
Citation: Teodorescu, C.S.; Groves,

K.; Lennox, B. Learning-Based Shared

Control Using Gaussian Processes for

Obstacle Avoidance in Teleoperated

Robots. Robotics 2022, 11, 102.

https://doi.org/10.3390/

robotics11050102

Academic Editors: Shuai Li, Dechao

Chen, Mohammed Aquil Mirza,

Vasilios N. Katsikis, Dunhui Xiao and

Predrag Stanimirović

Received: 27 July 2022

Accepted: 15 September 2022

Published: 21 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

robotics

Article

Learning-Based Shared Control Using Gaussian Processes for
Obstacle Avoidance in Teleoperated Robots
Catalin Stefan Teodorescu * , Keir Groves and Barry Lennox

Depterment of Electrical and Electronic Engineering, The University of Manchester, Manchester M13 9PL, UK
* Correspondence: s.teodorescu@manchester.ac.uk; Tel.: +44-7-308-010180

Abstract: Physically inspired models of the stochastic nature of the human-robot-environment inter-
action are generally difficult to derive from first principles, thus alternative data-driven approaches
are an attractive option. In this article, Gaussian process regression is used to model a safe stop
maneuver for a teleoperated robot. In the proposed approach, a limited number of discrete experi-
mental training data points are acquired to fit (or learn) a Gaussian process model, which is then used
to predict the evolution of the process over a desired continuous range (or domain). A confidence
measure for those predictions is used as a tuning parameter in a shared control algorithm, and it
is demonstrated that it can be used to assist a human operator by providing (low-level) obstacle
avoidance when they utilize the robot to carry out safety-critical tasks that involve remote navigation
using the robot. The algorithm is personalized in the sense that it can be tuned to match the specific
driving style of the person that is teleoperating the robot over a specific terrain. Experimental results
demonstrate that with the proposed shared controller enabled, the human operator is able to more
easily maneuver the robot in environments with (potentially dangerous) static obstacles, thus keeping
the robot safe and preserving the original state of the surroundings. The future evolution of this work
will be to apply this shared controller to mobile robots that are being deployed to inspect hazardous
nuclear environments, ensuring that they operate with increased safety.

Keywords: Gaussian process regression; semi-autonomous vehicle; shared control; obstacle avoid-
ance; nuclear robotics

1. Introduction

Gaussian process regression (GPR), also referred to as Kriging [1] in geostatistics, is a
generic supervised learning method that is designed to solve regression problems. GPR
models can be used to predict the effect variables of a partially observed physical process
by building a continuous map with artificial data. Such maps have been used to model
spatial phenomena, including temperatures [2], magnetic field intensity [3], radiation
field [4], spatial localization of minerals in mining geology [1], and epidemic growth [5].
Key strengths of GPR modeling include the ability to use repeated observations, collected
at the same location, within the training data [4]; acceptance of both sparse and highly
clustered data [4]; data acquisition sampled at variable time and/or space [1]; ability to
learn an effective representation of nonlinear dynamics even using small data sets [6]; and
predictions consist of two types of information, including the mean function (corresponding
to the best estimation in average) and an associated confidence (expressed using the
standard deviation). Although often neglected when applying GPR, in this article, we make
explicit use of the confidence metrics.

Combining GPR with control systems is an emerging topic that has had increasing
interest in recent years [7,8]. This is a versatile method that has numerous applications
in robotics. From a broader perspective, in our work, we seek to design bespoke control
algorithms that are improved by integrating the stochastic nature of a real process (or plant)
into their design. In this respect, GPR has been demonstrated to be a highly effective
approach to modeling, and it is the technique utilized in this work.

Robotics 2022, 11, 102. https://doi.org/10.3390/robotics11050102 https://www.mdpi.com/journal/robotics

https://doi.org/10.3390/robotics11050102
https://doi.org/10.3390/robotics11050102
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://orcid.org/0000-0003-3714-4166
https://orcid.org/0000-0002-0763-7069
https://orcid.org/0000-0003-0905-8324
https://doi.org/10.3390/robotics11050102
https://www.mdpi.com/journal/robotics
https://www.mdpi.com/article/10.3390/robotics11050102?type=check_update&version=2

Robotics 2022, 11, 102 2 of 16

1.1. Literature Review

To explain the opportunities for combining a GPR model within a control system for
use with robotic systems we employ the classical closed-loop schematic diagram provided
in Figure 1. In the following discussion, we separate the literature review into research
related to plant, control and reference.

+

ControlReference
−

Plant

Figure 1. Closed-loop system.

1.1.1. Plant

It is relatively common when developing control systems to utilize an existing model
of the plant. For example, the dynamic model, defined in Equation (1), may be available:

xk+1 = gnom(xk, uk) , (1)

where gnom is often derived from first principles (e.g., a kinematic model where the velocity
is the derivative of the position; a mechanical model derived from Euler–Lagrange equa-
tions that make use of the mass, inertia, gravity, etc.; and an electrical model containing
resistors, capacitors, inductance, etc.); in Equation (1), xk is the discrete state variable and
uk is the control action. Recognizing that such models are often imperfect, the model can be
further improved by augmenting it using a learned part, glrn(xk, uk), such that the overall
plant is defined as shown in Equation (2):

xk+1 = gnom(xk, uk) + glrn(xk, uk) . (2)

In [8,9], glrn(xk, uk) can be identified using GPR with the assumption that both xk
and uk are measurable, and glrn(xk, uk) is defined such that it can explain the difference
between xk+1 and gnom(xk, uk). The function, glrn(xk, uk), is identified, or learned, using
data collected when the same task is executed repeatedly. The function, glrn(xk, uk), can be
defined in a variety of ways (e.g., linear versus nonlinear), but it is important that, following
identification, it can be applied to novel situations [8].

In situations where an existing model of the plant gnom in (2) is not available, the
system dynamics relies entirely on the learned part glrn. In [10], this is defined as glrn :=
xk + ∆k, and, using GPR, a one-step ahead prediction model is built using (xk, uk) as
training inputs and the difference ∆k := xk+1 − xk as the training target. An advantage of
this approach is that the system dynamics, xk+1, do not fall back to zero in unexplored areas
but instead remain at xk. In a different work [6], such models are called Gaussian process
dynamical models and are used to predict latent trajectories (in the context of generating
human motion, such as walking).

1.1.2. Reference

To improve the performance of a model-based control system, refs. [11–13] applied
GPR to learn a reference periodic signal from noisy data. The resulting model was then
used within the control system to predict the most likely future evolution of the reference
signal to improve control performance. The technique was applied to a medical robotics
application. In related work, refs. [4,14] used GPR models in conjunction with Simultane-
ous localization and mapping (SLAM) to build continuous radiological maps of a priori
unknown radioactive areas.

In [15], a GPR model was used to address a quality prediction problem, where the aim
was to accurately and robustly predict post-process responses from online measurements.

Robotics 2022, 11, 102 3 of 16

1.1.3. Control

In relation to control, we can divide the literature into work where GPR models
contribute indirectly and directly to the control solution.

To begin, we will consider research where GPR models contribute indirectly to the
control solution, in the sense that a standard (off-the-shelf) control law is used in conjunction
with a model of the plant or reference, that makes use of a GPR model. Such applications
are described in [9], which utilized an H2 robust controller; [11–13], which used GPR
models within a linear model predictive controller (MPC); and [8], which integrated a GPR
model into a nonlinear MPC. An insightful review on learning-based MPC is presented
in [7]. Furthermore, a GPR model-based policy search method (reinforcement learning) is
presented in [10], which is shown to be very efficient in terms of required interaction time
for learning the control policy.

GPR models can also contribute directly to the control solution. For example, the
inverse kinematics problem of robotic arm manipulators was solved using a GPR model
in [16] and in several articles mentioned in [8]. Relevant research was also carried out
in [17], where a cost function modeled using a GPR f (x) was learned (the state x consisted
of the tuning parameters of a PI controller) and then the predicted minimum x∗ was used
to explore the real system behavior, experimentally.

The work presented in this paper adds to the use of GPR modeling to directly con-
tribute to the control solution.

1.2. Theory on GPR Modeling

Learning in a Bayesian framework involves using probability to express all forms
of uncertainty [18]. Specifically, a joint probability distribution is established over all
unknown quantities, which is then used to express the relation between these quantities.
In case other quantities are accessible and known, a (joint) conditional probability is
used instead. GPR modeling relies on the Bayesian framework. Let us assume that
values x1, . . . , xM are known, each belonging to RD with dimension D ∈ Z≥1, and scalar
continuous function values f (x1), . . . , f (xM) are unknown, each belonging to R. The
prior, based on past knowledge, expresses the relation between an arbitrary number of the
unknowns (M ∈ Z>0) treated as continuous random variables, in the absence of any new
data as [19,20]:

[f (x1), . . . , f (xM)] ∼ N ([m(x1), . . . , m(xM)], Σ) , (3)

where m(·) is a known mean function, and the covariance matrix Σ consists of elements Σij :=
k(xi, xj) with known kernel function k(·, ·); the notation N stands for the (multivariate)
normal distribution. The prior (3) can be written in a more compact form:

f ∼ GP(m, k), or p(f) = N (m, Σ) , (4)

emphasizing the fact that a Gaussian process is fully defined by the pair (m, k) [10]. An
example is shown in Figure 2.

Robotics 2022, 11, 102 4 of 16

𝑓(𝑥, 𝜁)

𝑥

𝜁

𝑥1

𝑥2 𝑥∗
𝜁1

𝜁2

𝜁3

𝑓2

𝑚(𝑥2)

𝑝(𝑓2)

𝑓1

𝑚(𝑥1)

𝑝(𝑓1)

𝑓∗

𝑚(𝑥∗)

𝑝(𝑓∗)

Figure 2. Schematic diagram of a Gaussian Process f (x, ζ) emphasizing it is a stochastic process [21]
that can be described in the continuous, x, or discrete, ζ, domains. Marginal distributions p(f1), p(f2)

and p(f∗) are defined on function values f1 := f (x1), f2 := f (x2) and f∗ := f (x∗). Adapted from
Figure 5.1 in [22].

We now split x1, . . . , xM into training X := [x1, . . . , xN] and testing X∗ := [xN+1, . . . , xM],
with 1 ≤ N < M. In the particular case of one testing location (N + 1 = M), the scalar
notation x∗ := xN+1 is used, as in Figure 2. The noisy observations random variables
yi = f (xi) + εi, where εi ∼ N (0, σ2

y) and i = 1, . . . , N, form the observations vector
y := [y1, . . . , yN]. Thus, the derived joint density is(

y
f∗

)
∼ N

((
m(X)
m(X∗)

)
,
(

k(X, X) + σ2
y I k(X, X∗)

k(X, X∗)T k(X∗, X∗)

))
, (5)

where the (noise-free) function values at the test points X∗, f∗ := [f (xN+1), . . . , f (xM)], are
unknown; I is the identity matrix, and notation T stands for the transpose. The reasoning
within Bayesian inference is to use new experimental training data, namely a sample
D = {(x1, ẙ1), . . . , (xN , ẙN)} = (X, ẙ), with ẙ = [ẙ1, . . . , ẙN], the recorded observations, to
“update” the prior distribution into the posterior predictive density [19]:

p(f∗|X∗,D) = N (f∗|µ∗|X , Σ∗|X)

µ∗|X = m(X∗) + k(X, X∗)T(k(X, X) + σ2
y I)−1(ẙ−m(X))

Σ∗|X = k(X∗, X∗)− k(X, X∗)T(k(X, X) + σ2
y I)−1k(X, X∗) ,

(6)

where µ∗|X := E{ f∗} is the mean function and Σ∗|X := E{(f∗ − E{ f∗})(f∗ − E{ f∗})T}
is the covariance matrix. The notation E stands for the expected value operator. This is
depicted in Figure 3.

Robotics 2022, 11, 102 5 of 16

Training:
𝒟 = 𝑋, 𝑦

Testing: 𝑋∗

Prediction:
p(𝑓∗|X∗, 𝒟)

Model of a

f1

f2

f∗

𝜎
2𝜎

m

Figure 3. GPR illustrated as an input–output block diagram. The image in the middle introduces
isosurfaces (ellipsoids) in function space f = [f1 f2 f∗] of the joint probability density function
p(f) = N (m, Σ) in (4), with f1 := f (x1), f2 := f (x2) and f∗ := f (x∗) from Figure 2. The inner
σ-ellipsoid and the outer 2σ-ellipsoid regroup about 68% and 95%, respectively, of the total energy of
p(f).

The proof makes use of the relations between the marginals and conditionals of a
multivariate normal distribution [19,23]. All these distributions implicitly depend on
hyperparameters (σy, θ), with θ parameterizing k appearing in (4). These hyperparameters
can be experimentally identified by optimizing the log marginal likelihood [19].

The noisy predictive observations

y∗ = f∗ + ε∗ , (7)

where y∗ = [yN+1, . . . , yM] and ε∗ = [εN+1, . . . , εM], have the mean function

µy∗ , E{y∗} = E{ f∗ + ε∗} = E{ f∗} = µ∗|X , (8)

and variance

σ2
y∗ , E{(y∗ − E{y∗})2} = E{(f∗ + ε∗ − E{ f∗ + ε∗})2}

= E{(f∗ − E{ f∗})2}+ E{(ε∗ − E{ε∗})2}
+ E{2(f∗ − E{ f∗})(ε∗ − E{ε∗})2}

= diag(Σ∗|X + σ2
y I) ,

(9)

where the operator ’diag’ takes the diagonal of a matrix.

1.3. From Model-Based to Data-Driven Control

In a context where uncertainties play a fundamental role, deciding whether to use
a model-based or data-driven approach involves a trade-off between available project
resources. Mechanistic models can be difficult and time-consuming to identify and may
contain significant errors. Their main advantage is the analytical insight (theory), the ability
to relate physical quantities to experimental observations. Quite often, the model-based
approach involves solving a complex optimization problem. In [24], a robust concurrent
design for a collaborative 2-degrees-of-freedom robot (cobot) is presented, where the
uncertainty lies in the human–robot interaction; the robust concurrent design ensures that
differences in operators have little impact on the system performance, whereas in our user-
centered design, the shared control accounts for the specificity of each operator (Section 2.1);
the optimization takes into account, simultaneously, the dynamic model of the mechanical
structure as well as the controller equations. A different theoretical framework to deal with
the robustness to human operators is presented in [25]: by lowering the inertia of motors
that drive an upper-limb exoskeleton prototype, it is shown that control performance
is high and also insensitive to uncertainties in the human dynamics (the wearer of the
exoskeleton).

Addressing uncertainties using the alternative sensor-based, data-driven approach is
often simpler to implement, although it can be time consuming in terms of experimentation

Robotics 2022, 11, 102 6 of 16

and often lacks the analytical insight (theory). Reinforcement learning (RL) discovers
optimal behaviors through trial and error in a simulated (see, for example, [26]) or real
environment, by employing a reward function that penalizes undesired behaviors. In [26],
RL was used in learning a robotic manipulator’s motion planning and control, then grasping
was demonstrated using that robotic manipulator in the context of obstacle avoidance.

1.4. Obstacle Avoidance in Nuclear Robotics

The aim of this work is to design control systems that are able to support the de-
ployment of robotic systems in hazardous nuclear environments, such as those described
in [4,14,27,28]. In such environments, it is typically necessary to avoid getting too close
to radioactive material, which may damage electronic components within the robot or
cause the robot to become contaminated. For example, the Spot robot, manufactured by
Boston Dynamics, has, by default, a low-level automation system that ensures that the
robot keeps an arbitrary distance away from obstacles. This low-level ability means that
maneuvering the robot through tele-operation is significantly simplified, particularly in
cluttered environments where it is tele-operated beyond the line of sight [4,29].

Figure 4 illustrates four types of tele-operated robots, each belonging to a different
category of robot: land based (e.g., the SuperDroid HD2 in Figure 4a), water based (e.g., the
BlueROV2 in Figure 4b), air (e.g., the DJI Matrice 300 RTK in Figure 4c) and manipulator
(e.g., the KUKA LBR iiwa 14 R820 in Figure 4d). All of these robots have features in
common. For example, they can each be tele-operated using a joypad or similar device
(e.g., the Sony PlayStation DualShock 4 illustrated in the middle of Figure 4) and they can
all be used for safety-critical applications in hazardous (or extreme) environments. In such
situations, they might all require the same (low-level) functionality to be implemented,
such as the obstacle avoidance control algorithm we present in Section 2.

(a) Superdroid HD2

(b) BlueROV2

(d) KUKA LBR iiwa 14 R820

(c) BlueROV2

Figure 4. Tele-operated robots that would be suitable candidates for the control algorithms presented
in this paper.

General-purpose obstacle avoidance algorithms can be derived from path planning
using various techniques, including the artificial potential fields method, which introduces
repulsive forces [30,31], sampling-based methods [30] and the dynamic window approach,
which has been implemented in ROS [32]. When using these techniques, the final goal
location needs to be specified in advance, whereas when using the method proposed in
this article, this information is not required.

Robotics 2022, 11, 102 7 of 16

1.5. Research Contribution

In this article, we propose a novel obstacle avoidance shared control algorithm based
on GPR model predictions, in a stochastic context. First, to the best of our knowledge,
making use of the confidence interval of GPR models has not been proposed yet in the
scientific literature for addressing obstacle avoidance problems. It is our intention to make a
significant contribution in this setting. Second, a key message of this article is that improved
control performance can be achieved by using the predicted posterior distribution of a
Gaussian process. When using GPR models for prediction, it is typical for the mean function
to be used, but the associated confidence metric is typically ignored. In this article, we
propose to use the information contained within the confidence metric, defined within
the GPR model. Using this information, we demonstrate that it is possible to design a
control system that is particularly suited to safety-critical robotic applications. This research
opportunity is novel and has not been exploited yet.

Continuing the work presented in [33], we extend the assist-as-needed (or shared
control) algorithm dealing with static obstacle avoidance such that it incorporates learning
and prediction based on a GPR model, rather than using the first-principle, mechanistic
models that were utilized in [33]. More specifically, we make the transition from a physically
inspired model-based controller [33] to a new data-driven control solution. In this respect,
a GPR model ensures a smooth transition, as (some of) the hyperparameters can be directly
related to the physics of the real process. The relationship that exists for the physical
properties of the robot contributed to our decision to use GPR in favor of other more
abstract models, such as neural networks [34]. This is particularly important in nuclear
applications, where transparency is typically required to ensure regulatory approval for
new technologies [35].

Having provided a background to this work, in Section 2, we present the proposed
shared control algorithm for safe obstacle avoidance in the context of tele-operated robots.
In Section 3, we show that this shared control relies on a GPR model to inform how it
should make a safe stop maneuver. Finally, the paper ends with conclusions in Section 5.

2. Shared Control

The concept of shared control relies on the cooperation (or collaboration) between two
actors: in this work, a human and a machine. The principle of the technique is to combine
the best capabilities of each to produce better results than would be obtained when each is
used in isolation. It is therefore essential that the algorithms are designed such that they
avoid conflict (or contradiction) between the two parties.

2.1. A User-Centered Design

There will be some level of variability in driving style when the operation of a robot
is transferred from one user to another. For example, an experienced operator may well
control the robot differently to a novice, and even for the same user, executing the same task
repeatedly might result in different styles at the beginning and end of a working day, as
the operator tires. Hence, we believe that using a “one-size-fits-all” shared control solution
is not sensible. One possible way to address this problem would be to group users into
clusters and define specific operating modes with purposely-tuned control algorithms for
each cluster. However, this does not exclude that some individuals within the same group
might feel unhappy with the end result. For this reason, we are interested in a personalized
and highly customizable shared control algorithm, able to capture and incorporate the
notion of variability at the user level.

2.2. Addressing Uncertainty

In our previous work [33], using a highly complex offline optimization-based pro-
cedure, we identified a relatively simple shared control algorithm that is illustrated in
Figure 5. In this work, we propose to replace the optimization procedure, ultimately used
to compute the blue curve in Figure 5, with a process able to learn this curve from a small

Robotics 2022, 11, 102 8 of 16

number of experiments. All (xobst, v)-points on the blue curve in Figure 5 correspond to
initial states, and from any of these initial states, the controller should be able to advance
the robot toward an obstacle in front of it, as shown in Figure 5b, and stop it safely in a
fixed but otherwise arbitrary amount of time ∆tstop next to the obstacle.

0
o
b
st
ac
le

𝑥obst

𝑣max
𝑣

0

B A

C

𝑥obst

𝑑max

(a)

(b)

𝑣
𝑣

unsafe
area

safe
area

Figure 5. Shared control, adapted from [33]: (a) Conceptual drawing in state-space (v, xobst) of the
working principle: the algorithm reduces any unsafe linear velocity v within the area ABC (see,
for example, the red solid circle) toward a safe value (see the green solid circle located on the blue
boundary curve); (b) the red and green arrows suggest a reduction in linear velocity as a consequence
of applying shared control; xobst is measured from the obstacle toward the robot; and dmax is the
maximum observed distance to the obstacle.

In reality, the shape of the blue curve will be dependent on the human operator’s
style of driving and also on the environment. For example, it may be desirable for a
robot advancing on sand to behave differently to a robot moving on a concrete floor. The
process is stochastic in that consecutive repetitions of the same task might involve (slightly)
different actions from the operator, as well as interactions of the robot with the environment,
e.g., slipping and bouncing when braking. To summarize, the sources of uncertainty are
the human operator (the driving style), the robotic platform (software and hardware) and
the environment conditions. Consequently, we might have to deal with a family of curves
associated with a particular driver and a particular environment, and the question is how
to make intelligent usage of all this information in the shared control algorithm.

2.3. Advancing Forward and Turning

The shared control algorithm adjusts both the linear and the angular velocities. Figure 5
explains how the linear velocity control is implemented. In this case, unsafe decisions
from the human operator, such as requesting a linear velocity v ∈ [0, vmax] that is too
high in situations where the robot is too close to an obstacle xobst ≥ 0, would make the
shared control algorithm act by reducing v toward the pre-computed blue boundary curve
as shown in Figure 5a. Not shown in that figure, the angular velocity is also reduced
proportionally, thus completing the algorithm. Whilst the above analysis assumes the robot
advances in a forward direction only, this is simply a convention and analogously, the same
principles apply when the vehicle moves backward, although this situation is out of the
scope for this paper.

2.4. Algorithm

In this section, the case of the robot advancing toward a forward-facing obstacle is
analyzed. The shared control Algorithm 1 has five inputs and two outputs. The inputs
are as follows: the linear velocity and angular velocity (v, ω) measured by the odometry;

Robotics 2022, 11, 102 9 of 16

the joypad data corresponding to the desired linear velocity and desired angular velocity
(vd, ωd) (note, there is a one-to-one mapping between the location of the joystick and the
steady-state velocity [33]); and xobst

co is the distance to the closest obstacle located straight
ahead along the xobst-axis in Figure 5b, measured using a 3D LiDAR (the Velodyne VLP16
in Figure 6c). The outputs of the algorithm are the requested linear velocity and requested
angular velocity (vr, ωr), sent to the robot’s controller.

lidarNvidia Xavierwifi, bluetooth cardboard boxes

(a) (b)

operator’s feet blank area behind an
obstacle (not drawn)

obstacles

location of the robot
(robot not drawn)

(c)

Figure 6. Experiments: (a) Collecting training data for the GPR model; (b) Testing the shared control
algorithm in a circuit with obstacles (made of cardboard boxes). The human operator tele-operates
the robot using a joypad; (c) Visualization in Rviz of the 3D LiDAR data corresponding to Figure 6b.

Algorithm 1 The proposed obstacle avoidance shared control: the case of a vehicle advanc-
ing forward with an obstacle located straight ahead

vr = vd; ωr = ωd . initialization: by default shared control is disabled
if v > 0 and ω = 0 . vehicle advancing forward without rotation

and vd > 0 . driver expresses intention to advance forward
then

Find xobst
co . identify the closest obstacle

vr = min
(
vd, blue_curve(xobst

co)
)

. blue_curve from Figure 5a
ωr = ωd vr/vd . reduce ωd proportionally to the

decrease in vr vis-à-vis vd
end if

Not presented here, the backward motion can be easily derived analogously to
Algorithm 1. Currently, we are working on extending this algorithm to the situation
where the robot simultaneously advances forward (v > 0) and rotates (ω 6= 0). Although
not shown here, the algorithm described in this article is applicable to all the categories of
robots shown in Figure 4.

Robotics 2022, 11, 102 10 of 16

2.5. Software Architecture

To test the algorithm, we used the land robot SuperDroid HD2, shown in Figure 4a.
The software architecture relies on ROS [32]. The corresponding C++ code used for our
experiments is freely available on https://github.com/StefanT83/SC_obst_avoid_GPR_
1D.git (accessed on 14 September 2022) and uses three ROS topics as inputs and generates
one ROS topic as output. The input ROS topics are as follows:

(i) /velodyne_point data, issued by the Velodyne ROS driver;
https://github.com/ros-drivers/velodyne/ (accessed on 14 September 2022)

(ii) /joy_raw is the joypad data published by the standard joy package;
http://wiki.ros.org/joy (accessed on 14 September 2022)

(iii) /wheel_odom is the odometry, computed by the default ROS packages the robot came
with.

The output ROS topic was a new (virtual) joystick data, /joy_out, computed by the
shared control algorithm described in Section 2.4. This information was subsequently being
used by the robot’s joy_teleop node and converted into a velocity command /cmd_vel
used by the roboteq_driver.

3. Experiments

The test rig used in this study consists of a SuperDroid HD2 robot illustrated in
Figures 4a, 5b, and 6a,b, moving on concrete floor inside the mobile arena shown in Figure 6.
It was equipped with a Velodyne 3D LiDAR, ensuring perception of the environment (see
Figure 6c), which was used to measure experimentally xobst, the distance to the nearest
obstacle. The linear velocity v and the angular velocity of the robot were estimated using
odometry, and based on measurements from motor encoders. The maximum linear velocity
vmax was approximately 0.4 m/s, and the robot was remotely actuated using a Bluetooth
joypad, specifically the Sony PlayStation DualShock 4, illustrated in the middle of Figure 4.

In this paper, we focus on the method of how we can build a GPR model, and then use
its predictions inside the shared control algorithm. We used one human operator, but in
future work, we intend to run a more in-depth study involving more participants, enabling
the statistical significance of the control solution to be compared against other approaches,
such as the popular dynamic window approach, that has been implemented in ROS [32].

3.1. Training Data for the GPR Model

We propose to learn the characteristics of the user’s driving style in the context of the
environment depicted in Figure 6a. In the experiments, the robot is located at a standstill at
an arbitrary location, facing toward an obstacle, in this case, made of cardboard boxes, and
the following protocol was followed. The only instruction given to the human operator
was that they should make use of their driving skills to move the robot close to the obstacle
in one attempt, without colliding with it. During this procedure, we recorded the linear
velocity v(t) and kept track of the distance to the obstacle xobst(t), where t represents
time. We then recorded the initial instant of time, t0, and instant of time, t1, when the
robot reached a standstill and stopped safely near the obstacle. Next, we marked the point
(xobst(t1), v(t1)) on a graphic using a cross, as in Figure 7a. Lastly, we recorded the amount
of time, ∆tstop := t1 − t0, elapsed to stop safely. The value of ∆tstop can be considered
to be a tuning parameter, and in this work, was set to ∆tstop = 4 s. In other words, we
were only interested in those experiments that lasted 4 s and disregarded the rest. This is
discussed later in Section 4. Next, we repeated the scenario above four more times and
collected data from each test. In Figure 7a, a total of five experimental data points (or noisy
observations), (xobst(t1), v(t1))i are illustrated by crosses. The index of the repetition, or
iteration, i = 1 . . . 5. The fact that so few experimental data points are needed to make the
algorithm work is a major benefit of this proposed GPR-based approach.

https://github.com/StefanT83/SC_obst_avoid_GPR_1D.git
https://github.com/StefanT83/SC_obst_avoid_GPR_1D.git
https://github.com/ros-drivers/velodyne/
http://wiki.ros.org/joy

Robotics 2022, 11, 102 11 of 16

(a)

%

(b)

(c)

error bars

(d)

Figure 7. Comparison between predicting the continuous evolution of the safe stop maneuver
using (a) the proposed method, and (b–d) other readily available (off-the-shelf) algorithms. The
same training experimental data were used in all figures. (a) Using Gaussian process regression,
specifically the mean function µy∗ in (8), and three times the standard deviation σy∗ in (9) to build
the shown 99.7% confidence interval – code largely inspired by demoRegression.m in [36]; (b) Using
simple linear regression – code largely inspired by regression_line_ci.m in [37]; (c) Using the
method of interpolating noise-free data using a Gaussian with prior precision λ = 200—code largely
inspired by gaussInterpDemo.m in [34]; (d) Using a Bayesian neural network—code largely inspired
by mlpRegEvidenceDemo.m in [34] and demev1.m in [38].

These points were then used to build a GPR model (4) by choosing (i) the mean function
m to be zero, translating the fact that if we extract a sample consisting of any of the random
variables that constitute the Gaussian process prior in (3), (4), (5), their mean approaches
zero as the size of that sample increases; this choice is typical for situations where little
or no prior information about the mapping f is available [3,15]; the mean value of any
random variable that constitute the Gaussian process posterior in (6) converges to zero as
the predictive location X∗ gets further away from the collected data locations X [8]; (ii) the

Robotics 2022, 11, 102 12 of 16

covariance function (or kernel function) k is defined to be equal to the squared-exponential
(SE) covariance function in one dimension [16,34]:

k(xp, xq) := σ2
f exp

(
− 1

2l2 (xp − xq)
2
)
+ σ2

y δpq , (10)

where δpq is the Kronecker delta, with p, q indices. The reason is that functions sampled
from a GPR with a SE kernel are infinitely differentiable, and therefore very smooth, which
is convenient for our application, whereas other options such as the Matern kernel produce
“rougher” functions [4,19]. The three hyperparameters in (10) are as follows: (i) Noise variance
σ2

y , which can be estimated using the maximum likelihood estimate σ̂2
y in a series of additional

experiments, as follows. Fix a convenient value along the horizontal axis in Figure 7a. Then,
using a series of repetitions, collect a sample of v values and compute the sample variance
σ̂2

y . Next, use this estimate in place of σ2
y in (10). (ii) Signal variance σ2

f . (iii) Length scale l.
The last two hyperparameters can be computed by minimizing the negative log marginal
likelihood with respect to the hyperparameters [16,36]. Intuitively, this works by selecting
the covariance function (10) that explains best the observations.

An interesting property, which supports the use of GPR models in this work, is that
the smoothness of the realizations of a GPR model can be adjusted by accurately defining
the covariance function (including its parameters) [16]. We know from our previous
model-based approach [33] that we expect the curve, expressing a safe stop maneuver, to
be smooth.

3.2. Predictions from the GPR Model

Having built the GPR model, we can then use it to make predictions. Specifically,
we are interested in the evolution of the process in terms of the predicted linear velocity
v over a desired continuous range (or domain) of xobst. The result is shown in Figure 7a
and consists of two pieces of information, namely the mean function (black line) and its
associated 99.7% pointwise confidence interval or 3σy∗ interval (gray area), where σy∗ is
the standard deviation (9). The 99.7% value and, consequently, the factor 3 are arbitrary
values that act interchangeably as tuning parameters—this is discussed later in Section 4.
The gray area illustrates the range of velocities that the GPR model believes are acceptable,
relative to the distance to the obstacle xobst, and based on what it has learned of the user’s
behavior. The next question is how can we use this information in place of the blue curve
in the shared control algorithm in Figure 5.

3.3. Personalized Shared Control

The predictions based on the GPR model in Figure 7a integrate the features of the
relationship between the operator, robot and environment into the shared controller. To
be able to use this information meaningfully inside our shared controller, we rely on the
assumption that the protocol used to carry out the experimental data collection for building
the GPR model is consistent and relevant to the real-world scenario.

Finally, we propose to design a conservative (cautious) shared controller that is guar-
anteed to allow for safe stop maneuvers in 99.7% of cases; 99.7% relates to a 3σy∗ interval.
This arbitrary value of 3σy∗ can be adjusted depending on how critical it is to avoid the
object. For this shared control, we need to consider the lower bound curve of the confidence
interval, namely m(x)− 3σy∗ in place of the blue curve in Figure 5. As will be discussed
later in Section 4, this curve requires minor adjustments at the extremities.

3.4. Testing

The circuit in Figure 6b was used to drive the vehicle with the proposed shared
control enabled. By analyzing the heart rate and eye blinking as psychometric measures
of cognitive load [39], we noticed their average values were different when comparing
the situation with and without assistive control. Compared to the situation without any
assistive control, driving was found to require less cognitive effort, or concentration, for

Robotics 2022, 11, 102 13 of 16

the operator to avoid striking obstacles. The operator was thus able to focus on other
higher-level tasks, such as navigating toward a desired destination point or future mission
planning. In addition to that, we noticed that fewer obstacles were struck during the
experiments, at the expense of a slower moving robot, which may be the price to pay
for increased safety in this framework. The paper’s Supplementary Material Video S1,
also available on https://youtu.be/6vkszxGEn50 (accessed on 14 September 2022), shows
excerpts for data collection and testing the obstacle avoidance shared control algorithm,
all carried out by the one experienced operator. A more elaborate statistical study with
multiple participants (operators) will be conducted in the future to confirm and quantify
the aforementioned observations, similar to the study in [33].

4. Discussion

In this section, we add some comments about the proposed learning-based shared
control method.

The central section of the predictions in Figure 7a, i.e., the results between approx-
imately xobst = 0.1 m and xobst = 0.6 m, are in agreement with the physical intuition
and captures correctly the variability of the process. However, the predictions outside
this region are not. According to the physics, the origin point (xobst, v) = (0, 0) has no
variability, i.e., its standard deviation equals zero, as the robot is at a standstill; however,
the GPR does not capture this. Instead, it assumes that there is additive noise present
everywhere on the latent function [16]. In addition, the right-hand side of the prediction in
Figure 7a curves downward, and eventually, the mean function converges (falls) to zero
(not shown). This is a well-known and typical behavior of a GPR in unexplored areas
(regions where no experimental data have been collected), where the predictions tend
toward the chosen m in (4), in our case to zero [8]. Consequently, the extremities need to
be corrected. In particular, we are only interested in the lower bound of the confidence
interval in Figure 7a since this is the only information used in our shared control algorithm.
It is adjusted around the origin by saturating it to zero, and on the far right of Figure 7a,
we stop making use of predictions as soon the the lower bound of the confidence interval
tends to bend downward (this happens around xobst = 0.62 m in Figure 7a).

For comparison reasons, we included the results that were obtained using alternative
techniques. First, the simple linear regression [34] in Figure 7b, where the predicted confidence
interval suffers from the same problem as GPR at the extremities. Moreover, (i) the estimated
99.7% confidence band is too wide, in the sense that for any fixed xobst value on the
horizontal axis in Figure 7b, we would not expect physically to collect data points v that
are so far apart as the confidence band in Figure 7b suggests (however, by gathering
more experimental data, the confidence band will tend to shrink, thus better modeling
the physical variability); (ii) there is no physical reason why the true mean would follow
a straight line, which is one of the underlying assumptions of a simple linear regression
model. This can potentially be overcome using, for example, polynomial regression.

We also compared the results to those obtained using an interpolation method pre-
sented in [34], in Figure 7c. This captures correctly the lack of variability for the stationary
situation (v, xobst) = (0, 0); however, it was not able to model the variability for the other
experimental data points. Finally, the results were compared to those obtained using a
Bayesian neural network [40]. These results are shown in Figure 7d, where the neural
network has a single hidden layer containing three nodes. The posterior mean prediction
converges toward a finite value of approximately v = 0.83 m/s (not shown in the figure),
which is similar to the mean function of the GPR model in Figure 7a, which falls toward
the constant value of v = 0 m/s. Note that the standard deviation around the posterior
mean prediction in Figure 7d can be further improved by (i) adding more data points
to this automatic learning procedure, or, (ii) similar to what we did in Section 3.1 and
Figure 7a, by manually specifying (fixing) the noise variance hyperparameter according to
experimental data (observations) and identifying the rest of the hyperparameters using the
optimization procedure.

https://youtu.be/6vkszxGEn50

Robotics 2022, 11, 102 14 of 16

To conclude, the results presented in Figure 7 show that the GPR model in Figure 7a
is superior to the other three stochastic models in Figure 7b–d, as it better captures the
physics of the real process.

Preliminary experiments with this shared control enabled (see Figure 6b) give the
feeling of a rather slow-moving robot. To make it advance faster, loosely speaking and
appealing to the reader’s intuition, we need to “bend” the blue curve in Figure 5 toward
the left side. This can be achieved in two ways: either by reducing the desired confidence
margin considered in the shared control algorithm (say from 99.7% to 95.45% or 2σy∗
interval, making the algorithm less conservative), and/or by choosing a smaller threshold
value ∆tstop, say ∆tstop = 1 s. The latter would involve a new set of experiments to be
performed for collecting a new training set. The downside of reducing the 99.7% value is
the increased chance of colliding with obstacles. The benefit, though, is the increased level
of autonomy for the operator, now able to maneuver a faster moving robot.

The obstacle avoidance shared control presented in Section 2 is suited for usage in
disaster scenes where the environment cannot be mapped before the deployment of robots.
In other words, it does not need any prior knowledge about already mapped environments
generated, e.g., using simultaneous mapping and localization (SLAM) techniques [32].
In future works, the method we presented could be extended to integrate this type of
environment information together with clusters of pre-trained environment-specific GPR-
based models. This family of models can then be used in conjunction with the online
identified environment in selecting the most adequate GPR model to be used by the control
algorithm.

Future Work Plan

In our immediate future work plan, we aim to conduct a comprehensive study involv-
ing the use of confidence metrics within a robot’s control system. In that work, we will
compare the proposed GPR-based method against other stochastic methods, as well as
demonstrating the benefits that stochastic techniques offer over deterministic techniques.

5. Conclusions

Gaussian process regression (GPR) models are useful for their expressive power in
modeling signals and their statistical properties (mean function and confidence interval).
In this article, we fitted a GPR model using experimental training data, and the novelty was
to use the predicted confidence interval to enable a better-informed, personalized obstacle-
avoidance shared-control algorithm that can cope with the stochastic nature of interactions
between (i) a human operator and the robot, and (ii) the robot and its environment. A proof
of concept in this setting was shown using a tele-operated ground-based robotic vehicle.
In future work, we intend to test this algorithm on other types of robots, e.g., as shown in
Figure 4c, a drone conducting an inspection of a tall chimney or building, possibly beyond
the visual line of sight where collisions are undesirable, and in Figure 4d, a co-bot arm
manipulator working in collaboration with a human on the same task, such as sorting
objects in a box, where collisions between the two should be avoided.

Supplementary Materials: The accompanying video, showing excerpts for data collection and testing
the obstacle avoidance shared control algorithm on the SuperDroid HD2 robot can be downloaded at:
https://www.mdpi.com/article/10.3390/robotics11050102/s1, Video S1: A proof of concept.

Author Contributions: Conceptualization, C.S.T.; methodology, C.S.T.; software, C.S.T.; validation,
C.S.T., K.G. and B.L.; formal analysis, C.S.T. and B.L.; investigation, C.S.T.; resources, C.S.T., K.G. and
B.L.; data curation, C.S.T.; writing—original draft preparation, C.S.T., K.G. and B.L.; writing—review
and editing, K.G. and B.L.; visualization, K.G.; supervision, B.L.; project administration, B.L.; funding
acquisition, B.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by The Engineering and Physical Sciences Research Council
(EPSRC) via the NNUF-HR project EP/T011491/1. K.G. and B.L. also acknowledge the support

https://www.mdpi.com/article/10.3390/robotics11050102/s1

Robotics 2022, 11, 102 15 of 16

provided by EPSRC through RAIN (EP/R026084/1) and RNE (EP/P01366X/1). B.L. acknowledges
support from the Royal Academy of Engineering (CiET1819\13).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The experimental dataset and the code used for analysis and ex-
perimentation are freely available on https://github.com/StefanT83/SC_obst_avoid_GPR_1D.git
(accessed on 14 September 2022).

Acknowledgments: C.S.T. wishes to thank Michael Hellebrand from Remote Applications in Chal-
lenging Environments (RACE) for the loan of the SuperDroid HD2 robot.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ramakrishnan, N.; Bailey-Kellogg, C. Gaussian Process Models in Spatial Data Mining. In Encyclopedia of GIS; Shekhar, S., Xiong,

H., Eds.; Springer: New York, NY, USA, 2008; pp. 325–329. [CrossRef]
2. Guo, Y.; Yu, X.; Wang, Y.; Zhang, R.; Huang, K. State-of-Health estimation of lithium-ion batteries based on thermal characteristics

mining and multi-Gaussian process regression strategy. Energy Technol. 2022, 10, 2200151. [CrossRef]
3. Ruiz, A.V.; Olariu, C. A general algorithm for exploration with Gaussian processes in complex, unknown environments. In

Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015;
pp. 3388–3393.

4. West, A.; Tsitsimpelis, I.; Licata, M.; Jazbec, A.; Snoj, L.; Joyce, M.J.; Lennox, B. Use of Gaussian process regression for radiation
mapping of a nuclear reactor with a mobile robot. Sci. Rep. 2021, 11, 1–11. [CrossRef] [PubMed]

5. Ketu, S.; Mishra, P.K. Enhanced Gaussian process regression-based forecasting model for COVID-19 outbreak and significance of
IoT for its detection. Appl. Intell. 2021, 51, 1492–1512. [CrossRef] [PubMed]

6. Wang, J.M.; Fleet, D.J.; Hertzmann, A. Gaussian process dynamical models for human motion. IEEE Trans. Pattern Anal. Mach.
Intell. 2008, 30, 283–298. [CrossRef] [PubMed]

7. Hewing, L.; Wabersich, K.P.; Menner, M.; Zeilinger, M.N. Learning-Based Model Predictive Control: Toward Safe Learning in
Control. Annu. Rev. Control. Robot. Auton. Syst. 2020, 3, 269–296. [CrossRef]

8. Ostafew, C.J.; Schoellig, A.P.; Barfoot, T.D.; Collier, J. Learning-based nonlinear model predictive control to improve vision-based
mobile robot path tracking. J. Field Robot. 2016, 33, 133–152. [CrossRef]

9. Berkenkamp, F.; Schoellig, A.P. Safe and robust learning control with Gaussian processes. In Proceedings of the 2015 European
Control Conference (ECC), Linz, Austria, 15–17 July 2015; pp. 2496–2501.

10. Deisenroth, M.P.; Fox, D.; Rasmussen, C.E. Gaussian processes for data-efficient learning in robotics and control. IEEE Trans.
Pattern Anal. Mach. Intell. 2015, 37, 408–423. [CrossRef] [PubMed]

11. Matschek, J.; Gonschorek, T.; Hanses, M.; Elkmann, N.; Ortmeier, F.; Findeisen, R. Learning References with Gaussian Processes
in Model Predictive Control applied to Robot Assisted Surgery. In Proceedings of the 2020 European Control Conference (ECC),
Saint Petersburg, Russia, 12–15 May 2020; pp. 362–367.

12. Matschek, J.; Findeisen, R. Learning Supported Model Predictive Control for Tracking of Periodic References. In Proceedings of
the 2nd Conference on Learning for Dynamics and Control, Zurich, Switzerland, 11–12 June 2020; pp. 511–520.

13. Matschek, J.; Himmel, A.; Sundmacher, K.; Findeisen, R. Constrained Gaussian process learning for model predictive control.
IFAC-Pap. 2015, 53, 971–976. [CrossRef]

14. Budd, M.; Lacerda, B.; Duckworth, P.; West, A.; Lennox, B.; Hawes, N. Markov Decision Processes with Unknown State Feature
Values for Safe Exploration using Gaussian Processes. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020; pp. 7344–7350. [CrossRef]

15. Leco, M.; Kadirkamanathan, V. A perturbation signal based data-driven Gaussian process regression model for in-process part
quality prediction in robotic countersinking operations. Robot. -Comput.-Integr. Manuf. 2021, 71, 102105. [CrossRef]

16. Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; 2nd ed.; MIT Press: Cambridge, MA, USA, 2006.
17. Khosravi, M.; Behrunani, V.; Smith, R.S.; Rupenyan, A.; Lygeros, J. Cascade control: Data-driven tuning approach based on

Bayesian optimization. IFAC-Pap. 2020, 53, 382–387. [CrossRef]
18. Neal, R.M. Bayesian Learning for Neural Networks; Springer: Berlin/Heidelberg, Germany, 1996; Volume 118.
19. Murphy, K.P. Probabilistic Machine Learning: An Introduction; Adaptive Computation and Machine Learning; MIT Press: Cambridge,

MA, USA, 2022.
20. Santner, T.J.; Williams, B.J.; Notz, W.I. (Eds.) The Design and Analysis of Computer Experiments, 2nd ed.; Springer: Berlin/Heidelberg,

Germany, 2018.
21. Nabney, I.T. NETLAB: Algorithms for Pattern Recognition; Springer: Berlin/Heidelberg, Germany, 2002.
22. de Coulon, F. Théorie et Traitement des Signaux, 3rd ed.; PPUR: Lausanne, Switzerland, 1996.
23. The Mathworks. Statistics and Machine Learning Toolbox™ User’s Guide, R2022a ed.; The Mathworks: Natick, MA, USA, 2022.

https://github.com/StefanT83/SC_obst_avoid_GPR_1D.git
http://doi.org/10.1007/978-0-387-35973-1_440
http://dx.doi.org/10.1002/ente.202200151
http://dx.doi.org/10.1038/s41598-021-93474-4
http://www.ncbi.nlm.nih.gov/pubmed/34234238
http://dx.doi.org/10.1007/s10489-020-01889-9
http://www.ncbi.nlm.nih.gov/pubmed/34764576
http://dx.doi.org/10.1109/TPAMI.2007.1167
http://www.ncbi.nlm.nih.gov/pubmed/18084059
http://dx.doi.org/10.1146/annurev-control-090419-075625
http://dx.doi.org/10.1002/rob.21587
http://dx.doi.org/10.1109/TPAMI.2013.218
http://www.ncbi.nlm.nih.gov/pubmed/26353251
http://dx.doi.org/10.1016/j.ifacol.2020.12.1269
http://dx.doi.org/10.1109/IROS45743.2020.9341589
http://dx.doi.org/10.1016/j.rcim.2020.102105
http://dx.doi.org/10.1016/j.ifacol.2020.12.193

Robotics 2022, 11, 102 16 of 16

24. Mendoza-Trejo, O.; Cruz-Villar, C.A. Robust concurrent design of a 2-DOF collaborative robot (Cobot). IEEE/ASME Trans.
Mechatron. 2021, 26, 347–357. [CrossRef]

25. Calanca, A.; Dimo, E.; Palazzi, E.; Luzi, L. Enhancing force controllability by mechanics in exoskeleton design. Mechatronics 2022,
86, 102867. [CrossRef]

26. Shahid, A.A.; Piga, D.; Braghin, F.; Roveda, L. Continuous control actions learning and adaptation for robotic manipulation
through reinforcement learning. Auton. Robot. 2022, 46, 483–498. [CrossRef]

27. Cheah, W.; Garcia-Nathan, T.; Groves, K.; Watson, S.; Lennox, B. Path Planning for a Reconfigurable Robot in Extreme
Environments. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30
May–5 June 2021; pp. 10087–10092. [CrossRef]

28. West, A.; Wright, T.; Tsitsimpelis, I.; Groves, K.; Joyce, M.J.; Lennox, B. Real-time avoidance of ionising radiation using layered
costmaps for mobile robots. Front. Robot. AI 2022, 9, 862067. [CrossRef] [PubMed]

29. Ackerman, E. Boston Dynamics’ Spot Is Helping Chernobyl Move towards Safe Decommissioning. IEEE Spectrum. Available
online: https://spectrum.ieee.org/boston-dynamics-spot-chernobyl (accessed on 14 June 2022).

30. Spong, M.W.; Hutchinson, S.; Vidyasagar, M. Robot Modeling and Control, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2020.
31. Craig, J.J. Introduction to Robotics: Mechanics and Control, 4th ed.; Pearson: London, UK, 2021.
32. Zheng, K. ROS navigation tuning guide. In Robot Operating System (ROS); Springer: Cham, Switzerland, 2021; pp. 197–226.
33. Teodorescu, C.S.; Carlson, T. AssistMe: Using policy iteration to improve shared control of a non-holonomic vehicle. In

Proceedings of the International Conference on Systems, Man, and Cybernetics, Prague, Czech Republic, 9–12 October 2022.
34. Murphy, K.P. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2012.
35. Luckcuck, M.; Fisher, M.; Dennis, L.; Frost, S.; White, A.; Styles, D. Principles for the Development and Assurance of Autonomous

Systems for Safe Use in Hazardous Environments; Technical Report; Zenodo, CERN: Meyrin, Switzerland, 2021. [CrossRef]
36. Rasmussen, C.E.; Nickisch, H. Gaussian Process Regression and Classification Toolbox version 4.2 for GNU Octave 3.2.x and

Matlab 7.x and higher. Available online: http://www.gaussianprocess.org/gpml/code/ (accessed on 14 September 2022).
37. Gutman, B. Linear Regression Confidence Interval. MATLAB Central File Exchange. Available online: https://www.mathworks.

com/matlabcentral/fileexchange/39339-linear-regression-confidence-interval (accessed on 14 September 2022).
38. Nabney, I. Netlab. MATLAB Central File Exchange. Available online: https://www.mathworks.com/matlabcentral/

fileexchange/2654-netlab (accessed on 14 September 2022).
39. Klepsch, M.; Schmitz, F.; Seufert, T. Development and validation of two instruments measuring intrinsic, extraneous, and

germane cognitive load. Front. Psychol. 2017, 8, 1997. [CrossRef] [PubMed]
40. Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006.

http://dx.doi.org/10.1109/TMECH.2020.3019712
http://dx.doi.org/10.1016/j.mechatronics.2022.102867
http://dx.doi.org/10.1007/s10514-022-10034-z
http://dx.doi.org/10.1109/ICRA48506.2021.9561834
http://dx.doi.org/10.3389/frobt.2022.862067
http://www.ncbi.nlm.nih.gov/pubmed/35368431
https://spectrum.ieee.org/boston-dynamics-spot-chernobyl
http://dx.doi.org/10.5281/zenodo.5012322
http://www.gaussianprocess.org/gpml/code/
https://www.mathworks.com/matlabcentral/fileexchange/39339-linear-regression-confidence-interval
https://www.mathworks.com/matlabcentral/fileexchange/39339-linear-regression-confidence-interval
https://www.mathworks.com/matlabcentral/fileexchange/2654-netlab
https://www.mathworks.com/matlabcentral/fileexchange/2654-netlab
http://dx.doi.org/10.3389/fpsyg.2017.01997
http://www.ncbi.nlm.nih.gov/pubmed/29201011

	Introduction
	Literature Review
	Plant
	Reference
	Control

	Theory on GPR Modeling
	From Model-Based to Data-Driven Control
	Obstacle Avoidance in Nuclear Robotics
	Research Contribution

	Shared Control
	A User-Centered Design
	Addressing Uncertainty
	Advancing Forward and Turning
	Algorithm
	Software Architecture

	Experiments
	Training Data for the GPR Model
	Predictions from the GPR Model
	Personalized Shared Control
	Testing

	Discussion
	Conclusions
	References

