
Citation: Kapusi, T.P.; Erdei, T.I.;

Husi, G.; Hajdu, A. Application of

Deep Learning in the Deployment of

an Industrial SCARA Machine for

Real-Time Object Detection. Robotics

2022, 11, 69. https://doi.org/

10.3390/robotics11040069

Academic Editor: Xinjun Liu

Received: 30 May 2022

Accepted: 27 June 2022

Published: 30 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

robotics

Article

Application of Deep Learning in the Deployment of an
Industrial SCARA Machine for Real-Time Object Detection
Tibor Péter Kapusi 1 , Timotei István Erdei 2,*, Géza Husi 2 and András Hajdu 1

1 Faculty of Informatics, Department of Data Science and Visualization, University of Debrecen, Kassai Str. 26,
4028 Debrecen, Hungary; kapusi.tibor@inf.unideb.hu (T.P.K.); hajdu.andras@inf.unideb.hu (A.H.)

2 Faculty of Engineering, Department of Air- & Road Vehicles, University of Debrecen, Ótemető Str. 2–4,
4028 Debrecen, Hungary; husigeza@eng.unideb.hu

* Correspondence: timoteierdei@eng.unideb.hu; Tel.: +36-52-415-155

Abstract: In the spirit of innovation, the development of an intelligent robot system incorporating the
basic principles of Industry 4.0 was one of the objectives of this study. With this aim, an experimental
application of an industrial robot unit in its own isolated environment was carried out using neural
networks. In this paper, we describe one possible application of deep learning in an Industry 4.0
environment for robotic units. The image datasets required for learning were generated using data
synthesis. There are significant benefits to the incorporation of this technology, as old machines can
be smartened and made more efficient without additional costs. As an area of application, we present
the preparation of a robot unit which at the time it was originally produced and commissioned was
not capable of using machine learning technology for object-detection purposes. The results for
different scenarios are presented and an overview of similar research topics on neural networks is
provided. A method for synthetizing datasets of any size is described in detail. Specifically, the
working domain of a given robot unit, a possible solution to compatibility issues and the learning of
neural networks from 3D CAD models with rendered images will be discussed.

Keywords: cyber-physical systems; Industry 4.0; SCARA robot; deep learning; YOLO

1. Introduction

The COVID-19 pandemic and the global chip shortage has created the need for old
industrial machine units on production lines to use some form of deep learning, as is used
in Industry 4.0.

We have a large number of modern and old machine units, and part of our research
aims to extend the applicability of these devices. Generally speaking, older robot models
can be considered obsolete in the industry in many ways. Most of them were not designed
to meet modern standards at the time of commissioning, nor did their controller allow
them to communicate/be controlled via a network [1].

Transforming obsolete robots is a challenge in itself, as most of the time the underlying
operating system is embedded and the hardware specification does not allow for the
performance of sophisticated image-analysis tasks.

With this in mind, a principle has been developed that allows the operation of old
machine units supplemented with deep learning without additional financial outlay, thus
setting the application of these units on a new footing. In our case, the robot unit, the
function of which is to be supplemented by deep learning, is an SRX-611 manufactured by
SONY in Tokyo, Japan (see Figure 1), previously widely used.

Robots are widely used in manufacturing and can be categorized according to several
aspects; their design, work area, control and auxiliary energy source for operation all act as
influencing factors on the applicability of a given robot.

Robotics 2022, 11, 69. https://doi.org/10.3390/robotics11040069 https://www.mdpi.com/journal/robotics

https://doi.org/10.3390/robotics11040069
https://doi.org/10.3390/robotics11040069
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://orcid.org/0000-0002-8183-2516
https://orcid.org/0000-0002-9373-0189
https://orcid.org/0000-0003-1718-9770
https://doi.org/10.3390/robotics11040069
https://www.mdpi.com/journal/robotics
https://www.mdpi.com/article/10.3390/robotics11040069?type=check_update&version=1

Robotics 2022, 11, 69 2 of 20Robotics 2022, 11, x FOR PEER REVIEW 2 of 21

Figure 1. Sony SRX-611 CPS-LAB robotic arm for smartening.

Robots are widely used in manufacturing and can be categorized according to several
aspects; their design, work area, control and auxiliary energy source for operation all act
as influencing factors on the applicability of a given robot.

It can be stated that the main reasons for using industrial robot units re economic, as
detailed in the annual report of the International Federation of Robotics (IFR) [2]:
• Predictability;
• Increase in productivity;
• Flexible production;
• Decrease in scrap products;
• Lower operating costs;
• Better product quality.

The above do not follow as a rule from the integration of an industrial robot into a
production line, but they represent the current aspirations of industrial production and
together determine the direction of its development.

In industrial systems, it is important to consider the worst-case scenarios that can
occur and cause accidents during operations. Several relevant studies have been con-
ducted using recurrent neural network-based approaches to investigate this.

Several machine learning-based methods for avoiding collisions between robot ma-
nipulators have been developed by several other authors’ research. The motion coordina-
tion algorithm is handled by a recurrent network, whose convergence is a requirement for
solving the constrained quadratic optimization problem, which allows the redundant ma-
nipulator systems to be expressed, whether SCARA robots or robotic arms.

In our case, it is worth mentioning that the deep learning technique used is not spe-
cifically linked directly to the Sony SCARA controller. As a result, the user will be in-
formed about the presence of objects in the robot’s workspace based on later results of
object detection.

The robot does not perform an obstacle-avoidance maneuver depending on the out-
come. In the case of trajectory planning, several approaches are used to avoid obstacles.
For such a purpose, the RNN (also known as the recurrent neural network approach) is
used, capable of both target tracking and collision avoidance simultaneously. Since it per-
mits time-dynamic behavior, multi-axis robot arms have been successfully used for tra-
jectory planning and obstacle avoidance.

Figure 1. Sony SRX-611 CPS-LAB robotic arm for smartening.

It can be stated that the main reasons for using industrial robot units re economic, as
detailed in the annual report of the International Federation of Robotics (IFR) [2]:

• Predictability;
• Increase in productivity;
• Flexible production;
• Decrease in scrap products;
• Lower operating costs;
• Better product quality.

The above do not follow as a rule from the integration of an industrial robot into a
production line, but they represent the current aspirations of industrial production and
together determine the direction of its development.

In industrial systems, it is important to consider the worst-case scenarios that can
occur and cause accidents during operations. Several relevant studies have been conducted
using recurrent neural network-based approaches to investigate this.

Several machine learning-based methods for avoiding collisions between robot manip-
ulators have been developed by several other authors’ research. The motion coordination
algorithm is handled by a recurrent network, whose convergence is a requirement for
solving the constrained quadratic optimization problem, which allows the redundant
manipulator systems to be expressed, whether SCARA robots or robotic arms.

In our case, it is worth mentioning that the deep learning technique used is not
specifically linked directly to the Sony SCARA controller. As a result, the user will be
informed about the presence of objects in the robot’s workspace based on later results of
object detection.

The robot does not perform an obstacle-avoidance maneuver depending on the out-
come. In the case of trajectory planning, several approaches are used to avoid obstacles. For
such a purpose, the RNN (also known as the recurrent neural network approach) is used,
capable of both target tracking and collision avoidance simultaneously. Since it permits
time-dynamic behavior, multi-axis robot arms have been successfully used for trajectory
planning and obstacle avoidance.

In another research study, a recurrent neural network for collision avoidance was used
to define a given robot unit and the obstacles in its workspace as a set of critical points.
The obstacle avoidance itself can be described by class-K functions, but the QP (quadratic

Robotics 2022, 11, 69 3 of 20

programming) problem must be handled at the speed level. In this case, the RRN neural
network is trained to handle QP. However, its pretesting was performed in a simulation
environment and the parameters of a virtual plane 4-DOF robot arm were derived. Since
we are dealing with planar motion here, the obstacle to be avoided was also defined as a
single point [3].

The fact that neural networks can be applied not only to static objects but also to
moving objects demonstrates their versatility. When a problem is not only modeled virtually
but also translated into physical form, it takes on a completely different complexion.
Furthermore, if we are not dealing with a fixed robot arm, but with a moving object or an
autonomous vehicle, the problem must be approached using entirely different principles,
although the two applications have similar starting points, such as the problem of path
assignment and tracking defined as quadratic programming. That is, the redundant
resolution problem is viewed as a quadratic programming minimization scheme. Thus,
several goals can be achieved more efficiently, such as target tracking and repetitive motion
planning. However, in the case of moving objects, especially if the main unit is also moving,
it is necessary to use a vision sensor for the detection. An ANN (artificial neural network)
can be used in such cases to avoid the objects. Such systems are also known as universal
function approximators because they are suitable for nonlinear function training [4].

It is important to note that some studies have shown that a robot unit can also use
vision sensors to implement obstacle avoidance. CCD camera images placed in the robot
workspace can be used to detect standard fixed objects. The physical robot unit used for a
test was a 7-DOF KUKA LBR iwa. The real-time motion control of a physical robot unit
is a complex problem. Since, in this situation, we are not dealing with a 2D dimensional
case, the limitation of the axes and the predefined trajectory of the end-effector must be
considered. Furthermore, the robot has singularity points that affect all axes except the A7,
implying the loss of degrees of freedom. RNN was used to develop the motion-planning
method. The robot’s workspace was downscaled, and the angular and joint velocity limits
were specified [5].

In addition to the above, there are also potential applications of neural networks at
the level of collaborative SCARA robots. There are a variety of industrial applications
for specialized robot units in which other people perform tasks in their workspaces or
where multiple robots perform coordinated tasks in each other’s workspaces. The objective,
once again, is to design a path that has no chance of resulting in collisions, even at high
speeds. This is a kinematic control problem with multiple factors to consider. Quadratic
programming is the starting point in this case, but RNN acts as a dynamic controller.
The principle is based on the fact that when two SCARA robots are moving along a
given trajectory and the preset distance between them has decreased at a point along the
trajectory, they begin to swerve to avoid colliding [6]. The preceding examples demonstrate
the numerous applications of neural networks in robotics.

The rest of the paper is organized as follows. Section 2 details the construction and
operational information for an older robot unit, the SONY SCARA-SRX-611. Information
on the programming language of the robot unit and its currently supported interfaces is
explained in more detail in Section 3. Section 4 introduces the procedures for implementing
modeling and the software platforms used. Details of the synthesis of image datasets and
a description of the algorithms used for their generation and the rendering process itself
will be provided in Section 5. The chosen neural network architecture and the detector
we designed, Robonet-RT, are detailed in Section 6. Section 7 describes the process of
training the detector, and, finally, Section 8 presents the results obtained during the learning
process, together with the selected metrics and the loss function. Conclusions are drawn in
Section 9.

2. SONY SCARA SRX-611 Robot Unit

The SCARA unit is based on Hiroshi Makino’s 1978 concept and the name has a
complex meaning: Selective Compliance Assembly Robot Arm [7,8].

Robotics 2022, 11, 69 4 of 20

SCARA robots are designed to operate at higher axis speeds and allow more precise
work. One of the defining parameters of machines is the number of axes and their type.
The SONY SCARA has three axes, two rotary and one translational.

The RRT design also defines the robot’s workspace, where the robot can perform
assembly/implantation tasks. All the parameters are given precisely in Figure 2 and
Table 1.

Robotics 2022, 11, x FOR PEER REVIEW 4 of 21

2. SONY SCARA SRX-611 Robot Unit
The SCARA unit is based on Hiroshi Makino’s 1978 concept and the name has a com-

plex meaning: Selective Compliance Assembly Robot Arm [7,8].
SCARA robots are designed to operate at higher axis speeds and allow more precise

work. One of the defining parameters of machines is the number of axes and their type.
The SONY SCARA has three axes, two rotary and one translational.

The RRT design also defines the robot’s workspace, where the robot can perform as-
sembly/implantation tasks. All the parameters are given precisely in Figure 2 and Table 1.

Figure 2. SONY SCARA SRX-611 workspace and axes parameters.

In terms of workspace, it is spherical in coordinates. The weight of the machine is 35
kg, while the payload of the arm is 2 kg.

Table 1. SONY SCARA SRX parameters [8].

Arm Length Workspace Cycle Time Maximum Speed
Repeatability of Posi-

tion
1. Axis 350 mm 1. Axis 220° 0.6 [s]
2. Axis 250 mm 2. Axis ±150°

 Z. Axis 150 mm Z axis 770 mm/s Z axis ±0.02 mm
 R. Axis ±360° R axis 1150/s R axis ±0.03 mm

Industrial robots are characterized by the use of AC servomotors to perform move-
ments. The Sony SCARA robot also has three-phase motors with brakes and incremental
encoders that allow the system to retain its position when the system is de-energized. To
change the position of the raw materials, the robot unit uses an electropneumatic two-
finger gripper.

In addition, there is a PARO QE 01 31–6000 conveyor belt in the robot workspace,
which ensures the transport of pallets. The track itself is attached to a heavy-duty alumi-
num table, and all four members are powered by a separate motor. The pallets are stopped
by four additional stop mechanisms, and each has an inductive sensor [9].

3. Robot Control and Programming Language
Industrial robots differ in terms of hardware from the primarily commercial-type

desktops we use. After all, the specifically targeted components are selected, which is not
different for the SONY SCARA robot.

Figure 2. SONY SCARA SRX-611 workspace and axes parameters.

Table 1. SONY SCARA SRX parameters [8].

Arm Length Workspace Cycle Time Maximum Speed Repeatability of Position

1. Axis 350 mm 1. Axis 220◦ 0.6 [s]
2. Axis 250 mm 2. Axis ±150◦

Z. Axis 150 mm Z axis 770 mm/s Z axis ±0.02 mm
R. Axis ±360◦ R axis 1150/s R axis ±0.03 mm

In terms of workspace, it is spherical in coordinates. The weight of the machine is
35 kg, while the payload of the arm is 2 kg.

Industrial robots are characterized by the use of AC servomotors to perform move-
ments. The Sony SCARA robot also has three-phase motors with brakes and incremental
encoders that allow the system to retain its position when the system is de-energized. To
change the position of the raw materials, the robot unit uses an electropneumatic two-
finger gripper.

In addition, there is a PARO QE 01 31–6000 conveyor belt in the robot workspace,
which ensures the transport of pallets. The track itself is attached to a heavy-duty aluminum
table, and all four members are powered by a separate motor. The pallets are stopped by
four additional stop mechanisms, and each has an inductive sensor [9].

3. Robot Control and Programming Language

Industrial robots differ in terms of hardware from the primarily commercial-type
desktops we use. After all, the specifically targeted components are selected, which is not
different for the SONY SCARA robot.

The control system of the robot itself can be divided into three main parts. The first one
is the SRX-611 robot arm + PARO QE 01 31–6000 linear transport path, which is responsible
for material handling tasks. The control also requires the current SRX-Robot controller,
which is equipped with LED indicators to indicate its status. At the same time, the teach

Robotics 2022, 11, 69 5 of 20

pendant that is needed to operate the robot allows the programming tasks, coordinates and
speed to be changed.

However, the SONY SCARA-SRX611 was not fitted with a teach pendant in our case,
so we had to logically conceive and implement an alternative way of connecting one to
the machine.

For older robots, support is no longer available in most cases. This may be due to the
newer range of robot products brought to the forefront by the manufacturer, but there is
also a precedent for exiting the market.

In a given factory, it is always a matter for decision whether to replace a robot unit,
which is extremely costly due to commissioning, installation and training costs, or, with the
restrictions imposed by its retention, continue to use it on production lines.

In light of the above, we set out to convert the SRX-611 to modern hardware and deep
learning (to convert it to be “SMART”). The CPU component of the SRX-Robot controller
is an Intel i486DX2 (50 MHz), which produced in CA, USA [8]. This in itself presents
a limitation for us, as the hardware resources are not sufficient to perform subsequent
image analysis tasks, especially considering that the control system is written around DOS;
however, communication via the serial port is possible.

A solution can be found by disconnecting and redirecting the resources of an existing
desktop PC to perform the robot control task.

This, in turn, requires serial port communication provided by a GB-USBRS232 USB 2.0-
to-RS232 converter. The CH341 is a bus converter chip (see Figure 3) that provides a parallel
and synchronous serial port via a 2–4 wire USB bus. In UART mode, the CH341 provides
alternating speed control signals, and MODEM communication is also possible [10].

Robotics 2022, 11, x FOR PEER REVIEW 5 of 21

The control system of the robot itself can be divided into three main parts. The first
one is the SRX-611 robot arm + PARO QE 01 31–6000 linear transport path, which is re-
sponsible for material handling tasks. The control also requires the current SRX-Robot
controller, which is equipped with LED indicators to indicate its status. At the same time,
the teach pendant that is needed to operate the robot allows the programming tasks, co-
ordinates and speed to be changed.

However, the SONY SCARA-SRX611 was not fitted with a teach pendant in our case,
so we had to logically conceive and implement an alternative way of connecting one to
the machine.

For older robots, support is no longer available in most cases. This may be due to the
newer range of robot products brought to the forefront by the manufacturer, but there is
also a precedent for exiting the market.

In a given factory, it is always a matter for decision whether to replace a robot unit,
which is extremely costly due to commissioning, installation and training costs, or, with
the restrictions imposed by its retention, continue to use it on production lines.

In light of the above, we set out to convert the SRX-611 to modern hardware and deep
learning (to convert it to be “SMART”). The CPU component of the SRX-Robot controller
is an Intel i486DX2 (50 MHz), which produced in CA, USA[8]. This in itself presents a
limitation for us, as the hardware resources are not sufficient to perform subsequent im-
age analysis tasks, especially considering that the control system is written around DOS;
however, communication via the serial port is possible.

A solution can be found by disconnecting and redirecting the resources of an existing
desktop PC to perform the robot control task.

This, in turn, requires serial port communication provided by a GB-USBRS232 USB
2.0-to-RS232 converter. The CH341 is a bus converter chip (see Figure 3) that provides a
parallel and synchronous serial port via a 2–4 wire USB bus. In UART mode, the CH341
provides alternating speed control signals, and MODEM communication is also possible
[10].

Figure 3. Standard CH341 USB-to-RS232 serial interface circuit. Figure 3. Standard CH341 USB-to-RS232 serial interface circuit.

The cable structure is a USB-A to D-Sup nine-pin plug that can be easily connected
to today’s desktop PCs. However, the Official SRX PLATFORM to be used for “offline”
programming only supports DOS/Windows XP. DOS does not support modern standards,
and Microsoft support for Windows XP has been discontinued as of 8 April 2014. Fur-
thermore, motherboards and adapter drivers no longer support these two systems [11].
However, if we can emulate the environments of these OSs with the hardware resources
available to us, SRX PLATFORM can become executable.

Robotics 2022, 11, 69 6 of 20

The choice was made to emulate the Windows XP operating system, which we imple-
mented with VMware Player.

VMware [12] implements full OS emulation and can handle system-specific drivers.
The performance of the emulated OS is highly dependent on the performance of the current
so-called Core OS, from which the necessary resources are allocated to install Windows XP.

Desktop PC hardware parameters:

• CPU: Corei3 2120 (four cores);
• HDD: 500 GB;
• Memory: 4 GB RAM;
• VGA: Intel HD [13].

The Core OS on which VMware was installed was Windows 10, and the above perfor-
mance was halved, meaning that the Windows OS was emulated with two cores, 2 GB of
RAM and 250 GB of HDD storage. The system was installed on VMware Player as preferred
by Microsoft. After that, the essential drivers were installed along with the GB-USBRS232
USB 2.0-to-RS232 converter driver.

After installation and configuration, we ran the SRX PLATFORM shown in Figure 4.

Robotics 2022, 11, x FOR PEER REVIEW 6 of 21

The cable structure is a USB-A to D-Sup nine-pin plug that can be easily connected
to today’s desktop PCs. However, the Official SRX PLATFORM to be used for “offline”
programming only supports DOS/Windows XP. DOS does not support modern stand-
ards, and Microsoft support for Windows XP has been discontinued as of 8 April 2014.
Furthermore, motherboards and adapter drivers no longer support these two systems
[11]. However, if we can emulate the environments of these OSs with the hardware re-
sources available to us, SRX PLATFORM can become executable.

The choice was made to emulate the Windows XP operating system, which we im-
plemented with VMware Player.

VMware [12] implements full OS emulation and can handle system-specific drivers.
The performance of the emulated OS is highly dependent on the performance of the cur-
rent so-called Core OS, from which the necessary resources are allocated to install Win-
dows XP.

Desktop PC hardware parameters:
• CPU: Corei3 2120 (four cores);
• HDD: 500 GB;
• Memory: 4 GB RAM;
• VGA: Intel HD [13].

The Core OS on which VMware was installed was Windows 10, and the above per-
formance was halved, meaning that the Windows OS was emulated with two cores, 2 GB
of RAM and 250 GB of HDD storage. The system was installed on VMware Player as pre-
ferred by Microsoft. After that, the essential drivers were installed along with the GB-
USBRS232 USB 2.0-to-RS232 converter driver.

After installation and configuration, we ran the SRX PLATFORM shown in Figure 4.

Figure 4. SRX PLATFORM on the emulated Windows XP OS.

Industrial robot manufacturers typically have their own programming language,
which is proprietary to the system. For the SONY SCARA robot, this language is called
LUNA [8]. An updated version (5.0) enables multi-tasking and Windows XP support.

When using the LUNA programming language, points must be declared in sepa-
rately specified files. In addition to the coordinates X, Y, Z, the value of the axis of rotation
R must also be entered. It is possible within the SRX PLATFORM GUI (graphical user
interface) to define input/outputs, points and strings that can be referenced later within
the program.

A line starting with DO means that the commands that follow will be executed. That
is, if we enter a coordinate after DO, the SCARA robot arm will assume that position. DO
L (2, ON/OFF) can be used to activate/deactivate the gripper air supply; DO L8 (ON/OFF)
can be used to open/close the gripper.

Figure 4. SRX PLATFORM on the emulated Windows XP OS.

Industrial robot manufacturers typically have their own programming language,
which is proprietary to the system. For the SONY SCARA robot, this language is called
LUNA [8]. An updated version (5.0) enables multi-tasking and Windows XP support.

When using the LUNA programming language, points must be declared in separately
specified files. In addition to the coordinates X, Y, Z, the value of the axis of rotation R must
also be entered. It is possible within the SRX PLATFORM GUI (graphical user interface) to
define input/outputs, points and strings that can be referenced later within the program.

A line starting with DO means that the commands that follow will be executed. That
is, if we enter a coordinate after DO, the SCARA robot arm will assume that position. DO L
(2, ON/OFF) can be used to activate/deactivate the gripper air supply; DO L8 (ON/OFF)
can be used to open/close the gripper.

Declaring pallets also means referring to them separately. That is, we enter the name
and number of the given pallet and the position, D0 L5 (ON), switching on the L5 conveyor
belt, where PALLET: PAL1 is located.

If we wrote the desired program in the SRX PLATFORM, we would have the option
to send it to the SCARA robot by compiling our program in the Compile menu, in which
case we would have a .dat file from the file with the .pon extension. Once a translation was
complete, we could then upload it to the SCARA robot using the Send button and run it on
the controller by pressing the physical Start button.

Robotics 2022, 11, 69 7 of 20

After completing the above, it was possible for us to program the SONY SCARA robot
without a peach pendant in an emulated desktop environment with a Core OS of modern
Windows 10, so compatibility barriers for control were removed.

4. 3D CAD Modelling of SONY SCARA SRX-611

The hardware performance detailed earlier made it clear to us that if we used machine
learning, because of the lack of support, it could not be run directly on the SCARA controller
or on the controlled emulated Windows XP system.

In order to increase the efficiency of production, we needed to focus on a new innova-
tive solution that could be applied without considering the hardware components of the
current industrial robot controller.

In the case of industrial machines, it is important to note that robots cannot determine
the position of raw materials in space without the involvement of sensors. However, if a
deep learning-based approach were used and we were able to create a sufficient number of
training datasets, objects moving in the path of the SCARA robot assembly line could later
be identified and detected using an IP camera image.

The difficulty here is that learning a deep learning neural network can require a lot
of pictures, even tens of thousands. These large datasets are not available in most cases
and their production can be extremely slow and time-consuming, especially if they are
compiled from real images.

However, if a complete 3D CAD model of a given object and an industrial robot (in
our case, the SONY SCARA) are available, or if the model can be created, the image data
required for training can be easily generated.

The main idea is to take pictures of an object that can be used to train and develop an
artificial intelligence model. We would create a 3D CAD model based on the collection of
images and apply RGB coloring or texturing to the model according to the dataset of photos.
After that, an arbitrary number of images could be generated using a virtual chamber and
these images could then be used as the dataset for the AI training (see in Figure 5).

Robotics 2022, 11, x FOR PEER REVIEW 7 of 21

Declaring pallets also means referring to them separately. That is, we enter the name
and number of the given pallet and the position, D0 L5 (ON), switching on the L5 con-
veyor belt, where PALLET: PAL1 is located.

If we wrote the desired program in the SRX PLATFORM, we would have the option
to send it to the SCARA robot by compiling our program in the Compile menu, in which
case we would have a .dat file from the file with the .pon extension. Once a translation
was complete, we could then upload it to the SCARA robot using the Send button and
run it on the controller by pressing the physical Start button.

After completing the above, it was possible for us to program the SONY SCARA ro-
bot without a peach pendant in an emulated desktop environment with a Core OS of mod-
ern Windows 10, so compatibility barriers for control were removed.

4. 3D CAD Modelling of SONY SCARA SRX-611
The hardware performance detailed earlier made it clear to us that if we used ma-

chine learning, because of the lack of support, it could not be run directly on the SCARA
controller or on the controlled emulated Windows XP system.

In order to increase the efficiency of production, we needed to focus on a new inno-
vative solution that could be applied without considering the hardware components of
the current industrial robot controller.

In the case of industrial machines, it is important to note that robots cannot determine
the position of raw materials in space without the involvement of sensors. However, if a
deep learning-based approach were used and we were able to create a sufficient number
of training datasets, objects moving in the path of the SCARA robot assembly line could
later be identified and detected using an IP camera image.

The difficulty here is that learning a deep learning neural network can require a lot
of pictures, even tens of thousands. These large datasets are not available in most cases
and their production can be extremely slow and time-consuming, especially if they are
compiled from real images.

However, if a complete 3D CAD model of a given object and an industrial robot (in
our case, the SONY SCARA) are available, or if the model can be created, the image data
required for training can be easily generated.

The main idea is to take pictures of an object that can be used to train and develop an
artificial intelligence model. We would create a 3D CAD model based on the collection of
images and apply RGB coloring or texturing to the model according to the dataset of pho-
tos. After that, an arbitrary number of images could be generated using a virtual chamber
and these images could then be used as the dataset for the AI training (see in Figure 5).

Figure 5. Methodology for generating a dataset file for teaching AI. Figure 5. Methodology for generating a dataset file for teaching AI.

The 3D CAD modeling was performed in Trimble SketchUp software [14], in which
individual surfaces can be drawn with a sufficiently optimal polygon number during
design. In our case, the richness of detail of the SCARA SRX-611 model was expected, as it
is comprised of more than 1500 different sub-models, and we need all the important details
to maintain realism. After the completion of the design, it was exported in .obj file format,
which contained all the required position information for the rendering application.

We chose Blender with an open-source license as rendering software, as its wide
industrial applicability and abundant plugin support [15] makes it suitable for preparing
simulation tasks and generating the required image dataset.

Robotics 2022, 11, 69 8 of 20

After importing the model, the following additional operations were performed to
further optimize the rendering. First, we used a polygon reduction technique, because
the model still operated with too many elements, which significantly slowed down the
operations to be performed with it.

Subsequently, the values for each element were given in the HSV (hue, saturation,
value) color space, the values of which were taken in our case from real photos taken of
the robot unit earlier, thus ensuring realistic representation and bringing the items in the
training database as close as possible to each other for later object detection.

No separate specific textures were added as this would have increased the file size
and, in our case, it was not relevant for later trainability. The resultant 3D CAD model can
be observed in Figure 6.

Robotics 2022, 11, x FOR PEER REVIEW 8 of 21

The 3D CAD modeling was performed in Trimble SketchUp software [14], in which
individual surfaces can be drawn with a sufficiently optimal polygon number during de-
sign. In our case, the richness of detail of the SCARA SRX-611 model was expected, as it
is comprised of more than 1500 different sub-models, and we need all the important de-
tails to maintain realism. After the completion of the design, it was exported in .obj file
format, which contained all the required position information for the rendering applica-
tion.

We chose Blender with an open-source license as rendering software, as its wide in-
dustrial applicability and abundant plugin support [15] makes it suitable for preparing
simulation tasks and generating the required image dataset.

After importing the model, the following additional operations were performed to
further optimize the rendering. First, we used a polygon reduction technique, because the
model still operated with too many elements, which significantly slowed down the oper-
ations to be performed with it.

Subsequently, the values for each element were given in the HSV (hue, saturation,
value) color space, the values of which were taken in our case from real photos taken of
the robot unit earlier, thus ensuring realistic representation and bringing the items in the
training database as close as possible to each other for later object detection.

No separate specific textures were added as this would have increased the file size
and, in our case, it was not relevant for later trainability. The resultant 3D CAD model can
be observed in Figure 6.

Figure 6. 3D CAD model of SCARA SRX-611.

5. Generating Dataset Images Using Rendering Techniques

We have stated in previous sections that deep learning neural networks can require
extremely large numbers of data to achieve accurate learning results, which, in many
cases, are not available, or which, if they are possible to produce, can only be implemented
with the creation of real pictures, which is very time-consuming and is associated with a
higher error rate.

With this in mind, we came up with a concept according to which we designed a 3D
model of the given robot unit and the elements and products used by it; thus, it was pos-
sible to generate any number of pictures with any number of elements and high-resolution
images in virtual frames.

Figure 6. 3D CAD model of SCARA SRX-611.

5. Generating Dataset Images Using Rendering Techniques

We have stated in previous sections that deep learning neural networks can require
extremely large numbers of data to achieve accurate learning results, which, in many cases,
are not available, or which, if they are possible to produce, can only be implemented with
the creation of real pictures, which is very time-consuming and is associated with a higher
error rate.

With this in mind, we came up with a concept according to which we designed a 3D
model of the given robot unit and the elements and products used by it; thus, it was possible
to generate any number of pictures with any number of elements and high-resolution
images in virtual frames.

In our case, the rendering software of choice, Blender, provides several rendering op-
tions that make the necessary image synthesis possible using different textures, geometries,
lighting effects and camera views to represent the virtual scenes.

For Blender, the software used for rendering, which is licensed under the GNU GPL
(GNU General Public), special attention has been paid to its specific development cycle.

The fragmentation of the program is even more pronounced, as small major bug
fixes or full-fledged realizers can arrive on a monthly basis. While these are able to open
files created in previous versions, compatibility problems may occur which hinder the
rendering process.

Furthermore, driver issues may occur when using old GPUs, which may cause errors
even at the graphical use interface level.

Robotics 2022, 11, 69 9 of 20

In our case, we used Blender 3.1, which already included new features, such as Ray
Tracing Precision, OptiX temporal denoising and Optimal compact BVH.

The use of the newly introduced denoising was of particular importance, as it gives a
cleaner image at the end of rendering even with a smaller sample, which speeds up the
image-generation process.

However, it is important to note that not all CPUs are capable of using this software, as
SSE 4.1 (Streaming SIMD Extensions) is required. The first SSE instruction set, developed
by Intel, introduced 128-bit registers, and the later SSE4.1 provided the motherboard unit
performing the computation with 48 new instruction sets.

As a first step, a scene is created in the software that specifically embodies a virtual
scanner (see Figure 7) using key frames so that there is a regular circle around any object
placed in the origin of the 3D virtual space. This will be the orbit of the virtual scanner
camera. Making a circle around the centered object results in 360 frames that are repeated
in increments along all axes of rotation.

Robotics 2022, 11, x FOR PEER REVIEW 9 of 21

In our case, the rendering software of choice, Blender, provides several rendering
options that make the necessary image synthesis possible using different textures, geom-
etries, lighting effects and camera views to represent the virtual scenes.

For Blender, the software used for rendering, which is licensed under the GNU GPL
(GNU General Public), special attention has been paid to its specific development cycle.

The fragmentation of the program is even more pronounced, as small major bug fixes
or full-fledged realizers can arrive on a monthly basis. While these are able to open files
created in previous versions, compatibility problems may occur which hinder the render-
ing process.

Furthermore, driver issues may occur when using old GPUs, which may cause errors
even at the graphical use interface level.

In our case, we used Blender 3.1, which already included new features, such as Ray
Tracing Precision, OptiX temporal denoising and Optimal compact BVH.

The use of the newly introduced denoising was of particular importance, as it gives
a cleaner image at the end of rendering even with a smaller sample, which speeds up the
image-generation process.

However, it is important to note that not all CPUs are capable of using this software,
as SSE 4.1 (Streaming SIMD Extensions) is required. The first SSE instruction set, devel-
oped by Intel, introduced 128-bit registers, and the later SSE4.1 provided the motherboard
unit performing the computation with 48 new instruction sets.

As a first step, a scene is created in the software that specifically embodies a virtual
scanner (see Figure 7) using key frames so that there is a regular circle around any object
placed in the origin of the 3D virtual space. This will be the orbit of the virtual scanner
camera. Making a circle around the centered object results in 360 frames that are repeated
in increments along all axes of rotation.

Figure 7. Blender as virtual object scanner.

We then added the previously created SCARA SRX-611 CAD model to the scene and
combined it with a previously created animation to generate the images that make up the
visual dataset needed for teaching. The rendering of the entire model consisted of a total
of 36,000 images.

We used the Cycles engine for rendering, the sample value was 32 and the resolution
was 1920 × 1080 pixels, according to the Full HD standard. The output file format was
specified as .png. The result is depicted in Figure 8.

Figure 7. Blender as virtual object scanner.

We then added the previously created SCARA SRX-611 CAD model to the scene and
combined it with a previously created animation to generate the images that make up the
visual dataset needed for teaching. The rendering of the entire model consisted of a total of
36,000 images.

We used the Cycles engine for rendering, the sample value was 32 and the resolution
was 1920 × 1080 pixels, according to the Full HD standard. The output file format was
specified as .png. The result is depicted in Figure 8.

Robotics 2022, 11, x FOR PEER REVIEW 10 of 21

Figure 8. The rendered virtual objects for Machine Learning.

In order to make it easier to identify the elements to be recognized, their color was
taken from the actual images and photographs taken earlier during rendering (see Figure
9). Thus, the color coordinates used were derived from the actual palette, as were the cu-
bes. However, as mentioned earlier, no textures were applied.

Figure 9. LabelImg screen and the colors of the real pallet.

To generate large numbers of image data, machines from the Cyber-Physical and In-
telligent Robot Systems Laboratory were involved, networked and issued rendering tasks
separately.

Each of the machines fell into the lower-middle category in terms of their parameters:
• CPU: Corei7 3770;
• HDD: 500 GB;
• Memory: 16 GB DDR3 RAM;
• VGA: Nvidai GTX 1050 Ti [16].

The three desktop PCs involved in the rendering completed the rendering cycle in an
average of 4 days, 5.16 h.

Figure 8. The rendered virtual objects for Machine Learning.

Robotics 2022, 11, 69 10 of 20

In order to make it easier to identify the elements to be recognized, their color was
taken from the actual images and photographs taken earlier during rendering (see Figure 9).
Thus, the color coordinates used were derived from the actual palette, as were the cubes.
However, as mentioned earlier, no textures were applied.

Robotics 2022, 11, x FOR PEER REVIEW 10 of 21

Figure 8. The rendered virtual objects for Machine Learning.

In order to make it easier to identify the elements to be recognized, their color was
taken from the actual images and photographs taken earlier during rendering (see Figure
9). Thus, the color coordinates used were derived from the actual palette, as were the cu-
bes. However, as mentioned earlier, no textures were applied.

Figure 9. LabelImg screen and the colors of the real pallet.

To generate large numbers of image data, machines from the Cyber-Physical and In-
telligent Robot Systems Laboratory were involved, networked and issued rendering tasks
separately.

Each of the machines fell into the lower-middle category in terms of their parameters:
• CPU: Corei7 3770;
• HDD: 500 GB;
• Memory: 16 GB DDR3 RAM;
• VGA: Nvidai GTX 1050 Ti [16].

The three desktop PCs involved in the rendering completed the rendering cycle in an
average of 4 days, 5.16 h.

Figure 9. LabelImg screen and the colors of the real pallet.

To generate large numbers of image data, machines from the Cyber-Physical and
Intelligent Robot Systems Laboratory were involved, networked and issued rendering
tasks separately.

Each of the machines fell into the lower-middle category in terms of their parameters:

• CPU: Corei7 3770;
• HDD: 500 GB;
• Memory: 16 GB DDR3 RAM;
• VGA: Nvidai GTX 1050 Ti [16].

The three desktop PCs involved in the rendering completed the rendering cycle in an
average of 4 days, 5.16 h.

An annotation software, LabelImg [17], was used to generate the ground truth, which
can handle multiple formats supported by deep learning-based algorithms [18]. The first
step in the software was the definition of the label types, and, after annotation, we saved
the data for each image in YOLO format (see Figure 8). The reasons for the choice of format
and details of the deep learning-based architecture are presented in the next section.

6. Architecture of the Proposed Deep Learning Algorithm

In this section, we describe the structure of our deep learning-based detector, called
Robonet-RT, which is based on a relatively fast implementation, the architecture of the You
Only Look Once (YOLO) [19] neural network.

Several related publications on the application of deep learning-based object-detection
technology in this area have been/are available. In [20], the authors present a very inter-
esting object detector based on a YOLO architecture for traffic sign recognition. In their
work, X. Ren and W. Zhang adopted a meta-learning-based approach and complemented
their proposed architecture with a feature decorrelation module that can extract relevant
features of an object, thus significantly increasing the robustness of the method against
cluttering background content.

Robotics 2022, 11, 69 11 of 20

Finally, they successfully demonstrated the capabilities of their proposed object detec-
tor on publicly available image databases, such as GTSDB [21], TT-100K [22] and MTSD [23].
Yuan S., Du Y. and Liu M. presented an improved YOLO architecture-based detector,
YOLOV5-ytiniy, in their publication [24], which has significantly lower resource require-
ments than other deep learning models, such as YOLOv4 [25], YOLOv4-tiny [25] and
SSD [26], in addition to the proposed method’s outstanding accuracy. The authors have
performed significant optimizations on the initial model structure, and, finally, the loss func-
tion has been replaced by CIoU, which also contains the aspect ratio of the boundary boxes
and measures the predicted values from three other perspectives, namely, overlapping
area, center point distance and aspect ratio. Therefore, it has significantly accelerated the
convergence of the network during training and resulted in more accurate predicted values.

Other relevant studies, such as [27], have been published. In this work, the authors
presented a traffic monitoring system implemented on a YOLO neural network architecture.
The authors’ initial model of choice was YOLOV3, and various architectural optimizations
were performed on the architecture, including determining the appropriate number of
convolutional layers and filters. A Kalman Filter was applied to the detector’s output to
ensure the detection’s robustness.

The authors also presented a solution for detecting defects on rims based on the
YOLO neural network architecture described in [28]. In the paper, the performance of
YOLOV3 [29] and YOLOV4 models was evaluated, and the training so-ran was augmented
with a dataset synthetically generated from a real image dataset using a generative mesh,
DCGAN [30]. Using data synthesis, an improvement in accuracy was achieved for all
detector models during testing.

In [31], the authors used a promising “multidimensional scaling”-based approach in
the feature extraction part of the deep learning detector architecture. They explain in the
paper that current detectors have difficulty detecting objects whose sizes range from very
small to very large. As a result, they are often difficult to train for such special cases. The
authors propose a solution to this problem by using an approach of scaling the size of
anchor boxes across multiple dimensions in the region proposal network part, significantly
increasing detection accuracy, and comparing the results to currently available detector
models, such as rotation-invariant CNN (RICNN) [32], region proposal networks with
faster R-CNN (R-P-F-R-CNN) [33] and deformable faster R-CNN (D-R-FCN) [34].

Following a discussion of relevant works on the topic, we describe the requirements
for a deep learning detector.

In our case, after synthesizing the training dataset, the following aspects were consid-
ered in the design: real-time operation, detection accuracy that meets the requirements and
minimization of resource requirements that allows applicability on computing capability-
limited devices. Apparently, these are conflicting conditions, which is why it was extremely
important to choose the right architecture to meet these needs. Based on these expected
criteria, the YOLO neural network architecture was selected [19], which is implemented
in C and is able to achieve the same extremely high accuracy as state-of-the-art detectors,
such as SSD [26], DSSD [35], MobileNetV2 [36], R-FCN [37] and Mask R-CNN [38], which
are implemented in other programming languages, such as Python, R or Ruby.

After selecting the appropriate neural network architecture, the next step was to
develop the final design of the deep learning detector; based on the structure of the
already available designs, we developed a minimized version that could satisfy the above
design aspects.

The structure of our proposed detector is illustrated in Figure 9. We chose the design
of YOLOV3-tiny [29] as a starting point, as it is able to detect in real time due to its low
resource requirements, but since its capabilities did not reach the values we desired, we
made several changes to its design.

As a first step, as we have higher-resolution images, we reduced the number of
convolutional layers to three in the Backbone section, thus reducing the computational
burden and increasing the extraction of features that could be interpreted for the neural

Robotics 2022, 11, 69 12 of 20

network. Furthermore, the number of filters was also reduced to the optimal value, further
improving the detection rate; the value was continuously tested with trainings after each
small modification was made.

The next step was to modify the shortcut layers so that the convolutional layers, before
the YOLO algorithm performed the detection, received the outputs of the convolutional
layers in the corresponding Backbone section.

As a final step, the layers in the detector section were finalized by implementing the
following steps. The filter number F of the convolutional layer before the YOLO layers was
determined using the following equation [25,29]:

F = 3·(C + 5), (1)

where C is the number of classes to be detected. We then recalculated the values of the
anchor boxes in the YOLO layers using the k-means++ [39] clustering algorithm. This is an
extremely important step in the design, as the anchor values chosen significantly affects the
accuracy of the detection. The output of the algorithm and the associated Intersection over
Union are illustrated in Figure 10.

Robotics 2022, 11, x FOR PEER REVIEW 12 of 21

and minimization of resource requirements that allows applicability on computing capa-
bility-limited devices. Apparently, these are conflicting conditions, which is why it was
extremely important to choose the right architecture to meet these needs. Based on these
expected criteria, the YOLO neural network architecture was selected [19], which is im-
plemented in C and is able to achieve the same extremely high accuracy as state-of-the-art
detectors, such as SSD [26], DSSD [35], MobileNetV2 [36], R-FCN [37] and Mask R-CNN
[38], which are implemented in other programming languages, such as Python, R or Ruby.

After selecting the appropriate neural network architecture, the next step was to de-
velop the final design of the deep learning detector; based on the structure of the already
available designs, we developed a minimized version that could satisfy the above design
aspects.

The structure of our proposed detector is illustrated in Figure 9. We chose the design
of YOLOV3-tiny [29] as a starting point, as it is able to detect in real time due to its low
resource requirements, but since its capabilities did not reach the values we desired, we
made several changes to its design.

As a first step, as we have higher-resolution images, we reduced the number of con-
volutional layers to three in the Backbone section, thus reducing the computational bur-
den and increasing the extraction of features that could be interpreted for the neural net-
work. Furthermore, the number of filters was also reduced to the optimal value, further
improving the detection rate; the value was continuously tested with trainings after each
small modification was made.

The next step was to modify the shortcut layers so that the convolutional layers, be-
fore the YOLO algorithm performed the detection, received the outputs of the convolu-
tional layers in the corresponding Backbone section.

As a final step, the layers in the detector section were finalized by implementing the
following steps. The filter number F of the convolutional layer before the YOLO layers
was determined using the following equation [25,29]: 𝐹 = 3 ∙ (𝐶 + 5), (1)

where C is the number of classes to be detected. We then recalculated the values of the
anchor boxes in the YOLO layers using the k-means++ [39] clustering algorithm. This is
an extremely important step in the design, as the anchor values chosen significantly affects
the accuracy of the detection. The output of the algorithm and the associated Intersection
over Union are illustrated in Figure 10.

Figure 10. Computing new anchor box values using the k-means++ clustering algorithm. The corre-
sponding IoU value is given as 0.8652.

Figure 10. Computing new anchor box values using the k-means++ clustering algorithm. The corre-
sponding IoU value is given as 0.8652.

The final design consists of two main parts: Backbone and Detector. The Backbone
section can be divided into three large blocks, each block containing one 3× 3 convolutional
layer, one Batchnormalization layer, one 4 × 4 and two 2 × 2 Maxpool layers, and one
activation layer. The selected activation function will always be LeakyRELU [40], which
can be expressed as follows:

yi =

{
xi i f xi ≥ 0,
xi
ai

i f xi < 0, (2)

where ai will be a fixed parameter limited to s range (1, +∞).
The detector part consists of two larger subblocks, which also contain 3 × 3 convolu-

tional layers along with the associated Batchnormalization and Shortcut layers. At the end
of each subblock is a YOLO layer with the six anchor box values previously calculated. Each
convolutional layer has an activation function, which in these cases will also be LeakyRELU,
except in the convolutional layer immediately preceding the YOLO layer, which will con-
tain a linear activation function that will perform the prediction. The structure of the
architecture is illustrated in Figure 11.

Robotics 2022, 11, 69 13 of 20

Robotics 2022, 11, x FOR PEER REVIEW 13 of 21

The final design consists of two main parts: Backbone and Detector. The Backbone
section can be divided into three large blocks, each block containing one 3 × 3 convolu-
tional layer, one Batchnormalization layer, one 4 × 4 and two 2 × 2 Maxpool layers, and
one activation layer. The selected activation function will always be LeakyRELU [40],
which can be expressed as follows:

� = � � �� � ≥ 0,�� �� � < 0, (2)

where ai will be a fixed parameter limited to s range (1, +∞).
The detector part consists of two larger subblocks, which also contain 3 × 3 convolu-

tional layers along with the associated Batchnormalization and Shortcut layers. At the end
of each subblock is a YOLO layer with the six anchor box values previously calculated.
Each convolutional layer has an activation function, which in these cases will also be
LeakyRELU, except in the convolutional layer immediately preceding the YOLO layer,
which will contain a linear activation function that will perform the prediction. The struc-
ture of the architecture is illustrated in Figure 11.

Figure 11. Architecture of our proposed detector called Robonet-RT. The Backbone section consists
of three main blocks; the filter numbers of the 3 × 3 convolutional layers found in these will be 32,
128 and 256, respectively, and the values of the padding and stride parameters will be one. The first
MaxPool layer has a 4 × 4 kernel size in Block1. In the detector section, the number of filters in the
convolutional layers will be 256 and 512, respectively, except in Block6, where the value will be 128.
The Upsample layer is 2 × 2; the stride and padding parameters will also take a value of one.

7. Training and Evaluation Process

This section details the training of our proposed detector along with the selected
data-augmentation methods.

The training and validation dataset were constructed as discussed in the previous
sections. The image set obtained after image generation and rendering was divided into
the following major subgroups with the following selected ratios. The training dataset
included 80% of the images and the validation dataset included 20% of the images, total-
ing 28,800 and 7200 images for each image dataset.

As a next step, after the creation of the main datasets, we used additional data-aug-
mentation techniques [41] to make the images as realistic and diverse as possible, thus
improving the accuracy of teaching and avoiding overfitting issues with the deep learning
neural network. The algorithms used and the associated list of parameters are given in
Table 2.

Figure 11. Architecture of our proposed detector called Robonet-RT. The Backbone section consists
of three main blocks; the filter numbers of the 3 × 3 convolutional layers found in these will be 32,
128 and 256, respectively, and the values of the padding and stride parameters will be one. The first
MaxPool layer has a 4 × 4 kernel size in Block1. In the detector section, the number of filters in the
convolutional layers will be 256 and 512, respectively, except in Block6, where the value will be 128.
The Upsample layer is 2 × 2; the stride and padding parameters will also take a value of one.

7. Training and Evaluation Process

This section details the training of our proposed detector along with the selected
data-augmentation methods.

The training and validation dataset were constructed as discussed in the previous
sections. The image set obtained after image generation and rendering was divided into
the following major subgroups with the following selected ratios. The training dataset
included 80% of the images and the validation dataset included 20% of the images, totaling
28,800 and 7200 images for each image dataset.

As a next step, after the creation of the main datasets, we used additional data-
augmentation techniques [41] to make the images as realistic and diverse as possible, thus
improving the accuracy of teaching and avoiding overfitting issues with the deep learning
neural network. The algorithms used and the associated list of parameters are given in
Table 2.

Table 2. Built-in data-augmentation methods with corresponding parameters.

Method Name Parameter

Saturation 1.2
Exposure 1.2
Resizing 1.3

Hue shifting 0.1

After augmentation of the data, the appropriate optimizer algorithm was selected,
which in our case was Adam [42]; the main parameters of momentum and decay were 0.9
and 5 × 10−4.

After selecting the optimizer, additional learning parameters were configured. As a
first step, we selected the right learning rate scheduler to achieve even more accurate and
stable training; in our case, this was the exponential scheduler, which can be described by
the following expression [43]:

LR = LRinitial ·e
− k

epochs , (3)

Robotics 2022, 11, 69 14 of 20

where LRinitial denotes the initial learning rate, k is a hyperparameter and “epochs” denotes
the number of training iterations.

The learning rate and the value of k were determined by running the training multiple
times and dividing the value range logarithmically; as a result, in our case we obtained the
best result for the first parameter at 5 × 10−4 and for the second at 1 × 10−1.

As a next step, we determined the additional learning parameters still needed for
training, which were the burn-in and the maximum epoch number. Burn-in is an extremely
important parameter for detectors based on the YOLO architecture. The purpose of its
application is to gradually increase the learning rate from an initial very low value to
a maximum initial selected value in a finite number of steps, thus keeping optimizer
convergence stable and eliminating various failures that can occur in several cases at the
beginning of the training process, which we often experienced when this setting value
was ignored. In our case, the number of iterations at which the learning rate reaches its
maximum value is 160.

As a final step, the maximum epoch number was determined using the following
equation [25]:

E = 2000·C, (4)

where E is the number of maximal epochs, while C is the number of the detected classes. In
our case, this value will be 16,000 because we have eight detectable objects.

8. Experimental Results of Real-Time Object Detection by Deep Learning

In this section, we summarize and describe the results of the training which the
Robonet-RT, the detector we designed, achieved. The convolutional neural network-based
architecture we composed for the detection aims can be seen in Figure 10.

The loss function of detectors based on the YOLO architecture, which the optimizer
minimizes during training, consists of the following four components [19,44]:

loss = clsLoss + locLoss + con f Lossd + con f Lossm (5)

which are the classification loss, localization loss and confidence loss in two cases.
Classification loss can be defined by the following equation [19,44]:

clsLoss = ∑S2

i=0ıobj
i ∑c∈classes(pi(c)− p̂i(c))

2, (6)

where S2 indicates the number of grids; ıobj
i indicates the existence of the particular object

to be detected in the given cell I, which takes the value of one if the given object actually
occurs, otherwise it will be zero; pi(c) marks the conditional class probability in the case of
c class in every cell i; and p̂i(c) marks the corresponding predicted value.

The localization loss, which gives the difference in position and size of the predicted
boundary boxes, can be obtained from the following relation [19,44]:

locLoss = hcoord

S2

∑
i=0

B

∑
j=0

ıobj
i

[
(xi − x̂i)

2 + (yi − ŷi)
2
]
+ (7)

hcoord

S2

∑
i=0

B

∑
j=0

ıobj
i

[(√
wi −

√
ŵi

)2
+

(√
hi −

√
ĥi

)2
]

, (8)

where ıobj
i similarly means the existence of the given object in the given cell i, and its value

will be 1 if the j-th boundary box in the given cell i is responsible for detecting the object,
otherwise it will take a value of zero. hcoord will provide the appropriate weighted value
for the boundary box coordinates so that the loss function converges during teaching and
the model is stable. The coordinate (x,y) defines the coordinate values of the center of each
cell, S2 denotes the number of grids and B defines the number of predicted boxes in each

Robotics 2022, 11, 69 15 of 20

cell. The w and h notations indicate the width and height of the predicted boxes. x̂, ŷ, ŵ, ĥ
define the values predicted by the mesh.

Confidence loss can be specified in two ways depending on whether the object has
been detected. If detection has occurred, the loss can be expressed as follows [19,44]:

con f Lossd = ∑S2

i=0∑B
j=0ıobj

ij
(
Ci − Ĉi

)
, (9)

where Ĉi denotes the box’s confidence score in each i cell and ıobj
ij , which indicates the

existence of that object, takes a value of one if the j-th boundary box in the given cell i
is responsible for detecting the object, otherwise it takes a value of zero. S2 denotes the
number of grids. B defines the number of predicted boxes in each cell.

If the object was not detected, the loss can be expressed as follows [19,44]:

con f Lossm = λnoobj∑
S2

i=0∑B
j=0ınoobj

ij
(
Ci − Ĉi

)
, (10)

where λnoobj is a weight value and ınoobj
ij indicates the absence of the object. The meanings

of the other notations are the same as those introduced in Equation (9).
The learning curve of the detector is shown in Figure 12. The values of the loss function

are represented by the blue curve, while their validation values are represented by the red
curve on a percentage accuracy scale. Examining the slope of the blue curve, the initial
value of the learning rate and the scheduler were selected appropriately, and, considering
the value of the red validation curve, the deep learning detector was able to achieve the
level of accuracy we expected.

Robotics 2022, 11, x FOR PEER REVIEW 16 of 21

Figure 12. The loss and validation curves of our proposed detector called Robonet-RT during the
training process. The corresponding mean average precision (mAP) values have been calculated in
every hundredth epoch.

The detector has been trained with the maximum values that the video card can still
handle. In our case, this means a batch size of 16 and a minibatch size of 8; the resolution
of the input images was 960 × 512. By increasing the batch size, even more stable and
accurate teaching can be achieved.

The results of the trained detector are summarized in Table 3. The table shows the
detection accuracy of each class with the selected average precision (AP) metric and asso-
ciated true-positive (TP) and false-positive (FP) values. The evaluation was performed on
400 test images of 960 × 512, which were generated completely independently of the im-
ages in the learning and validation dataset. Among the generated images, we also created
one that did not contain any objects; with this, we examined the robustness of our detector
and measured the number of erroneous detections.

Table 3. Quantitative results of our proposed detector, Robonet-RT.

Class ID, Name AP (%) TP FP
Class 0, digit_1 96.02 63 14
Class 1, digit_2 98.95 73 7
Class 2, digit_3 98.22 73 8
Class 3, digit_4 97.81 72 7

Class 4, blue_cube 95.64 75 11
Class 5, red_cube 98.88 73 4

Class 6, empty_cube 99.02 75 2
Class 7, grey_cube 97.65 76 3

Figure 12. The loss and validation curves of our proposed detector called Robonet-RT during the
training process. The corresponding mean average precision (mAP) values have been calculated in
every hundredth epoch.

Robotics 2022, 11, 69 16 of 20

The detector has been trained with the maximum values that the video card can still
handle. In our case, this means a batch size of 16 and a minibatch size of 8; the resolution
of the input images was 960 × 512. By increasing the batch size, even more stable and
accurate teaching can be achieved.

The results of the trained detector are summarized in Table 3. The table shows
the detection accuracy of each class with the selected average precision (AP) metric and
associated true-positive (TP) and false-positive (FP) values. The evaluation was performed
on 400 test images of 960 × 512, which were generated completely independently of the
images in the learning and validation dataset. Among the generated images, we also
created one that did not contain any objects; with this, we examined the robustness of our
detector and measured the number of erroneous detections.

Table 3. Quantitative results of our proposed detector, Robonet-RT.

Class ID, Name AP (%) TP FP

Class 0, digit_1 96.02 63 14
Class 1, digit_2 98.95 73 7
Class 2, digit_3 98.22 73 8
Class 3, digit_4 97.81 72 7

Class 4, blue_cube 95.64 75 11
Class 5, red_cube 98.88 73 4

Class 6, empty_cube 99.02 75 2
Class 7, grey_cube 97.65 76 3

The accuracy of our proposed detector for all classes was also measured with the
following metrics: precision, recall, F1-score and mean average precision (mAP). Their
values were 0.93, 0.93, 0.91 and 0.9865, respectively. We obtained an average detection rate
of 12.65 ms, which translates into 79 frames per second when converted to frames, which
satisfies the requirement of real-time operation.

The trained detector was also tested for several types of real images, the instance
output results of which are shown in Figures 13–15. Despite the fact that the initial dataset
consisted only of generated images during the training, our deep learning-based detector
was able to achieve acceptable accuracy levels even with images in different lighting
conditions by recognizing the objects belonging to each class.

Robotics 2022, 11, x FOR PEER REVIEW 17 of 21

The accuracy of our proposed detector for all classes was also measured with the
following metrics: precision, recall, F1-score and mean average precision (mAP). Their
values were 0.93, 0.93, 0.91 and 0.9865, respectively. We obtained an average detection
rate of 12.65 ms, which translates into 79 frames per second when converted to frames,
which satisfies the requirement of real-time operation.

The trained detector was also tested for several types of real images, the instance
output results of which are shown in Figures 13–15. Despite the fact that the initial dataset
consisted only of generated images during the training, our deep learning-based detector
was able to achieve acceptable accuracy levels even with images in different lighting con-
ditions by recognizing the objects belonging to each class.

Figure 13. Objects detected by the Robonet-RT detector, with probability values for each class.

Each object to be sorted is located in its own place.

Figure 13. Objects detected by the Robonet-RT detector, with probability values for each class.

Robotics 2022, 11, 69 17 of 20

Each object to be sorted is located in its own place.

Robotics 2022, 11, x FOR PEER REVIEW 18 of 21

Figure 14. Objects detected by the Robonet-RT detector, with probability values for each class.

Compared to Figure 13, the position of objects has changed.

Figure 15. Objects detected by the Robonet-RT detector, with probability values for each class.

The detector was able to detect all objects even in high-illumination conditions.
The detector was trained and tested on a desktop computer with a Ryzen 1700 CPU,

64 GB DDR4 RAM and Nvidia GPU RTX2070.

9. Conclusions
The Sony SCARA SRX-611 industrial robot unit in the Cyber-Physical and Intelligent

Robot Systems Laboratory was used for deep learning with “smart” validation. The set of
basic data for training the neural network was provided by a series of images generated

Figure 14. Objects detected by the Robonet-RT detector, with probability values for each class.

Compared to Figure 13, the position of objects has changed.

Robotics 2022, 11, x FOR PEER REVIEW 18 of 21

Figure 14. Objects detected by the Robonet-RT detector, with probability values for each class.

Compared to Figure 13, the position of objects has changed.

Figure 15. Objects detected by the Robonet-RT detector, with probability values for each class.

The detector was able to detect all objects even in high-illumination conditions.
The detector was trained and tested on a desktop computer with a Ryzen 1700 CPU,

64 GB DDR4 RAM and Nvidia GPU RTX2070.

9. Conclusions
The Sony SCARA SRX-611 industrial robot unit in the Cyber-Physical and Intelligent

Robot Systems Laboratory was used for deep learning with “smart” validation. The set of
basic data for training the neural network was provided by a series of images generated

Figure 15. Objects detected by the Robonet-RT detector, with probability values for each class.

The detector was able to detect all objects even in high-illumination conditions.
The detector was trained and tested on a desktop computer with a Ryzen 1700 CPU,

64 GB DDR4 RAM and Nvidia GPU RTX2070.

9. Conclusions

The Sony SCARA SRX-611 industrial robot unit in the Cyber-Physical and Intelligent
Robot Systems Laboratory was used for deep learning with “smart” validation. The

Robotics 2022, 11, 69 18 of 20

set of basic data for training the neural network was provided by a series of images
generated and rendered by its own 3D model through virtual scanning. To produce this,
the machines in the laboratory were used, which performed the computational tasks
separately. Subsequently, augmentation methods were performed on the dataset, and then
functions were called for training. Real-time object detection was also performed, the
values of which were displayed in both graphical and tabular formats. We also measured
our proposed detector performance in real images in different situations, such as with
missing objects and various lighting conditions.

The performance of the detector may decrease if the background lighting changes
extremely or if the quality of the images is reduced. To detect new objects, a repeated
learning process is required, but the training does not require much time. It is important
that the dataset created by data synthesis be similar to the real images and covers many
cases so the detector can learn and recognize real objects with reasonable accuracy.

With the solution described here, it has become possible for the Sony SCARA SRX-611
to perform control tasks with emulation on modern hardware, and the neural network
created and trained can be used to detect specific objects running on the assembly line. The
actual hardware specifications of the robot do not prevent this from being done, as object
detection happens as an independent, detached part.

Author Contributions: T.P.K. and T.I.E. conducted the research, established the methodology and de-
signs, and participated in the writing of the paper; G.H. and A.H. carried out the formal analysis and
a review of the paper. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the project TKP2020-NKA-04 and has been imple-
mented with support provided by the National Research, Development, and Innovation Fund of
Hungary, financed under the 2020-4.1.1-TKP2020 funding scheme.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors would like to thank confidential reviewers and the editor for their
helpful comments and suggestions. Thanks to the Doctoral School of Informatics of the University of
Debrecen and the Department of Air and Road Vehicles of the Faculty of Engineering. Special thanks
to Roland Décsei, who is helping with the developments in the Robot Lab.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Erdei, T.I.; Molnár, Z.; Obinna, N.C.; Husi, G. A Novel Design of an Augmented Reality Based Navigation System & its Industrial

Applications. In Proceedings of the 15th IMEKO TC10—Technical Diagnostics in Cyber-Physical Era, Budapest, Hungary,
6–7 June 2017.

2. Tikhonova, A.V. Modeling the Social Consequences of Industrial Robotization. In Proceedings of the 2nd International Scien-
tific and Practical Conference on Digital Economy (ISCDE 2020), Yekaterinburg, Russia, 5–6 November 2020; Atlantis Press:
Yekaterinburg, Russia, 2020.

3. Xu, Z.; Zhou, X.; Li, S. Deep Recurrent Neural Networks Based Obstacle Avoidance Control for Redundant Manipulators. Front.
Neurorobot. 2019, 13, 47. [CrossRef] [PubMed]

4. Li, X.; Xu, Z.; Li, S.; Su, Z.; Zhou, X. Simultaneous Obstacle Avoidance and Target Tracking of Multiple Wheeled Mobile Robots
with Certified Safety. IEEE Trans. Cybern. 2021, 1–15. [CrossRef] [PubMed]

5. Xu, Z.; Zhou, X.; Wu, H.; Li, X.; Li, S. Motion Planning of Manipulators for Simultaneous Obstacle Avoidance and Target Tracking:
An RNN Approach with Guaranteed Performance. IEEE Trans. Ind. Electron. 2021, 69, 3887–3897. [CrossRef]

6. He, Y.; Li, X.; Xu, Z.; Zhou, X.; Li, S. Collaboration of multiple SCARA robots with guaranteed safety using recurrent neural
networks. Neurocomputing 2021, 456, 1–10. [CrossRef]

7. SCARA Robots: Robot Hall of Fame. Available online: http://www.robothalloffame.org/inductees/06inductees/scara.html
(accessed on 18 February 2022).

8. SONY SCARA SRX—11. High-Speed Assembly Robot, Operation Manual; SONY Corporation: Tokyo, Japan, 1996.
9. PARO QE 01 31-6000. Manual of the Modular Conveyor; PARO AG: Subingen, Switzerland, 2016.

http://doi.org/10.3389/fnbot.2019.00047
http://www.ncbi.nlm.nih.gov/pubmed/31333442
http://doi.org/10.1109/TCYB.2021.3070385
http://www.ncbi.nlm.nih.gov/pubmed/33961580
http://doi.org/10.1109/TIE.2021.3073305
http://doi.org/10.1016/j.neucom.2021.05.049
http://www.robothalloffame.org/inductees/06inductees/scara.html

Robotics 2022, 11, 69 19 of 20

10. DataSheet: USB Bus Convert Chip CH341. Available online: http://www.anok.ceti.pl/download/ch341ds1.pdf (accessed on
27 February 2022).

11. Feng, X. Towards Real-Time Enabled Microsoft Windows. In Proceedings of the 5th ACM International Conference on Embedded
Software, Jersey City, NJ, USA, 18–22 September 2005; pp. 142–146.

12. Shirvaikar, M.; Satyala, N. A Virtual Machine Environment for Real Time Systems Laboratories. In Proceedings of the Conference:
ASEE Conference and Exhibition, Honolulu, HI, USA, 24–27 June 2007.

13. Lenovo: ThinkCentre M93p Mini Tower. Available online: https://www.lenovo.com/hu/hu/desktops/thinkcentre/m-series-
towers/ThinkCentre-M93P/p/11TC1TMM93P (accessed on 10 March 2022).

14. Xu, H.; Badawi, R.; Fan, X.; Ren, J.; Zhang, Z. Research for 3D visualization of Digital City based on SketchUp and ArcGIS. In
Proceedings of the SPIE—the International Society for Optical Engineering, Wuhan, China, 14 October 2009.

15. Takala, T.M.; Mäkäräinen, M.; Hämäläinen, P. Immersive 3D Modeling with Blender and off-the-shelf Hardware. In Proceedings
of the 3D User Interfaces (3DUI), 2013 IEEE Symposium, Orlando, FL, USA, 16–17 March 2013.

16. Lenovo:ThinkCentre M92p Tower. Available online: https://www.lenovo.com/gb/en/desktops/thinkcentre/m-series-tiny/m9
2p/ (accessed on 20 April 2022).

17. LabelImg. Available online: https://github.com/tzutalin/labelImg (accessed on 6 May 2018).
18. Casuat, C.D.; Merencilla, N.E.; Reyes, R.C.; Sevilla, R.V.; Pascion, C.G. Deep-Hart: An Inference Deep Learning Approach of Hard

Hat Detection for Work Safety and Surveillanc. In Proceedings of the 2020 IEEE 7th International Conference on Engineering
Technologies and Applied Sciences (ICETAS), Kuala Lumpur, Malaysia, 18–20 December 2020.

19. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

20. Ren, X.; Zhang, W.; Wu, M.; Li, C.; Wang, X. Meta-YOLO: Meta-Learning for Few-Shot Traffic Sign Detection via Decoupling
Dependencies. Appl. Sci. 2022, 12, 5543. [CrossRef]

21. Houben, S.; Stallkamp, J.; Salmen, J.; Schlipsing, M.; Igel, C. Detection of traffic signs in real-world images: The German Traffic
Sign Detection Benchmark. In Proceedings of the 2013 International Joint Conference on Neural Networks (IJCNN), Dallas, TX,
USA, 4–9 August 2013; pp. 1–8. [CrossRef]

22. He, K.; Zhang, X.; Ren, S.; Sun, J. Traffic-Sign Detection and Classification in the Wild. In Proceedings of the 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; p. 2110.

23. Ertler, C.; Mislej, J.; Ollmann, T.; Porzi, L.; Neuhold, G.; Kuang, Y. The Mapillary Traffic Sign Dataset for Detection and Clas-
sification on a Global Scale. In Lecture Notes in Computer Science, Proceedings of the ECCV 2020, Glasgow, UK, 23–28 August 2020;
Springer: Cham, Switzerland, 2020; p. 12368.

24. Yuan, S.; Du, Y.; Liu, M.; Yue, S.; Li, B.; Zhang, H. YOLOv5-Ytiny: A Miniature Aggregate Detection and Classification Model.
Electronics 2022, 11, 1743. [CrossRef]

25. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934.
26. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of

the 2016 European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 8–16 October 2016; p. 21.
27. Al-Qaness, M.A.A.; Abbasi, A.A.; Fan, H.; Ibrahim, R.A.; Alsamhi, S.H.; Hawbani, A. An improved YOLO-based road traffic

monitoring system. Computing 2021, 103, 211–230. [CrossRef]
28. Mao, W.-L.; Chiu, Y.-Y.; Lin, B.-H.; Wang, C.-C.; Wu, Y.-T.; You, C.-Y.; Chien, Y.-R. Integration of Deep Learning Network and

Robot Arm System for Rim Defect Inspection Application. Sensors 2022, 22, 3927. [CrossRef] [PubMed]
29. Adarsh, P.; Rathi, P.; Kumar, M. YOLO v3-Tiny: Object Detection and Recognition using one stage improved model. In

Proceedings of the 6th Inter-national Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore,
India, 6–7 March 2020.

30. Radford, A.; Metz, L.; Chintala, S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial
Networks. arXiv 2016, arXiv:1511.06434.

31. Al-Alimi, D.; Shao, Y.; Feng, R.; Al-Qaness, M.A.A.; Elaziz, M.A.; Kim, S. Multi-Scale Geospatial Object Detection Based on
Shallow-Deep Feature Extraction. Remote Sens. 2019, 11, 2525. [CrossRef]

32. Cheng, G.; Zhou, P.; Han, J. Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical
Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7405–7415. [CrossRef]

33. Han, X.; Zhong, Y.; Zhang, L. An Efficient and Robust Integrated Geospatial Object Detection Framework for High Spatial
Resolution Remote Sensing Imagery. Remote Sens. 2017, 9, 666. [CrossRef]

34. Xu, Z.; Xu, X.; Wang, L.; Yang, R.; Pu, F. Deformable ConvNet with Aspect Ratio Constrained NMS for Object Detection in Remote
Sensing Imagery. Remote Sens. 2017, 9, 1312. [CrossRef]

35. Fu, C.Y.; Liu, W.; Ranga, A.; Tyagi, A.; Berg, A.C. DSSD: Deconvolutional Single Shot Detector. 2017. Available online:
https://arxiv.org/abs/1701.06659 (accessed on 12 May 2022).

36. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June
2018; pp. 4510–4520.

http://www.anok.ceti.pl/download/ch341ds1.pdf
https://www.lenovo.com/hu/hu/desktops/thinkcentre/m-series-towers/ThinkCentre-M93P/p/11TC1TMM93P
https://www.lenovo.com/hu/hu/desktops/thinkcentre/m-series-towers/ThinkCentre-M93P/p/11TC1TMM93P
https://www.lenovo.com/gb/en/desktops/thinkcentre/m-series-tiny/m92p/
https://www.lenovo.com/gb/en/desktops/thinkcentre/m-series-tiny/m92p/
https://github.com/tzutalin/labelImg
http://doi.org/10.3390/app12115543
http://doi.org/10.1109/ijcnn.2013.6706807
http://doi.org/10.3390/electronics11111743
http://doi.org/10.1007/s00607-020-00869-8
http://doi.org/10.3390/s22103927
http://www.ncbi.nlm.nih.gov/pubmed/35632335
http://doi.org/10.3390/rs11212525
http://doi.org/10.1109/TGRS.2016.2601622
http://doi.org/10.3390/rs9070666
http://doi.org/10.3390/rs9121312
https://arxiv.org/abs/1701.06659

Robotics 2022, 11, 69 20 of 20

37. Dai, J.; Li, Y.; He, K.; Sun, J. R-FCN: Object Detection via Region-based Fully Convolutional Networks. In Advances in Neural
Information Processing Systems; Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook,
NY, USA, 2016; Volume 29.

38. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer
Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988.

39. Arthur, D.; Vassilvitskii, S. K-Means++: The Advantages of Careful Seeding; Society for Industrial and Applied Mathematics:
Philladelphia, PA, USA, 2007; Volume 8, pp. 1027–1035.

40. Khalid, M.; Baber, J.; Kasi, M.K.; Bakhtyar, M.; Devi, V.; Sheikh, N. Empirical Evaluation of Activation Functions in Deep
Convolution Neural Network for Facial Expression Recognition. In Proceedings of the 43rd International Conference on
Telecommunications and Signal Processing (TSP), Milan, Italy, 7–9 July 2020; pp. 204–207.

41. Perez, L.; Wang, J. The Effectiveness of Data Augmentation in Image Classification using Deep Learning. arXiv 2017, arXiv:1712.04621.
42. Kingma, D.P.; Ba, J. A Method for Stochastic Optimization. arXiv 2015, arXiv:1412.6980.
43. Li, Z.; Arora, S. An Exponential Learning Rate Schedule for Deep Learning. arXiv 2019, arXiv:1910.07454.
44. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525.

	Introduction
	SONY SCARA SRX-611 Robot Unit
	Robot Control and Programming Language
	3D CAD Modelling of SONY SCARA SRX-611
	Generating Dataset Images Using Rendering Techniques
	Architecture of the Proposed Deep Learning Algorithm
	Training and Evaluation Process
	Experimental Results of Real-Time Object Detection by Deep Learning
	Conclusions
	References

