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Abstract: Mobile robots that are capable of multiple modes of locomotion may have tangible ad-
vantages over unimodal robots in unstructured and non-homogeneous environments due to their
ability to better adapt to local conditions. This paper specifically considers the use of a team of
multimodal robots capable of switching between aerial and terrestrial modes of locomotion for
wilderness search and rescue (WiSAR) scenarios. It presents a novel search planning method that
coordinates the members of the robotic team to maximize the probability of locating a mobile target
in the wilderness, potentially, last seen on an a priori known trail. It is assumed that the search area
expands over time and, thus, an exhaustive search is not feasible. Earlier research on search planning
methods for heterogeneous though unimodal search teams have exploited synergies between robots
with different locomotive abilities through coordination and/or cooperation. Work on multimodal
robots, on the other hand, has primarily focused on their mechanical design and low-level control. In
contrast, our recent work, presented herein, has two major components: (i) target-motion prediction
in the presence of a priori known trails in the wilderness, and (ii) probability-guided multimodal
robot search-trajectory generation. For the former sub-problem, the novelty of our work lies in the
formulation and use of 3D probability curves to capture target distributions under the influence of a
priori known walking/hiking trails. For the latter, the novelty lies in the use of a tree structure to rep-
resent the decisions involved in multimodal probability-curve-guided search planning, which enables
trajectory generation and mode selection to be optimized simultaneously, for example, via a Monte
Carlo tree search technique. Extensive simulations, some of which are included herein, have shown
that multimodal robotic search teams, coordinated via the trajectory planning method proposed in
this paper, clearly outperform their unimodal counterparts in terms of search success rates.

Keywords: multimodal robots; autonomous mobile-target search; wilderness search and rescue;
iso-probability curves; Monte Carlo tree search

1. Introduction

Mobile robots capable of multiple modes of locomotion, known as multimodal robots,
may outperform their unimodal counterparts on tasks in complex environments with
spatially varying traversability and target visibility [1]. Examples of multimodal robots
include aerial–aquatic robots inspired by water beetles or seabirds [2–4], gliding-climbing
robots that mimic flying squirrels [5,6], amphibious robots [7–10], and aerial–terrestrial
robots [11–13].

Although a myriad of mechanical solutions for multimodal robots has been pro-
posed [14,15], many of these systems have been developed to demonstrate the feasibility
of bio-inspired designs, though lacking focused applications. As a result, such systems
are, typically, limited to low technology-readiness levels, where mechanical design and
low-level control have been the main focus of research. The potential of these multimodal
systems can, thus, only be fully realized by considering deployment and planning methods
tailored towards specific applications to leverage their adaptability.
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This paper considers the deployment and search planning of a team of multimodal
aerial–terrestrial robots in the context of wilderness search and rescue (WiSAR). An im-
portant part of formulating a WiSAR plan is generating probabilistic predictions of the
lost person’s whereabouts, based on which an informed search can then be planned. Lost
person behaviour has been studied extensively to predict how a lost person might behave,
and Section 1.1 discusses literature that addresses the tendency to follow trails in the
wilderness, which is one of the factors that is known to impact lost person behaviour.

Although this paper considers the use of multimodal search agents in WiSAR, liter-
ature that addresses this topic is very limited to none, to the best of our knowledge. To
understand how WiSAR may benefit from a search team with both aerial and terrestrial
locomotion capabilities, we reviewed works on a closely related topic of search planning
for heterogeneous search teams with unmanned aerial vehicles (UAVs) and unmanned
ground vehicles (UGVs) in WiSAR in Section 1.2. Some works related to multimodal path
planning in non-SAR scenarios are discussed in Section 1.3. Lastly, the novelties of this
paper are delineated in Section 1.4.

1.1. Influence of Trails on Lost Person Behaviour

Trails are natural choices of paths for a person in the wilderness since they tend to be
easier to traverse than off-trail areas potentially covered in vegetation and obstacles. As
such, knowledge of existing trails in a search area (such as National Parks) could provide
searchers with invaluable information on a lost person’s potential whereabouts. However,
only 27% of lost hikers reported in the International Search & Rescue Incident Database
were found on trails and other linear features [16], suggesting that it would be inadequate
to assume lost persons always remain on-trail and that it is important to understand how
trails influence a lost person’s travel.

In order to study how a person lost in the wilderness may strategize his/her travel in
an attempt to re-orient themselves, [17] conducted structured interviews with lost persons
shortly after their rescue. In doing so, several behavioural patterns emerged that revealed
how trails provide guidance to lost persons in the wilderness, one of which is the route-
travelling strategy. Targets who employ such a strategy would travel along a trail, away
from the LKP, with the hope that it would guide them toward somewhere familiar or safe.
Although, at some point in time, the target might give up on following the trail and start
wandering randomly off-trail instead. Believing that safety lies ahead, they are, usually,
reluctant to reverse their direction to go back to where they started. The work in [18]
and [19] identified this pattern of trail-following followed by abandoning the trail, when
analyzing global positioning system (GPS) track logs retrieved from an online database
and collected through an experiment with ten participants.

Based on the qualitative behavioral pattern that emerged from lost-person behaviour,
several models have been proposed. In [20], the authors modelled route-travelling be-
haviour in a grid map, in which the target may move into neighbouring cells that align
with the direction of the trail. While the tendency to follow nearby trails is captured in
the model, the potential that the lost person would depart from the trail somewhere along
it is omitted. The work in [19] proposes a detailed model that incorporates the effects of
re-orientation strategy, perception, and environment. In their model, the route-travelling
strategy is considered as part of a larger category of strategy in which the target’s heading
is not influenced by the intention to go to a specific point. The target’s preference to stay
on-trail is incorporated into a transition table that attracts the target to move towards or
continue on a trail in sight, while the behaviour of abandoning the trail is modelled as a
change in re-orientation strategy potentially triggered by events including, but not limited
to, coming to the end of a trail and seeing a landmark of interest.

1.2. Heterogeneous UAV-UGV Teams in WiSAR

Search agents with various sensing and locomotion capabilities, such as static sensor
networks, UAVs, and UGVs, have been proposed for search and rescue (SAR) applica-
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tions [21–36]. Specifically, the use of UAVs has received significant attention due to their
mobility and ability to collect information from a high vantage point. In WiSAR, however,
the perception of targets on the ground poses a challenge to UAVs due to limited sensing
resolution and potential occlusions, such as tree canopy and fog.

Some researchers have also proposed techniques such as thermal imaging [37] and
the use of aerial locomotion under canopy to enhance UAV capabilities [38]. Others have
proposed the use of heterogeneous UAV-UGV teams to exploit synergies between their
complementary characteristics in perception, mobility, payload, and battery life.

In [26], for example, a heterogeneous UAV-UGV team is used to carry out delivery
tasks with different payloads, urgency levels, and destinations in a WiSAR scenario. Con-
sidering the task characteristics and the capabilities of the heterogeneous team members,
the tasks are allocated amongst the agents to effectively utilize the agents. The work in [39]
outlines a cooperation framework for humans, UAVs, and UGVs in alpine WiSAR scenarios.
In this framework, UAVs utilize their superior maneuverability and high vantage point
for patrolling, surveillance, and mapping, while UGVs act as transportation carriers and
charging docks for the UAVs. In [35], both UAVs and UGVs actively search for the target
in a coordinated manner, though once a potential target is detected by a UAV, a UGV in
the team is dispatched to confirm the detection. As such, the search is able to benefit from
UAVs’ fast and large area coverage, while potential false–positive detections by UAVs are
verified by UGVs. Although the cooperative and coordinated use of aerial and terrestrial
locomotion has been considered in search planning for heterogeneous UAV-UGV teams,
search planning for a team of multimodal aerial–terrestrial agents has not been explored to
the best of our knowledge.

1.3. Multimodal Path Planning

Beyond the realm of SAR, multimodal path-planning for robotic agents has also been
proposed. For example, in [40], drones that can choose between flying and riding on top of
vehicles during their journey to a destination are considered. A shortest-path algorithm
on a time-dependent directed cyclic graph is used at the top of the hierarchical planning
framework to decide the locomotion mode for different parts of the journey, while an inner
layer executes the decisions and handles control under uncertainty. In [41], a bimodal robot
is considered in an environment comprising regions that can only be traversed in a specific
locomotion mode. Nodes are sampled in the environment with the constraint that no
edges can cross region boundaries, resulting in a graph in which visiting a node on region
boundaries corresponds to a switch in modality. In [42], energy- and time-efficient path
planning for a group of mobile robots capable of driving and flying, each with a unique
starting position and destination, is considered. Two methods are proposed: (i) A fast but
non-optimal method that assigns priority to robots and plans a collision free path for each
robot in the order of their priority; and (ii) a method that produces optimal solutions with
integer linear programming.

1.4. Contribution

In this paper, we consider the deployment and search planning of a multimodal aerial–
terrestrial robot team in wilderness search and rescue (WiSAR) scenarios. We utilize iso-
probability curves as an efficient representation of probabilistic information on the target’s
whereabouts to guide search planning [43,44]. Briefly stated, in a polar coordinate system
centered at the lost person’s last known position (LKP), iso probability curves delimit the
radial distance of the closest qth percentile target to the LKP at any given angular position
and time. Iso-probability curves form time-dependent continuous contours encircling the
LKP, and searches guided by iso-probability curves have been proven effective in similar
WiSAR scenarios [22,31,32,35,45–49].

The search planning method proposed herein is novel in two primary ways, as detailed
below. First, it uses 3D iso-probability curves to capture target distributions under the
influence of a priori known walking/hiking trails, modelled on the basis of the route-
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travelling re-orientation strategy. Due to the tendency to follow trails, it might be more
likely to find the target when searching on or around the trail, and this 3D iso-probability
curve representation differs from the original iso-probability curves in that we are able
to represent the probability of finding the target at different angular positions along the
original probability curves encircling the LKP.

Secondly, the new method simultaneously optimizes trajectory waypoints and locomo-
tion modes, in Monte Carlo tree search (MCTS), using a tree structure to represent decisions
involved in multimodal iso-probability-curve-guided search trajectory planning. Previous
works on heterogeneous UAV-UGV search teams have demonstrated that WiSAR may ben-
efit from the utilization of multiple modes of locomotion. Instead of using a heterogeneous
team consisted of unimodal agents capable of different modes of locomotion as addressed
in previous works, the method differs in that it addresses search planning for a team of
multimodal search agents in a WiSAR scenario. This problem is challenging in that mode
selection needs to be considered alongside path-planning, while ensuring that the overall
objective of maximizing the chance of finding the target is achieved.

The proposed multimodal search planning method utilizes 3D iso-probability curves
to capture the target distribution resulting from route-travelling strategy, though the 3D
curve formulation is not specific to the route-travelling strategy. Namely, the 3D curve
formulation can be used to represent distributions generated by other target motion models,
and the resulting 3D curves can be used in the proposed curve-guided multimodal search
planning method.

2. The Search Problem

This paper considers a WiSAR scenario in which a mobile target is to be located in
a wilderness environment with a priori known trails and obstacles, within a pre-defined
period of search time, starting at tstart and ending at tend. The subsequent operations,
including rescue of the found target, are beyond the scope of this paper.

Since the target remains mobile throughout the duration of the search, the expanding
search area cannot be exhaustively searched with the limited resources available. Thus, the
goal of search planning is to maximize the probability of finding the lost person within the
search time.

2.1. Assumptions

This paper makes several assumptions regarding the lost person, also referred to
herein as the target, and the multimodal search agents.

2.1.1. The Target

When a person is reported missing, an SAR agency builds a lost person’s profile,
which can include but is not limited to the target’s LKP, demographic information, pos-
sible destinations, and familiarity with the area [16]. SAR texts frequently highlight the
importance of conducting thorough information-gathering because it forms the basis of the
search planning process [16,50,51]. For example, utilizing semantic information about the
search space [52] and accounting for target motion as a result of drift in maritime search
and rescue [53] have been shown to improve search performance.

With the information collected, a lost-person motion model can yield a probabilistic
prediction of the target’s whereabouts, based on which the search operations are planned.
Herein, it is assumed that the target’s LKP was on a trail in a wilderness setting, in
accordance with the route-travelling strategy described in [16]. It is also assumed that the
target neither evades nor cooperates with the search operations.

2.1.2. The Search Agents

Aerial locomotion is, typically, more energy-demanding than would terrestrial lo-
comotion. As a result, how much each mode is utilized would dictate overall energy
consumption and how long robots could operate. Herein, it is assumed that all robots have
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enough energy to sustain the search operations for the entire search duration, irrespective
of how much each locomotion mode is utilized. In addition, mode transition times are
assumed to be negligible (i.e., instantaneous mode transitions) and can take place any-
where in the search space. Throughout the search, search agents can also perform global
positioning and maintain communications with a central search planner.

As the search agents travel along their respective trajectories, on-board sensors con-
tinuously monitor the areas for target presence. Multimodal robots’ travel speeds and
sensing ranges may differ as they switch between locomotion modes. Herein, let vA and
vG denote the travel speeds and let rA and rG denote the detection radii in aerial and
ground/terrestrial modes, respectively, where vA > vG and rA > rG, consistent with
how current aerial robots and terrestrial robots generally compare, although the proposed
method is not constrained by these assumptions.

Regarding the robots’ sensing capabilities, we assume a binary disk sensing model,
in which the robot can detect a target within its detection range, as long as the target is
visible to the searcher. In an area with tree canopy, the searcher’s view of the ground could
be partially occluded in aerial mode. This paper assumes the availability of two time-
independent visibility maps that inform the search planner of a priori known occlusions in
aerial and terrestrial modes.

Although aerial mode offers a high vantage view that covers a large area, one may
note that increasing this area viewed by the camera may result in increasing difficulty in
target detection with high confidence due to limited sensing resolution. When a potential
sighting of the target is identified in aerial mode, the searcher may transition to terrestrial
mode and intercept the target on the ground to confirm the detection. If the detection is
confirmed to be a true-positive, the search ends. Otherwise, the search continues. Although
the aerial detection, mode-transition, and ground interception sequence described above is
not addressed herein, in practice, it may be implemented to deal with detection uncertainty
due to limited resolution and high vantage point in aerial mode.

2.1.3. Search Planning

Trajectories for the multimodal search agents need to be planned offline between the
time that the SAR agency receives the lost-person report to the time that they are deployed.
This, primarily, entails deciding where to search and which locomotion mode to employ
along the search trajectories in order to maximize probability of success (PoS).

PoS can be expressed as the joint probability of the following events that:

1. The target is in a specific area being searched. The probability of this event is known
as probability of area (PoA) and it depends on the target’s motion, which is estimated
by a target motion model; and,

2. A searcher can detect the target, given that the target is in the area searched. The
probability of this event is known as probability of detection (PoD) and it depends on
how the plan utilizes search resources in the area.

An optimal search plan that maximizes PoS would require that all areas in the search
space receive a level of coverage, from search agents, that is proportional to their probability
density, defined as PoA per unit area [54]. This search plan achieves a balance between
exploration and exploitation by proportionally, allocating more search effort to areas with
higher likelihoods of target presence, at the same time ensuring that search efforts are also
distributed to areas with lower likelihoods of target presence. However, such a search plan
might require the agents to move instantaneously from one place to another in order to
achieve proportionality between coverage and probability density. Disregarding the travel-
time expenditure when formulating a search plan could result in significant discrepancies
between the planned trajectory and the actual trajectory when executing the plan. Thus,
this method of allocating search effort proportional to PoA is not operationally feasible
since the robots move at finite speeds.

Thus, this paper utilizes iso-probability curves that form time-dependent continuous
contours around the LKP to guide search trajectories [43,44]. They have some characteristics
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that make them useful in search planning. For example, they evolve over time to reflect the
motion of a mobile target. Also, by definition, the curve density at different percentiles re-
flect the probability of target location in the corresponding percentile regions. Furthermore,
searches guided by iso-probability curves have been proven effective in similar WiSAR
scenarios [22,31,32,35,45–49]. Further background information on iso-probability curves is
provided in Section 2.2.

As such, in this paper, two problems are addressed: the first problem addressed is one
of extending the iso-probability curve formulation to capture the influence of trails on the
target’s probability distribution in the search space, Section 3.1. The second problem ad-
dressed is one of planning a multi-modal iso-probability curve-guided search to maximize
the probability of finding the target within the allotted search time, Section 3.2.

2.2. Background

This section provides relevant, though brief, background information on iso-probability
curves and Monte Carlo tree search.

2.2.1. Iso-Probability Curves

First proposed in [43], iso-probability curves delimit boundaries of target propagation
in the direction radially outward from the LKP with the expanding search area, forming
time-dependent 2D contours that encircle the LKP as shown in Figure 1.
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Let us consider a target location density function in polar coordinates, ρp(r, θ, t),
which describes the target probability distribution in the search space at time t. The target
distribution along a ray, emanating outward from LKP, at angular position θ at time t can,
then, be expressed as:

f (r|θ, t) =
ρp(r, θ, t)∫ ∞

0 ρp(r̃, θ, t)dr̃
, (1)

where the corresponding cumulative distribution function (CDF) is:

F(r|θ, t) =
∫ r

0
f(r̃|θ, t)dr̃. (2)

Above, the qth percentile iso-probability curve is defined in polar coordinates as(
F−1(q|θ, t), θ

)
∀θ ∈ [0, 2π], where F−1(q |θ , t) is the inverse CDF.

The 2D iso-probability curves are fully define by radial target distributions, f (r|θ, t).
As such, there is no means to capture non-uniform angular target distributions with this
formulation. Thus, this limits the applicability of iso-probability curves, in their original
form, to search areas with trails and linear features, where the target might have preferred
directions of travel.
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2.2.2. Monte Carlo Tree Search

Monte Carlo tree search (MCTS) is a best-first tree search method that uses the results
of stochastic simulations to direct tree growth to focus on more promising regions of the
tree [55]. In contrast to brute force search methods that exhaustively search all regions of
the tree, a best-first tree search method, like MCTS, does not guarantee solution optimality,
though it has a lower time complexity and memory demand. In addition, successful ap-
plications of MCTS, in a wide range of game and non-game domains have demonstrated
its power and versatility. In particular, its versatility can be attributed to the fact that it
is a generic algorithm applicable to any problem that can be modelled using a tree struc-
ture. Namely, it can grow a tree and make decisions based on accumulated statistics of
random samples taken in the solution space without the need of domain-specific knowl-
edge. However, incorporating domain-specific knowledge into MCTS has been shown
to improve solution quality [55–58]. The progressive bias variant is one such approach
that applies domain-specific knowledge as heuristic functions to bias the selection towards
more promising actions [57].

3. Proposed Method

This section describes our proposed methodology to address the problems outlined
in Section 2 above. The problem of target-motion prediction in the presence of trails in
the wilderness, along with a 3D iso-probability curve formulation to capture the resulting
distribution, is detailed in Section 3.1, and the problem of multimodal search planning is
detailed in Section 3.2, respectively.

3.1. Target-Motion Prediction

Numerous past behavioral studies reveal how a lost person’s movements might be
influenced by the presence of travel aids in the environment, such as walking/hiking trails,
streams, railway tracks, and drainages [16,17,50,59]. From a qualitative description of
the route-travelling strategy discussed in Section 1.1, herein, we construct a model that
replicates this behavior (Section 3.1.1). Based on this model, predictions on lost-person
motion can be generated to inform the search planning process. In order to represent the
predictions in a form that will be useful to the search planner, Section 3.1.2 proposes the
use of 3D iso-probability curves—an upgraded version of the iso-probability curves first
introduced in [43].

3.1.1. Target Motion Modelling in an Environment with Trails

Herein, we adapt the target motion model first described in [21], assuming the lost
person’s LKP is on a trail and considering the potential that the lost person might depart
from the trail after a while. The target’s path is modelled with connected line segments that
are initially aligned with the trail, though, eventually may wander off the trail. At the end
of each line segment is a decision point where the target can decide on:

1. The length of the next segment, d, where the lengths are uniformly distributed between
0 and dmax:

d ∼ U(0, dmax), (3)

and,
2. The heading of the next segment, where

a. For a target that is on-trail, its decision on whether it will depart from the trail
at a decision point is modelled as a Bernoulli trial with a probability of staying
on-trail being pstay:

e ∼ B
(
1, pstay

)
. (4)
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If the target decides to stay on trail (i.e., e = 1), the next heading will continue
to be aligned with the trail. If the target decides to leave the trail (i.e., e = 0),
the next heading will be selected from the following distribution:

θ ∼ U(φ− π/4, φ + π/4), (5)

where φ is the target’s angular position in a polar coordinate system centered
at the LKP. This heading distribution models the target’s tendency to start
wandering away from the LKP after deciding to stop following the trail. The
±p/4 range includes all headings with a radial component larger than the
tangential component, which would move the target radially away from LKP
while limiting travel in the tangential direction.

b. For a target that is already off-trail, the target continues to wander away from
the LKP as modelled in [35]. The next heading would be selected from the
following distribution:

θ ∼ N
(

φ, σ2
)

, (6)

where σ is a measure of how much the target wanders, as defined in [35].

Above, dmax determines the maximum distance the target travels until they change
their heading, which can be interpreted as a measure of the target’s persistence, pstay. This
parameter determines how likely the target will choose to stay on the trail at decision
points, which can be interpreted as a measure of the target’s tendency to follow trails, and
it is assumed to be available from expert knowledge or statistical data. In addition, above,
σ determines the target’s degree of wandering after their departure from the trail.

With the target-motion model established, target trajectories can be simulated to obtain
a time-dependent target distribution. Using the cell-based density prediction method
presented in [21], the simulated target distribution can be converted to a target location
likelihood function ρc(x, y, t), which describes the likelihood that the target is at location
(x, y) at time t. An equivalent target location likelihood function in polar coordinates
is denoted as ρp(r, θ, t). When the lost person encounters an obstacle, he/she takes the
shortest path around the obstacle and continues in the original heading. Although the
simplified lost person model presented herein does not incorporate other environmental
factors, such as terrain slopes, vegetation type, and trail intersections, the extensions needed
to incorporate these factors, along with references to related works, are discussed below.

Environmental factors, such as terrain slope, natural features (lakes, streams, cliffs,
ridges), and vegetation, may influence target motion. For example, people tend to prefer
walking through sparse vegetation over dense vegetation and avoid steep slopes when
possible. In [18] and [19], using a discretized grid representation, three maps are created in
which each cell is encoded with local topography, elevation, and vegetation information,
respectively. Transition probabilities between neighbouring cells are, then, specified based
on statistical data and expert knowledge of the influence of topography, elevation, and
vegetation on target motion on the corresponding maps.

In the case that multiple trails are present in the search space, the lost-person be-
haviour model would need to incorporate a model for trail selection at trail intersections.
For example, in [19], trail selection is modeled in a transition table, in which transition
probabilities are assigned according to expert knowledge and statistical data to predict
which trail the target would take.

3.1.2. 3D Iso-Probability Curves

The 2D iso-probability curves capture the radially outward propagation of targets.
However, the presence of travel aids (trails, etc.) in the search space may suggest non-
uniform probability of finding the target at different angular positions—which cannot be
effectively captured by a 2D iso-probability curve. Namely, 2D curves can tell us how far
the fastest qth percentile target has travelled in any direction, but they cannot tell us if the
target would be more likely to be found in a direction over another. In order to capture
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the target’s preference on direction of travel, our proposed new method introduces a third
dimension to the original 2D curves, augmenting them into 3D curves.

As stated above, the 2D version of qth percentile iso-probability curve can be expressed
as
(

F−1(q|θ, t), θ
)
∀θ ∈ [0, 2π] in polar coordinates. The proposed method augments the

original 2D iso-probability curves to account for non-uniform angular distributions along
the curves by introducing the angular target distribution conditional on the qth percentile
curve at Time Step t, h(θ|q, t), as the height to form 3D iso-probability curves in a polar
cylindrical coordinate system. h(θ|q, t) is a 1D distribution along the qth percentile iso-
probability curve from the target location likelihood function, ρp (r, θ, t):

h(θ|q, t) =
ρp
(

F−1(q|θ, t), θ, t
)∫ 2π

0 ρp

(
F−1

(
q
∣∣∣θ̃, t

)
, θ̃, t

)
dθ̃

. (7)

As such, the original 2D qth percentile iso-probability curves, defined as
(

F−1(q|θ, t), θ
)

∀θ ∈ [0, 2π] in polar coordinates, are augmented to include a third dimension labeled as
angular target distribution in Figure 2, becoming

(
F−1(q|θ, t), θ, h(θ|q, t)

)
∀θ ∈ [0, 2π] in

polar cylindrical coordinates.
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3.2. Search Planning

In an iso-probability curve guided search, a searcher traverses along its assigned iso-
probability curve, specified by a time, t, and a target percentile, q. As the search progresses,
iso-probability curves propagate outward to account for search area expansion, Figure 1,
which is an important characteristic of a mobile target search. In addition, the curves are,
by definition, denser around percentiles where the target has a higher probability of being
located, allowing the search to cover the corresponding region more thoroughly. This
section details steps involved in the generation of a multimodal search plan guided by
iso-probability curves.

The search-planning framework is illustrated in Figure 3, and outlined in the pseu-
docode in Algorithm 1.

Lines 1–2 in Algorithm 1 outline the partitioning task (Section 3.2.1), which divides
of the overall search into sub-tasks, also referred to herein as partitions. Task allocation,
detailed in Section 3.2.2 and outlined in Algorithm 1, Lines 4–12, determines how the
available searchers are allocated across the partitions: It first plans trajectories and evalu-
ates the search success rates achievable by different numbers of robots assigned to each
partition, Algorithm 1, Lines 5–11. Namely, for each partition, the task of trajectory plan-
ning (invoked in Algorithm 1, Line 7, outlined in Algorithm 1, Lines 16–22, and further
detailed in Section 3.2.3) is repeated with different numbers of robots to evaluate the search
success rates achievable. This builds a collection of data, referred to in Algorithm 1 as
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success_rate_collection, in which the search success rate for any combination of partition and
number of robots considered is available. The task allocation stage, then, uses the infor-
mation in success_rate_collection and finalizes robot-to-partition allocation to maximize the
overall search success rate, represented in Algorithm 1, Line 14 and detailed in Section 3.2.2.
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Algorithm 1. Search planning pseudocode.

1 number_of_partitions←DeterminePartitionNumber(number_of_robots, number_of_intersections)
2 partitions← CreatePartitions(number_of_partitions)
3
4 for each partition in partitions
5 for each number_of_robots_in_partition in NumberOfRobotsInPartitionProposal(
6 number_of_robots, number_of_intersections)
7 paths← PlanTrajectories(number_of_robots_in_partition, partition)
8 save paths in paths_collection
9 success_rate← Evaluate(paths)
10 save success_rate in success_rate_collection
11 end for
12 end for
13
14 search_plan← AssignRobotsToPartitions(success_rate_collection, paths_collection)
15
16 function PlanTrajectories(number_of_robots_in_partition, partition)
17 starting_locations← SelectStartingLocations(number_of_robots_in_partition, partition)
18 for each location in starting_locations
19 path←MCTS(location)
20 save path in planned_paths
21 end for
22 return planned_paths

3.2.1. Partitioning

At any given time, the search area is bounded between the 0% and 100% iso-probability
curves. The proposed method divides the 0% to 100% range into np partitions, forming
sub-tasks that can be assigned to searchers. A searcher assigned to a partition starts the
search on its lower partition bound and remains within the partition throughout the search
following curve-guided trajectories. In the proposed method, curves are used to guide
aerial and terrestrial trajectories the same way as they are used to guide UAV and UGV
trajectories, respectively, in [35]. When the searcher is in terrestrial mode, it stays on the
same curve and does not move towards the upper bound of its partition. Since the searcher
has a higher aerial speed, having the searcher stay on the same curve in aerial mode would
heavily bias the search towards selected curves while leaving other regions unsearched.
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Thus, in the proposed method, when the searcher is in aerial mode, it searches a range of
curves while progressing towards the upper bound of its assigned partition.

The search partitions can be defined by specifying (np− 1) partition boundaries within
the 0% to 100% range, creating np partitions, with the first partition starting at 0% and
the last partition ending at 100%. Since the partition boundaries can be anywhere within
the 0% to 100% range, theoretically, there would be infinite ways to create the partitions.
However, characteristics of iso-probability curves, such as variations in length and density
of iso-probability curves at different percentiles, should be considered in order to plan an
effective search.

Adapting the method from [35], the partitions are created to ensure that a robot
assigned to any partition would be able to traverse across the partition (i.e., starting at
the lower bound and ending at the upper bound) in aerial mode within the allotted time
with equal coverage on each intermediate curve. One may note that the method in [35]
is intended for a team of unimodal aerial robots. Thus, when applied to the multimodal
search planning problem at hand, a searcher would only reach the end of its assigned
partition range if it stayed in aerial mode throughout the search. Namely, the more time
it spends in terrestrial mode, focusing on searching along a specific curve, the larger the
range of percentiles at the end of the partition would remain unsearched. In order to
address this, an adaptation is incorporated into the trajectory generation process, described
in Section 3.2.3 below, to compensate the time spent on searching along a single curve in
terrestrial mode.

With the partitioning method established, a unique partition scheme can be formulated
for any number of partitions np. Given a search scenario, the number of partitions a search
is divided into is determined as follows: due to the natural tendency to follow trails,
3D iso-probability curves peak at angular positions that intersect with trails, as seen in
Figure 2, indicating that the target is likely located in the corresponding angular regions.
Let nc denote the number of intersections, or crossings, between the curve and trail(s).
The proposed method assigns at least nc searchers to each partition, allowing at least one
searcher to search around each trail if needed.

Since the number of searchers (nr) available is finite, the number of partitions (np) that
can be created, while ensuring that at least nc searchers are in each partition, is between 1
and nr/nc , inclusive. With a small np, the searchers are limited to starting on a limited set
of curves, resulting in a search that is heavily biased towards those percentiles early on in
the search. In order to address this bias, the proposed method creates np = nr/nc partitions,
reducing the bias by distributing the searchers across a larger set of iso-probability curves.

3.2.2. Task Allocation

This section describes how nr robots are allocated across np partitions generated by
the method presented in Section 3.2.1. Since a minimum of nc robots are assigned to each
partition, the number of robots that can potentially be assigned to a partition is between
nc and nc + (nr mod nc), inclusive. The second term in the upper limit, nr mod nc, denotes
the number of searchers available after assigning nc robots to each of the np partitions.
These additional searchers, if any, may be assigned to any partition, and, the allocation of
nc to nc + (nr mod nc) robots to each partition is proposed to the Trajectory Planning task
described in Section 3.2.3, which plans and evaluates the search success rates achievable
respectively. Let sij∀i ∈

{
1, np

}
, ∀j ∈ {nc, nc + (nr mod nc)} denote the simulated search

success rate achievable by assigning j robots to the ith partition, generated by the repeated
executions of trajectory planning. Task allocation is then finalized by determining a robot-to-
partition assignment scheme that maximizes the overall search success rate, detailed below.

Robot-to-partition assignment can be formulated as a linear integer programming prob-
lem, in which the optimization variables are αij∀i ∈

{
1, np

}
, ∀j ∈ {nc, nc + (nr mod nc)} :

αij =

{
1
0

if j robots are assigned to the ith partition
otherwise.

(8)
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The objective function to be maximized is the total search success rate, achieved by
searches conducted across all partitions. Herein, it is assumed that the searches conducted
in different partitions are independent, so the total search success rate can be obtained by
summing the rates achieved in individual partitions:

Maximize
np

∑
i=1

nc+(nr mod nc)

∑
j=nc

sijαij, (9)

Subject to
nc+(nr mod nc)

∑
j=nc

αij = 1∀i ∈
{

1, np
}

, and (10)

np

∑
i=1

nc+(nr mod nc)

∑
j=nc

jαij = nr. (11)

Equation (10) above enforces that each partition must be assigned a certain number of
robots, between nc and nc + (nr mod nc), inclusive. Equation (11), in turn, ensures that a
total of nr robots are assigned across all partitions.

One may note that, although search paths in different partitions are planned indepen-
dently, searchers increase the chances of finding the target in their respective partitions by
collaborating with each other to avoid unnecessary repeated coverage of the same area.

3.2.3. Trajectory Planning

Sections 3.2.1 and 3.2.2 above addressed the allocation of search resources across
the target propagation percentiles, which determines the distribution of resources across
targets at different percentile speeds. The innermost search-planning layer, detailed below,
generates multimodal curve-guided search trajectories, which determines how search
resources are distributed in the angular direction.

Trajectory generation is done on a partition-by-partition basis. Let nr,i denote the
number of robot trajectories to be planned in the ith partition. The goal, then, is to fully
define nr,i search trajectories starting on the lower bound of the ith partition to maximize
the search success rate achieved in the respective partition. The proposed method first
selects their starting angular positions on the lower partition bound. Then, complete
search trajectories are planned from their starting locations, following the propagation of
iso-probability curves. For each searcher, a tree structure is proposed herein to represent
the decisions involved in trajectory planning. With this representation, a path from the first
level to the last level of the tree would fully define a search agent’s trajectory from tstart
to tend.

The following sections, in turn, describe how the starting positions are determined
(Selection of Starting Angular-Positions), the decisions involved in trajectory planning (Trajec-
tory Generation I), search tree construction (Trajectory Generation II), the application of MCTS
to optimize search success rate achieved collectively by robots in the partition (Trajectory
Generation III), and the use of 3D iso-probability curves as heuristics in MCTS to improve
solution quality (Trajectory Generation IV).

Selection of Starting Angular-Positions

Each of the nr,i searchers start on the lower percentile bound of the ith partition and
needs to be dropped off at specific angular positions on the curve. The proposed method
samples nstart equally-spaced candidate starting angular positions on the curve. Amongst
them, a set of nr,i unique angular positions are selected to maximize the probability of
encountering the target at tstart. The selection of nr,i angular positions can be solved
as the standard knapsack problem [60]. The solution would specify an initial search
deployment scheme that prioritizes searching angular positions with higher probabilities
of encountering the target.
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Trajectory Generation I: Selections of Locomotion Mode and Direction of Curve Traversal

In a lost-person incident, in which the target is equally likely to be found in any angular
position, searchers should uniformly search in all directions like the strategies proposed
in [22,32,35,45]. However, when there is an uneven distribution of target location likelihood
in the angular direction, enabling the searchers to search high-probability angular regions
more thoroughly could improve the probability of locating the target.

The proposed method incorporates mode and direction selections for curve-guided
trajectories to allow for non-uniform angular search effort distribution. Different modes of
locomotion are associated with different locomotive and sensing characteristics. In aerial
mode, although the detection range is large, the searcher performance could potentially
suffer from poor visibility due to the forest canopy, and the opposite can be said about
terrestrial mode. Therefore, the search could benefit from switching to terrestrial mode to
spend more time in angular regions where the target is more likely located. In addition,
by allowing searchers to switch the direction in which they traverse along iso-probability
curves (i.e., counter-clockwise or clockwise), certain angular regions can be repeatedly
searched, resulting in trajectories that are biased towards searching those angular regions.

Trajectory Generation II: Tree Structure

For each robot, a tree structure is used to represent the sequential decisions involved in
generating its trajectory. Each level of the tree corresponds to a time instance and contains
nodes that represent candidate trajectory waypoints at the respective time instance. The
root node of the tree represents the searcher location at tstart, which is determined by the
starting angular-position selection process.

Starting at the root node, moving one level down the tree corresponds to moving
forward in time by a period of ∆t. Each node has four outgoing edges that represent all
potential actions that a robot can take in the next period of ∆t: (i) moving counter-clockwise
in aerial mode; (ii) moving counter-clockwise in terrestrial mode; (iii) move clockwise in
aerial mode; and (iv) move clockwise in terrestrial mode. Each action would lead to a
different trajectory waypoint at the next time instance, and the four potential trajectory
waypoints are represented by four children nodes in the next level of the tree (Figure 4).
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Once an action is selected from a node, the location of the next trajectory waypoint,
represented by a child node, is determined similarly to the method proposed in [35], on
top of which we have incorporated modifications for multimodal searchers with selective
directions of curve traversal, detailed below.

Let us consider a robot at angular position θt on the qtth percentile curve at time t. If
the robot were to search in terrestrial mode between t and t + ∆t, it would progress radially
outward while moving either clockwise or counter-clockwise, to intercept the same curve
at t + ∆t. Thus, at Time t + ∆t, the searcher would be on the same curve as before:

qt = qt+∆t. (12)

Similar to [35], the interception problem can, then, be formulated as:

(‖rt+∆t cos(θt+∆t), rt+∆t sin(θt+∆t))− (rt cos(θt), rt sin(θt))‖ = vG∆t, (13)

rt = F−1(qt|θt, t ), and (14)

rt+∆t = F−1(qt+∆t |θt+∆t, t + ∆t ). (15)

The left-hand-side of Equation (13) represents the distance between the searcher
location at Time t, (rt cos(θt), rt sin(θt)), and a point at Angular Position θt+∆t on the same
iso-probability curve after a time interval of ∆t, (rt+∆t cos(θt+∆t), rt+∆t sin(θt+∆t)). The
right-hand-side of the equation represents the distance the search agent can travel in a
time interval of ∆t. As such, solving for θt+∆t would return two solutions, corresponding
to two angular positions at which the robot could intercept its assigned curve at t + ∆t
if it were to travel clockwise or counter-clockwise along the curve in terrestrial mode.
When encountered with obstacles on the ground in terrestrial mode, the searcher takes the
shortest path around the obstacle and returns to the curve.

In aerial mode, the robot traverses a range of iso-probability curves in the time interval
of ∆t instead of staying on the same percentile curve. Since the searcher is faster in aerial
mode, allowing the robot to search the same percentile curve would lead to a search
that is heavily biased towards specific percentiles. The radial progression in aerial mode
allows the robot to move up to higher percentiles as the search progresses. As proposed
in [35], for generating curve-guided UAV trajectories, traversing a range of percentiles
with equal coverage of the intermediate percentiles can be achieved by maintaining a
proportionality between curve percentiles and angular positions traversed. The relationship
can be expressed as:

qt+∆t − qt = c(θt+∆t − θt). (16)

Above, the proportionality constant, c, controls the effort that the searcher spends on
the percentiles traversed in aerial mode. It depends on the searcher’s speed, and it is set
to a value that allows a searcher to get to the end of its partition by the end of search. For
example, a fast searcher would be able to spend more time to cover a larger angular range
on each intermediate percentile, resulting in a more thorough search (Figure 5).

The multimodal searchers move at a different speed in each locomotion mode and
only towards their upper partition bound in aerial mode. If the proportionality constant, c,
was determined assuming the aerial speed, the searcher would only be able to get to the
end of its partition with an entirely aerial trajectory. This is true since spending time in
terrestrial mode ultimately reduces the amount of time the searcher can spend to move
towards the upper partition bound in aerial mode. In order to compensate for this, the
proportionality constant, c, is determined assuming a representative speed, vR, calculated
as a weighted sum of terrestrial and aerial speeds:

vR = wGvG + wAvA, (17)

where weights, wG and wA, are proportions of terrestrial and aerial mode utilization,
respectively, determined from empirical knowledge on planned search trajectories.
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Similar to the interception problem formulated for terrestrial mode, the positions at
which the aerial searcher could end up on can be obtained by solving for θt+∆t:

‖(rt+∆t cos(θt+∆t), rt+∆t sin(θt+∆t))− (rt cos(θt), rt sin(θt))‖ = vA∆t, (18)

rt = F−1(Pt|θt, t ), and (19)

rt+∆t = F−1(Pt+∆t |θt+∆t, t + ∆t ). (20)

For simplicity, Equations (13) and (18) assume straight-line segments connecting the
trajectory waypoints. Methods like those in [61], could be applied to generate smooth
trajectories between waypoints instead.

Trajectory Generation III: Multi-Agent Monte-Carlo Tree Search

The tree structure discussed above fully embodies how direction and mode selections
shape the search trajectory. Any path from the root node to the last level of the tree
forms a valid curve-guided search trajectory. However, the search planner is interested in
making direction and mode selections to maximize the search success rate. The proposed
framework employs MCTS to make optimal direction and mode selections. MCTS evaluates
the paths in terms of their search success rate according to simulation results. Namely, with
a representative set of simulated target trajectories, the search success rate of a search plan
can be estimates by the fraction of simulated targets detected along the planned trajectories.

In order to plan trajectories for a group of robots, multiple trees would need to be
constructed, each grown from a different starting position. Although a separate tree is
constructed for each searcher, searchers assigned to the same partition should cooperate
with each other to utilize search resources effectively. In order to achieve cooperative
behavior, trajectories that belong to the same partition are planned successively, allowing
each added searcher to account for trajectories that have already been planned for other
searchers in the same partition. Namely, when planning a trajectory in a partition in which
one or more robot trajectories have been planned, MCTS evaluates the trajectory according
to the search success rate achieved by all robots in the partition as a team.

Trajectory Generation IV: 3D Iso-Probability Curves as Heuristic Functions in MCTS

A heuristic function is formulated herein based on 3D iso-probability curves to in-
corporate domain knowledge to MCTS. In the Progressive Bias framework, the heuristic
function is applied to all actions that can be taken from a node to bias the selection policy
towards actions with higher heuristic values [57]. Previous works on MCTS have shown
that using domain knowledge to bias move selection could improve solution quality and
reduces variance at the cost of computation time [55–58].
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As detailed in Section 3.1.2, 3D iso-probability curves capture variation in target
density along the 2D iso-probability curve contours, which can be used to guide the search
to cover angular regions with higher target location probabilities more thoroughly (i.e.,
regions around a trail). Since iso-probability curves form closed contours encircling the
LKP, a searcher can get to any other position on the curve by travelling along the curve in
either direction. Nevertheless, the curve can be split into two sections, with one containing
all the points that can be reached via a shorter distance in the clockwise direction, and vice
versa for the other section, Figure 6a. The proposed heuristic function evaluates the actions
based on their direction of curve traversal by considering 3D iso-probability curve in the
corresponding section.
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The proposed heuristic function is built upon the artificial potential field-based path
planning approach, which has been applied to search planning in [37,62]. At each angular
position on the curve, an attraction value is calculated considering its proximity to the
searcher and the corresponding 3D iso-probability curve value:

h(θ|q, t)e−|θ−θt |, (21)

where h(θ|q, t) is the 3D iso-probability curve value defined in Equation (7), and θt is the
searcher’s angular position. The term e−|θ−θt | scales the 3D iso-probability curve according
to proximity to the searcher’s location in a fashion that results in high attraction values
for positions on the curve that have high target location likelihood and are also in close
proximity to searcher location (Figure 6b above).

For each direction of curve traversal, the heuristic value is the max attraction value in
its corresponding section. The value is applied to MCTS according to the Progressive Bias
framework to create a bias towards the direction that would guide the searcher to a high
target location likelihood region in a short amount of time. One may note that this heuristic
only considers 3D curves and distance, while ignoring factors such as target visibility,
detection radii, and other searchers in the same partition. However, previous works on
MCTS have shown that the heuristic need not to be complete to contribute positively to
algorithm performance [55], provided that it is able to guide the trajectory in a beneficial
way. In addition, a simple, time-efficient heuristic allows valuable computation resources
to be used towards running more iterations of MCTS to potentially lower the simulation
variance, as supposed to computing a more complicated heuristic.
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4. Results and Discussion

A diverse set of search scenarios was simulated in MATLAB to verify our proposed
approach. The illustrative simulated search planning example in Section 4.1 below details
a search planned according to the proposed framework. The comparative simulated search
planning experiments presented in Section 4.2 are designed to validate the effectiveness of
multimodal, bidirectional trajectories and the use of a 3D curve-based heuristic function in
MCTS. The study in Section 4.3 investigates the method’s robustness to discrepancy between
the assumed level of trail persistence, pstay, and the target’s actual level of trail persistence.

4.1. Illustrative Example

In this example, a team of eight identical multimodal aerial-terrestrial robots (nr = 8)
are employed to search for a lost person last seen on a trail that runs diagonally through
the search space, as illustrated in Figure 7a. The robots move at speeds of vA = 30 m/s and
vG = 10 m/s, with detection radii of rA = 20 m and rG = 10 m in aerial and terrestrial
(ground) modes, respectively. In terrestrial mode, searchers need to avoid obstacles on the
ground, Figure 7b, where the target would be visible unless the line of sight is obstructed
by obstacles, Figure 7d. In aerial mode, searchers can fly over obstacles, but 75% of their
view of the ground is occluded (Figure 7c).
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As discussed in Section 2.1.1, search planning is performed on the basis of behavioral
modelling and SAR database statistics for the target’s demographic group. With the model
and information from SAR database statistics, a total of 10,000 target paths are simulated
with targets parameters of dmin = 100 m, dmax = 200 m, and σ = 0.5 rad. The target speeds
are sampled from a normal distribution with a mean of 1 m/s and a standard deviation of
0.33 m/s. The level of the target’s persistence with respect to staying on-trail is assumed to
be pstay = 0.8. Figure 7e shows 200 simulated target trajectories based on these parameters.

The search agents arrive at their deployment positions at tstart = 2400 s and search
for 1800 s until tend = 4200 s. A search planning interval of ∆t = 120 s is used to generate
the plan. Namely, at the beginning of every ∆t, the searchers choose the direction and
locomotion mode for the duration of the interval. The search is divided into np = 4
partitions, amongst which nr = 8 robots are allocated, as detailed in Table 1.

Table 1. An illustrative example partitioning scheme.

Partition No. Lower Bound (%) Upper Bound (%) Number of Robots, nr,i Representative Speed, vR (m/s)

1 0 31.9 2 24.9
2 31.9 57.7 2 21.6
3 57.7 80.4 2 20.9
4 80.4 100 2 19.1

In the trajectory-generation process, mode and direction selections are optimized by
MCTS with an exploration constant (Cp) of 1/500 and a limit of 400 iterations. Figure 8
shows the complete search trajectories from tstart to tend. Trajectory segments traversed in
aerial and terrestrial modes are in blue and green, respectively.
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Figure 8. Planned trajectories for illustrative example: (a) partition 1, (b) partition 2, (c) partition 3,
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Figure 9 shows four snapshots of the simulated search scenario. The target trajectory,
in red, is shown in its entirety from tstart = 0 s to the specific moment captured by the
snapshot. For clarity, the search trajectories shown are only the sections traversed in the
previous 60 s in each snapshot. At 2400 s, Figure 9a, the target has already left the LKP,
and the robots start searching from their starting positions in their respective partitions. At
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2800 s, Figure 9b, the searchers have been following the search plan, but they have not yet
found the target. At 2983 s, Figure 9c, the target is within the detection range of a searcher
in aerial mode; however, the searcher is unable to detect it due to occlusions (e.g., foliage
and fog) captured in Figure 7c. At 3053 s (Figure 9d), the target is found by a searcher at
(x,y) = (1697.2, 2454.2) in terrestrial mode.
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4.2. Comparative Simulated Experiments

In order to validate the effectiveness of incorporating mode and direction selection in
curve-guided trajectory generation, simulated experiments were conducted to compare the
proposed method against alternative methods with subsets of the proposed locomotion
mode and curve traversal direction options (Section 4.2.1). In addition, the effectiveness of
3D iso-probability-curve-based heuristic function to guide the selection strategy in MCTS
is demonstrated in comparisons against the default selection strategy (Section 4.2.2).

4.2.1. Selections of Mode and Direction

In this section, unimodal trajectories with fixed curve-traversal direction (Methods 1 and 3)
are used as benchmarks for comparison against other methods. Methods 2 and 4 generate
unimodal trajectories with selective curve-traversal direction in terrestrial and aerial modes,
respectively. The searchers have the ability to switch curve traversal directions to repeatedly
search angular regions with high target densities when needed, instead of having to make
its way around the LKP to get back to the same or another high target-density angular
region. This allows the searchers to concentrate their efforts on angular ranges in which
the target is more likely to be found. Method 5 generates multimodal trajectories with fixed
curve-traversal direction. Although searchers travel along iso-probability curves in a fixed
direction, they are able to select locomotion modes that better suits local search conditions
along the trajectories. Finally, Method 6 generates multimodal trajectories with selective
curve traversal-direction. As such, the goal of the simulated experiments presented herein
is to quantify and compare how locomotion mode and curve-traversal direction selections,
enabled by the method proposed in this paper, contribute to search effectiveness, Table 2.
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Table 2. Summary of planning methods tested.

Method No. Mode Selection Direction Selection

1 Disabled (terrestrial mode only) Disabled (cw 1 traversal only)
2 Disabled (terrestrial mode only) Enabled
3 Disabled (aerial mode only) Disabled (cw 1 traversal only)
4 Disabled (aerial mode only) Enabled
5 Enabled Disabled (cw 1 traversal only)
6 Enabled Enabled

1 cw: clockwise.

The search scenario used in the comparative simulations is identical to the scenario
described in Section 4.1. With the exception that each of the six cases summarized in Table 2
above was tested with target distributions with three levels of persistence with respect to
staying on-trail (pstay), Figure 10.
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Figure 10. Variations in the level of persistence with respect to staying on-trail.

Figure 11 shows where the simulated targets are detected by the search team, and
Table 3 shows the number of simulated targets detected by the search team over the
duration of the search with different target distributions and search methods. Since MCTS
is stochastic in nature, it may generate a different trajectory every time it runs. The results
presented in Table 3 are based on a sample of size ten. One may note that results for
Methods 1 and 3 have zero standard deviation. This is due to the fact that no selection is
involved in those methods, so MCTS is not applied.
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Table 3. Method comparison results: number of simulated targets found (for 10 runs).

Method No. pstay = 0.8(Mean/std) pstay = 0.5(Mean/std) pstay = 0.2(Mean/std)

1 778/0 812/0 832/0
2 1307.8/38.4 995.1/18.6 925.9/39.2
3 955/0 1073/0 1070/0
4 1584.8/33.6 1443.0/15.5 1376.2/36.9
5 1538.2/18.4 1535.2/22.5 1505.6/33.2
6 2194.4/63.9 1879.3/42.2 1699.6/30.1

Overall, while Methods that enable one of direction selection (Methods 2 and 4) and
mode selection (Method 5) clearly outperform Methods that generate unimodal trajectories
with fixed curve-traversal direction (Methods 1 and 3), Method 6, with both mode and
direction selections enabled, resulted in the most significant performance improvement.
This indicates that both multimodal operations and selective directions of curve traversal
contribute positively to the search success rate in Method 6.

It can also be noted that enabling mode and direction selections results in the most
significant performance gain in the high trail-bias case. This can be attributed to the fact
that the simulated targets are most concentrated around the trail, thus, with appropriate
trajectories that direct search efforts towards those regions, it resulted in the most significant
performance gain out of the three levels of trail persistence tested.

Additionally, despite having poor target visibility, the ability to cover large areas in a
short amount of time in aerial mode is still useful in addition to the ability to select curve-
traversal direction, as it is evident from comparing the performance of terrestrial trajectories
with selective curve-traversal direction (Method 2) against multimodal trajectories with
selective curve-traversal direction (Method 6).

4.2.2. 3D Curves as Heuristic Functions

In order to evaluate the effect of incorporating the proposed heuristic function based
on 3D iso-probability curves in MCTS, this section compares the effectiveness of searches
planned with and without the use of the heuristic. The search scenario used is identical
to the scenario described in Section 4.1. A total of 40 sets of trajectories was planned
using each method (Table 4). A two-sample t-test with a 95% confidence interval indicated
that the performance improvement gained by using the proposed heuristic function is
statistically significant.

Table 4. The 3D iso-probability-curve-based heuristic validation.

Without 3D Curve Heuristic With 3D Curve Heuristic

Mean 2070.0 2209.8
Std 59.6 49.0

4.3. Robustness Study

The importance of investigating the lost-person’s information is commonly empha-
sized in SAR texts [16,50,51], since having a thorough understanding of the target poten-
tially increases the chance of correctly predicting the target’s whereabouts. Nevertheless,
one can expect some discrepancy between the predicted and actual target motions. The
effects of deviation in target speed on the search effectiveness of trajectories guided by
iso-probability curves were investigated in [63]. Not surprisingly, the results indicated that
search performance may drop when the discrepancy between estimated and true target
speeds is significant.

Similar to target speed discrepancies, deviations in the level of target trail persistence
can also influence search outcomes. In order to investigate the robustness of the proposed
method, in this sub-section, we test trajectories generated based on an incorrectly assumed
level of trail persistence. For example, robustness of the search plan generated for a
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high-trail-persistence scenario (pstay = 0.8) is evaluated by applying it to medium- and
low-trail-persistence scenarios (pstay = 0.5 and pstay = 0.2, respectively), in order to mimic
a situation in which a target predicted to have a high level of trail persistence actually had
a lower level of trail persistence (Figure 12).
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As expected, the flexibility offered by mode and curve-traversal direction selections
cannot be fully leveraged when the wrong level of trail persistence is assumed. Figure 12
shows degradation in search performance when the estimated level of trail persistence
does not agree with the actual level of trail persistence (i.e., a high-trail-persistence target
has the best chance to be found when a high-trail-persistence search plan is applied). It
can also be observed that, a smaller discrepancy tends to result in a smaller performance
drop. For example, trajectories generated for a medium-trail-persistence scenario is more
robust than low-trail-persistence trajectories in high-bias scenarios since the medium-bias
scenario has more resemblance to the high-bias scenario. In the absence of knowledge on
the level of target-trail bias, a preferred option could be to assume a medium-level of trail
persistence since it has the best worst-case performance when applied to scenarios with
different levels of target trail persistence, making it the most conservative method.

5. Conclusions

We present herein a novel search-planning method that generates multimodal aerial-
terrestrial search trajectories guided by 3D iso-probability curves, with the goal of maximiz-
ing the probability of finding the lost person over a defined search period. The augmented
iso-probability curves capture non-uniform target distributions along the curves to account
for the presence of trails. The trajectory-generation process involves partitioning the search,
allocating searchers amongst the partitions, and generating multimodal trajectories. In par-
ticular, the mode and curve traversal direction selections are embodied in a tree structure,
which allows them to be considered simultaneously in trajectory generation.

Simulated comparative studies show that multimodal probability-curve-guided search
trajectories, planned using the proposed tree structure and optimized by Monte Carlo tree
search, surpass their unimodal counterparts in terms of search success rate. In addition,
3D iso-probability curves capture the angular target distribution under the influence of
trails, and in probability-curve-guided search planning, they serve as an effective heuristic
function when applied to Monte Carlo tree search by biasing the search towards angular
regions with higher target location likelihoods around the trail. Lastly, the robustness
study shows that an accurate target-motion model would be beneficial to fully leverage the
flexibility enabled by mode and direction changes along curve-guided trajectories.
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