ U (3, L)
obstacle_position.y ∼ N (0, 2.5)
obstacle_position.z ∼ U (2, 3)
randomize_obstacle_orientation()
if obstacle_shape is cylinder then

radius ∼ U (0.5, 1.5)
height ∼ U (1, 3)

end if
if obstacle_shape is box then

length ∼ U (0.5, 2.5)
end if
if obstacle_shape is sphere then

radius ∼ U (0.5, 1.5)
end if

end for

3.3. Deep Reinforcement Learning: Actor and Critic Network Architecture

The actor and critic networks trained by PPO [7] rely on the same feature extractor.
PPO is a policy gradient algorithm that optimizes the parameterized policy (actor) function,
πθ(at|st), with parameters, θ, using the clipped objective [7],

JCLIP = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)], (4)

where rt(θ) =
πθ(at |st)

πθold
(at |st)

measures how different the new and old policy parameters. Ât is

the advantage estimate in the given timestep, which measures how much a certain action
acquires an extra long-term reward return using the parameterized value (critic) function.
The optimization runs after every rollout of nsteps number of timesteps. Using this objective
function, PPO increases the probability of good action decisions while suppressing bad
decisions, similar to a previous DRL method trust region policy optimization (TRPO) [5],
which only uses the expected value of rt(θ)Ât. PPO introduces the clipped objective, which
prevents large policy updates with only first-order optimization.

The actor–critic neural network feeds the depth image to three convolutional layers
with the number of filters, kernel size, stride, and activation functions, as given in Figure 3.
The convolutional layer is flattened and then reduced to a tensor of 256 neurons by a fully
connected layer. This tensor is concatenated with the moving target input to create the
feature vector that is shared by both actor and critic networks. The critic network utilizes
two fully connected layers with 64 neurons each and a tangent hyperbolic (tanh) activation
to regress the value function. The actor (policy) network has similar hidden layers to the
critic network, but the output layer consists of na neurons where na is equal to two for
continuous actions and seven for discrete actions.

Robotics 2022, 11, 109 7 of 15

1024

64 64
na

256

2

258
Depth Image
(Size: 64x64)

xt

yt

Moving
Target

64
4x4
2

relu

64
3x3
1

relu

no. filters:
kernel size:
stride:
activation:

32
8x8
4

relu []

Shared feature extractor Actor

Critic

64 64
1

flat relu

tanh

tanh

Figure 3. Actor–critic network structure of the end-to-end local planner. The actor network takes
inputs as depth images through convolutional layers and the moving target through fully connected
layers and outputs the next actions as position and yaw angle. The critic network shares the same
feature extractor and outputs the value estimation.

4. Experiments and Results
4.1. Simulation Setup

A Webots-based simulation environment has been developed to train and test the
proposed algorithms. Webots [38] is an open-source robot simulator that allows different
programming interfaces, such as python, or robot operating system (ROS), for several
kinds of robots. The 2021a release of Webots has been utilized to develop the cluttered
environment and deploy the UAV with the required sensory equipment. A third-party
software package, ArduPilot, is selected to implement a quadrotor UAV in Webots to benefit
from its MAVLink extendable communication-featured stable and reliable UAV with its
Webots SITL extension. The UAV robot is then equipped with a depth camera to provide
the required information to carry out end-to-end planning operations. The environment
needs to be reset every time a collision occurs in training, which is a benefit we can have in
simulation throughout the trial-and-error process.

The simulation environment is wrapped as an OpenAI gym environment [39] to allow
the required communication between the DRL algorithm and the environment. ROS [40]
handles this communication between the gym wrapper and the simulation. Specifically, the
MAVROS package is used to acquire the state estimation of the quadrotor UAV and send
position commands. The remaining information, such as depth images and collision, is
communicated directly by individual Webots ROS topics. The gym environment interfaces
with the simulation environment as an MDP for the DRL algorithm, as explained in
Section 3.1.

4.2. Training in Simulation

The agent is trained in Webots with randomized obstacle environments to present a
variety of data for the deep network. The agent is subject to different obstacle shapes, sizes,
locations, and densities for every episode of training. The randomization enables the agent
to generalize the experience during RL training. Each episode begins on a randomly created
route and terminates either at the end of the route or in a collision. Sample environment
configurations used for evaluation purposes are shown in Figure 4.

Robotics 2022, 11, 109 8 of 15

Route 2 Route 3 Route 4 Route 5 Route 6Route 1

Figure 4. Six evaluation routes generated by the proposed environment randomizer. The black lines
represent the projection of a 30 m global trajectory on the ground.

Since the policy network generates waypoints to travel, the robot is transported in the
training simulations to acquire a new observation. This method reduces the computational
burden for physical dynamics in each update step, thus fastening the overall training time.
The transportation is also randomized in position and orientation in order to improve
the variety of the training data as well as to address the possible poor performance of the
controller in following the waypoints.

The policy network is trained with the PPO algorithm implementation in stable-
baselines3 [41]. The ‘number of steps to run per update’ hyperparameter, nsteps, is set
to 1024, while other hyperparameters are kept as default. The algorithm is trained through
100,000 timesteps, and the best network is stored during training based on the reward
performance in the recent 20 episodes.

4.3. Simulation Results

The same randomization method is used for creating the evaluation routes. A set of
six unique routes has been determined to test and compare the methods fairly, as shown
in Figure 4. The routes are numbered with increasing order of the number of obstacles
contained, which roughly makes the route more challenging. Furthermore, each route starts
with a random offset of ±0.5 m in the horizontal positioning of the drone for evaluation
purposes. Each method is evaluated ten times in each lane. The success and the distance
traveled without collision are recorded for every trial. In Table 2, the success rate and
average traveled distance are listed for ten trials in each route. In addition, a safety cost is
measured based on the inverse distance of the objects closer than 3 m, and the average of
this safety cost over all runs is reported.

The proposed method, the safe continuous depth planner (SCDP), is compared with
two DRL-based versions and a potential field-based planner. The continuous depth planner
(CDP) considers the same method without introducing safety boundaries. The discrete
depth planner (DDP) is considered as a baseline, which is a modified version of previous
research [36] using a discrete action domain, as explained in Section 3.1. An artificial poten-
tial field-based planner (APF) is also implemented as a conventional baseline method [22].
The chosen baselines represent two important classes of motion planning algorithms for
quadrotors: learning-based and model-based methods.

In the implementation of APF, each pixel in the middle row of the depth image creates
a repulsive force, and the moving target creates an attractive force. As such, APF uses the
same observation for the end-to-end planner. The action is also selected from the continuous
action set according to the direction of the common artificial force in the reference frame
of the UAV. The angle of the artificial force is mapped to the action set. When the angle is
above π/8 in magnitude, it also activates yaw angle turning actions. The parameters of
attractive and repulsive forces are tuned on the training routes and then tested to compare
with the proposed method fairly.

As can be seen from Table 2, the proposed safety boundaries demonstrate better
performance than the plain case in terms of the success rate. It is also observed that the final
policy avoids becoming closer to the obstacles, considering the reported safety cost, because
the rewards encountered with safety boundaries help the agent avoid dangerous situations.

Robotics 2022, 11, 109 9 of 15

The same observations are valid when the continuous action set is compared against the
discrete set. The continuous depth planner is significantly more capable of handling dense
obstacle scenarios, such as routes #5 and #6, since it can generate finer trajectories. Lastly,
the learning-based end-to-end planners perform better than the baseline artificial potential
field method because of their learning capabilities to handle uncertainties.

Table 2. Average travel distance (in meters) and success rate (in percentage) of methods—safe
continuous depth planner (SCDP), continuous depth planner (CDP), discrete depth planner (DDP),
and artificial potential field (APF)—over 10 runs at 6 test routes.

Route 1 Route 2 Route 3 Route 4 Route 5 Route 6 Overall Safety Cost

SCDP distance 30 30 30 25.8 30 30 29.7 0.51success rate 100 100 100 70 100 90 93

CDP distance 30 30 30 19.4 30 27.4 28.0 0.52success rate 100 100 100 0 100 80 80

DDP distance 30 28.8 8.93 16.6 28.0 25.8 23.1 0.57success rate 100 90 0 0 80 60 55

APF distance 27.5 24.7 29.0 10.7 9.7 20.7 20.4 0.87success rate 90 10 90 10 0 60 43

In order to provide a qualitative comparison, sample trajectories obtained from route
#6 are presented in Figure 5. In parallel with the observations in the comparison table,
SCDP tries to avoid risky situations. Additionally, the generated path by SCDP is smoother,
implying consistency in the sequential actions. Intuitively having a smoother trajectory
reduces the controller effort to follow provided waypoints, which is another advantage of
SCDP against other methods.

0 5 10 15 20 25 30

−4

−2

0

2

4 Flight direction SCDP
CDP
DDP

x (m)

y (m)

Global path

Figure 5. Comparison of the sample trajectories collected in route #6.

4.4. Real-Time Experiments

The trained model is deployed for real-time experiments in a custom quadrotor
carrying an Intel Realsense D435i depth camera, as shown in Figure 6. The drone is
controlled by a Pixhawk autopilot [42]. The overall framework runs entirely onboard on an
NVIDIA Jetson TX2 computer, except that the robot’s localization is provided by a motion
capture system. The overall pipeline can run up to 8 Hz. A geometric controller [43] is used
to track the poses generated by the policy accurately, with a linear speed of around 1 m/s.

Robotics 2022, 11, 109 10 of 15

Intel Realsense
D435i

Nvidia Jetson TX2

Pixhawk 4
flight controller

Vicon motion
capture system Drone pose

Policy Waypoint
controller

Depth image Action

Attitude
commands

Figure 6. Custom drone used in real-time experiments. The depth images are acquired from an Intel
Realsense D435i depth camera. The end-to-end planner is running onboard by an NVIDIA Jetson
TX2. Pixhawk 4 flight controller is utilized for following the waypoints.

To cope with noisy real depth data, input images are enhanced by using a fast depth
dilation algorithm [44] and then resized by cropping the top part of the image to 64× 64
to feed the policy network. We find that processed depth images help to bridge the gap
between simulation and the real world. Unlike the simulations, the generated actions are
applied at the same frequency before reaching the waypoint to prevent the quadrotor from
stopping after each action, which causes a lot of noise due to pitch movements. Additionally,
the quadrotor can track the trajectory faster and smoother. Furthermore, the applied action
is calculated as the mean of the recent two actions generated, which prevents the robot from
applying oscillating actions, which might cause a failure due to noise. The consecutive
oscillating actions are especially expected in narrow passages, where the drone successively
observes the obstacles on the right and left and thus decides to switch directions.

The real-time experiments are conducted in two different scenarios, as shown in
Figure 7. For the first scenario, a moderate-level experimental setup is designed by grouping
obstacles into two groups with wider free space and making the obstacles larger and, hence,
easier to observe. The second scenario is denser and more complex, using eight obstacles
distributed around the global trajectory. The obstacles are created with cardboard boxes
grouped in various configurations. Additionally, a wall-like structure is created using
banners on the right side of the flight route (the video can be found: https://youtu.be/
HPXXc_R3re8, accessed on 12 July 2022).

SCDP and DDP methods are executed five times each in both moderate and difficult-
level scenarios. Table 3 presents the comparison of the two methods in both scenarios.
Similar to the simulations, the drone successfully navigates through obstacles, with the
narrowest passage being approximately three times the drone’s size. The SCDP method
succeeds in all trials in the moderate scenario, while one collision is observed with DDP.
Similarly, SCDP outperforms in the difficult scenario yet encounters one collision. Although
the DDP method also successfully avoids obstacles in most cases, the track cannot be
finalized successfully; instead, the drone exits the global trajectory, which shows our
framework handles the noisy and complicated inputs better by learning confident actions.

https://youtu.be/HPXXc_R3re8
https://youtu.be/HPXXc_R3re8

Robotics 2022, 11, 109 11 of 15

Table 3. Comparison of the SCDP and DDP in real-time experiments. The moderate and difficult-level
scenarios are evaluated five times for both methods.

Moderate Scenario Difficult Scenario

SCDP
success rate 100% 80%

collision rate 0% 20%
distance (meters) 8 7.4

DDP
success rate 80% 0%

collision rate 20% 20%
distance (meters) 7.7 7.1

(a) (b)

(c) (d)

Figure 7. Moderate and difficult-level real-time experimental setups. (a) Real-time evaluation
track with moderate-level obstacle configuration. (b) Visualization of the moderate-level obstacle
configuration and a sample trajectory in RVIZ. (c) Real-time evaluation track with difficult-level
obstacle configuration. (d) Visualization of the difficult-level obstacle configuration and a sample
trajectory in RVIZ.

The trajectories obtained with each method and each scenario are visualized in Figure 8.
Although it is practically more challenging to obtain the variety of obstacle configurations
in real experiments than in simulation, the difficult scenario is observed to contain signif-
icant challenges to benchmark algorithms considering the variation of the resulting five
trajectories. In contrast, in the moderate scenario, all trajectories follow a similar pattern.
Together with the challenge of higher maneuverability, the difficult scenario also introduces
more diverse, in-depth observations. Similar to the simulation results, the trajectories
obtained by SCDP are smoother than the baseline method.

Robotics 2022, 11, 109 12 of 15

(a) (b)

(c) (d)

Figure 8. Trajectories acquired by five runs in the moderate and difficult scenario by SCDP and DDP
methods. (a) SCDP in the moderate scenario. (b) DDP in the moderate scenario. (c) SCDP in the
difficult scenario. (d) DDP in the difficult scenario.

5. Conclusions

In this work, an end-to-end planner is trained with DRL for safe navigation in clut-
tered obstacle environments. The end-to-end planning algorithm is trained and tested in
comprehensive simulations developed in Webots. While the training of the policy network
is handled without dynamics and control to save time, it is successfully sim-to-real trans-
ferred for physical evaluations. Moreover, safety boundaries for training are introduced,
which successfully prevents the quadrotor from being in hazardous situations. The method
is also deployed in real-world indoor environments successfully. The end-to-end planner
outperforms a baseline implementation based on the artificial potential field method, which
has a lower success rate, especially in cluttered obstacle settings. This shows that SCDP
has learned to make better long-term decisions. The real-world experiments demonstrate
that the proposed UAV planner trained solely with simulation can work directly in a
real environment.

There are also certain limitations of the proposed method to be addressed in future
work. First, although the proposed planning method does not require the computation of a
map, the neural network-based method still requires significant computational resources
in training and also in deployment. Currently, the inference time of the used network is
not suitable for real-time robot control. If the algorithm can run continuously in real-time,
there is a possibility to provide lower-level control commands, instead of waypoints, to
the UAV, which can improve the tracking performance of the robot. Second, due to the
black box characteristics of neural networks, the planner cannot be theoretically analyzed
similarly to conventional planning methods, such as its completeness.

Robotics 2022, 11, 109 13 of 15

Author Contributions: Conceptualization, H.I.U. and E.K.; methodology, H.I.U.; software, H.I.U.;
validation, H.I.U.; formal analysis, H.I.U.; investigation, H.I.U. and X.H.P.; resources, E.K.; data
curation, H.I.U.; writing—original draft preparation, H.I.U.; writing—review and editing, H.I.U.;
visualization, H.I.U.; supervision, E.K.; project administration, E.K.; funding acquisition, E.K. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the European Union’s Horizon 2020 Research and Innovation
Program (OpenDR) grant number 871449. This publication reflects the authors’ views only. The
European Commission is not responsible for any use that may be made of the information it contains.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All of the codes and data will be available at https://github.com/
open-airlab/safe-continuous-depth-planning.git, accessed on 2 July 2022.

Acknowledgments: The authors would like to thank Abdelhakim Amer for his technical support in
conducting real-time experiments.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

DRL deep reinforcement learning
UAV unmanned aerial vehicle
PPO proximal policy optimization
FOV field of view
PID proportional-integral-derivative
MDP Markov decision process
SITL software-in-the-loop
ROS robot operating system
SCDP safe continuous depth planner
CDP continuous depth planner
DDP discrete depth planner
APF artificial potential field

Appendix A

The following variables are used in this manuscript:

Table A1. Common variables in the manuscript.

t discrete timestep
st state at timestep t
at action at timestep t
rt reward at timestep t

Idepth matrix representing the depth image
L length of the global trajectory
U uniform distribution
N normal distribution

References
1. Pham, H.X.; Ugurlu, H.I.; Le Fevre, J.; Bardakci, D.; Kayacan, E. Deep learning for vision-based navigation in autonomous drone

racing. In Deep Learning for Robot Perception and Cognition; Elsevier: Amsterdam, The Netherlands, 2022; pp. 371–406.
2. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
3. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;

Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef]

https://github.com/open-airlab/safe-continuous-depth-planning.git
https://github.com/open-airlab/safe-continuous-depth-planning.git
http://doi.org/10.1038/nature14236

Robotics 2022, 11, 109 14 of 15

4. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep
reinforcement learning. arXiv 2015, arXiv:1509.02971.

5. Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; Moritz, P. Trust region policy optimization. In Proceedings of the International
Conference on Machine Learning, PMLR, Lille, France, 6 July–11 July 2015; pp. 1889–1897.

6. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a
stochastic actor. In Proceedings of the International Conference on Machine Learning, PMLR, Stockholm, Sweden, 10–15 July
2018; pp. 1861–1870.

7. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017,
arXiv:1707.06347.

8. Muratore, F.; Ramos, F.; Turk, G.; Yu, W.; Gienger, M.; Peters, J. Robot learning from randomized simulations: A review. Front.
Robot. AI 2022, 9, 799893. [CrossRef] [PubMed]

9. Hoeller, D.; Wellhausen, L.; Farshidian, F.; Hutter, M. Learning a state representation and navigation in cluttered and dynamic
environments. IEEE Robot. Autom. Lett. 2021, 6, 5081–5088. [CrossRef]

10. Pham, H.X.; Sarabakha, A.; Odnoshyvkin, M.; Kayacan, E. PencilNet: Zero-Shot Sim-to-Real Transfer Learning for Robust Gate
Perception in Autonomous Drone Racing. arXiv 2022, arXiv:2207.14131.

11. Molchanov, A.; Chen, T.; Hönig, W.; Preiss, J.A.; Ayanian, N.; Sukhatme, G.S. Sim-to-(multi)-real: Transfer of low-level robust
control policies to multiple quadrotors. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Macau, China, 3–8 November 2019; pp. 59–66.

12. Morales, T.; Sarabakha, A.; Kayacan, E. Image generation for efficient neural network training in autonomous drone racing. In
Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–8.

13. Koch, W.; Mancuso, R.; West, R.; Bestavros, A. Reinforcement learning for UAV attitude control. ACM Trans. Cyber Phys. Syst.
2019, 3, 22. [CrossRef]

14. Ugurlu, H.I.; Kalkan, S.; Saranli, A. Reinforcement Learning versus Conventional Control for Controlling a Planar Bi-rotor
Platform with Tail Appendage. J. Intell. Robot. Syst. 2021, 102, 77. [CrossRef]

15. Camci, E.; Kayacan, E. Learning motion primitives for planning swift maneuvers of quadrotor. Auton. Robot. 2019, 43, 1733–1745.
[CrossRef]

16. Dooraki, A.R.; Lee, D.J. An innovative bio-inspired flight controller for quad-rotor drones: Quad-rotor drone learning to fly using
reinforcement learning. Robot. Auton. Syst. 2021, 135, 103671. [CrossRef]

17. Brunke, L.; Greeff, M.; Hall, A.W.; Yuan, Z.; Zhou, S.; Panerati, J.; Schoellig, A.P. Safe learning in robotics: From learning-based
control to safe reinforcement learning. Annu. Rev. Control Robot. Auton. Syst. 2022, 5, 411–444. [CrossRef]

18. Han, H.; Cheng, J.; Xi, Z.; Yao, B. Cascade Flight Control of Quadrotors Based on Deep Reinforcement Learning. IEEE Robot.
Autom. Lett. 2022, 7, 11134–11141. [CrossRef]

19. Kaufmann, E.; Bauersfeld, L.; Scaramuzza, D. A Benchmark Comparison of Learned Control Policies for Agile Quadrotor Flight.
In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May
2022; pp. 10504–10510.

20. Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci.
Cybern. 1968, 4, 100–107. [CrossRef]

21. Stentz, A. Optimal and efficient path planning for partially known environments. In Intelligent Unmanned Ground Vehicles;
Springer: Berlin/Heidelberg, Germany, 1997; pp. 203–220.

22. Khatib, O. Real-time obstacle avoidance for manipulators and mobile robots. In Proceedings of the 1985 IEEE International
Conference on Robotics and Automation, St. Louis, MO, USA, 25–28 March 1985; Volume 2, pp. 500–505.

23. LaValle, S.M. Rapidly-Exploring Random Trees: A New Tool for Path Planning. 1998. Available online: https://citeseerx.ist.psu.
edu/viewdoc/citations;jsessionid=FDD7D4058FECC1206F4FA333A3286F56?doi=10.1.1.35.1853 (accessed on 14 July 2022)

24. Zhou, D.; Wang, Z.; Schwager, M. Agile coordination and assistive collision avoidance for quadrotor swarms using virtual
structures. IEEE Trans. Robot. 2018, 34, 916–923. [CrossRef]

25. Raigoza, K.; Sands, T. Autonomous Trajectory Generation Comparison for De-Orbiting with Multiple Collision Avoidance.
Sensors 2022, 22, 7066. [CrossRef] [PubMed]

26. Feng, S.; Sebastian, B.; Ben-Tzvi, P. A Collision Avoidance Method Based on Deep Reinforcement Learning. Robotics 2021, 10, 73.
[CrossRef]

27. Dooraki, A.R.; Lee, D.J. An end-to-end deep reinforcement learning-based intelligent agent capable of autonomous exploration in
unknown environments. Sensors 2018, 18, 3575. [CrossRef] [PubMed]

28. Kang, K.; Belkhale, S.; Kahn, G.; Abbeel, P.; Levine, S. Generalization through simulation: Integrating simulated and real data
into deep reinforcement learning for vision-based autonomous flight. In Proceedings of the 2019 International Conference on
Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 6008–6014.

29. Bonatti, R.; Madaan, R.; Vineet, V.; Scherer, S.; Kapoor, A. Learning visuomotor policies for aerial navigation using cross-modal
representations. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las
Vegas, NV, USA, 25–29 October 2020; pp. 1637–1644.

30. Bonatti, R.; Wang, W.; Ho, C.; Ahuja, A.; Gschwindt, M.; Camci, E.; Kayacan, E.; Choudhury, S.; Scherer, S. Autonomous aerial
cinematography in unstructured environments with learned artistic decision-making. J. Field Robot. 2020, 37, 606–641. [CrossRef]

http://dx.doi.org/10.3389/frobt.2022.799893
http://www.ncbi.nlm.nih.gov/pubmed/35494543
http://dx.doi.org/10.1109/LRA.2021.3068639
http://dx.doi.org/10.1145/3301273
http://dx.doi.org/10.1007/s10846-021-01412-3
http://dx.doi.org/10.1007/s10514-019-09831-w
http://dx.doi.org/10.1016/j.robot.2020.103671
http://dx.doi.org/10.1146/annurev-control-042920-020211
http://dx.doi.org/10.1109/LRA.2022.3196455
http://dx.doi.org/10.1109/TSSC.1968.300136
https://citeseerx.ist.psu.edu/viewdoc/citations;jsessionid=FDD7D4058FECC1206F4FA333A3286F56?doi=10.1.1.35.1853
https://citeseerx.ist.psu.edu/viewdoc/citations;jsessionid=FDD7D4058FECC1206F4FA333A3286F56?doi=10.1.1.35.1853
http://dx.doi.org/10.1109/TRO.2018.2857477
http://dx.doi.org/10.3390/s22187066
http://www.ncbi.nlm.nih.gov/pubmed/36146415
http://dx.doi.org/10.3390/robotics10020073
http://dx.doi.org/10.3390/s18103575
http://www.ncbi.nlm.nih.gov/pubmed/30360397
http://dx.doi.org/10.1002/rob.21931

Robotics 2022, 11, 109 15 of 15

31. Polvara, R.; Patacchiola, M.; Hanheide, M.; Neumann, G. Sim-to-Real Quadrotor Landing via Sequential Deep Q-Networks and
Domain Randomization. Robotics 2020, 9, 8. [CrossRef]

32. Bartolomei, L.; Kompis, Y.; Pinto Teixeira, L.; Chli, M. Autonomous Emergency Landing for Multicopters Using Deep Reinforce-
ment Learning. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2022), Kyoto,
Japan, 23–27 October 2022.

33. Muñoz, G.; Barrado, C.; Çetin, E.; Salami, E. Deep reinforcement learning for drone delivery. Drones 2019, 3, 72. [CrossRef]
34. Doukhi, O.; Lee, D.J. Deep reinforcement learning for end-to-end local motion planning of autonomous aerial robots in unknown

outdoor environments: Real-time flight experiments. Sensors 2021, 21, 2534. [CrossRef] [PubMed]
35. Loquercio, A.; Kaufmann, E.; Ranftl, R.; Müller, M.; Koltun, V.; Scaramuzza, D. Learning High-Speed Flight in the Wild. In

Proceedings of the Science Robotics, New York, NY, USA, 27 June–1 July 2021.
36. Camci, E.; Campolo, D.; Kayacan, E. Deep reinforcement learning for motion planning of quadrotors using raw depth images. In

Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–7.
37. Dooraki, A.R.; Lee, D.J. A Multi-Objective Reinforcement Learning Based Controller for Autonomous Navigation in Challenging

Environments. Machines 2022, 10, 500. [CrossRef]
38. Michel, O. Cyberbotics Ltd. Webots™: Professional mobile robot simulation. Int. J. Adv. Robot. Syst. 2004, 1, 5. [CrossRef]
39. Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. Openai gym. arXiv 2016,

arXiv:1606.01540.
40. Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An open-source Robot Operating

System. In Proceedings of the ICRA Workshop on Open Source Software, Kobe, Japan, 12–17 May 2009; Volume 3, p. 5.
41. Raffin, A.; Hill, A.; Gleave, A.; Kanervisto, A.; Ernestus, M.; Dormann, N. Stable-Baselines3: Reliable Reinforcement Learning

Implementations. J. Mach. Learn. Res. 2021, 22, 1–8.
42. Meier, L.; Tanskanen, P.; Fraundorfer, F.; Pollefeys, M. Pixhawk: A system for autonomous flight using onboard computer

vision. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011;
pp. 2992–2997.

43. Faessler, M.; Franchi, A.; Scaramuzza, D. Differential flatness of quadrotor dynamics subject to rotor drag for accurate tracking of
high-speed trajectories. IEEE Robot. Autom. Lett. 2017, 3, 620–626. [CrossRef]

44. Ku, J.; Harakeh, A.; Waslander, S.L. In Defense of Classical Image Processing: Fast Depth Completion on the CPU. In Proceedings
of the 2018 15th Conference on Computer and Robot Vision (CRV), Toronto, ON, Canada, 9–11 May 2018; pp. 16–22.

http://dx.doi.org/10.3390/robotics9010008
http://dx.doi.org/10.3390/drones3030072
http://dx.doi.org/10.3390/s21072534
http://www.ncbi.nlm.nih.gov/pubmed/33916624
http://dx.doi.org/10.3390/machines10070500
http://dx.doi.org/10.5772/5618
http://dx.doi.org/10.1109/LRA.2017.2776353

	Introduction
	Related Work
	End-to-End Motion Planning of UAV
	Reinforcement Learning Formalization of the Environment
	Randomization of the Environment
	Deep Reinforcement Learning: Actor and Critic Network Architecture

	Experiments and Results
	Simulation Setup
	Training in Simulation
	Simulation Results
	Real-Time Experiments

	Conclusions
	Appendix A
	References

