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Abstract: In a factory with different kinds of spatial atmosphere (warehouses, corridors, small or large
workshops with varying sizes of obstacles and distribution patterns), the robot’s generated paths for
navigation tasks mainly depend on the representation of that environment. Hence, finding the best
representation for each particular environment is necessary to forge a compromise between length,
safety, and complexity of path planning. This paper aims to scrutinize the impact of environment model
representation on the performance of an automated guided vehicle (AGV). To do so, a multi-objective
cost function, considering the length of the path, its complexity, and minimum distance to obstacles,
is defined for a perfect circular robot. Unlike other similar studies, three types of representation,
namely quadrangle, irregular triangle, and varying-size irregular triangle, are then utilized to model
the environment while applying an inflation layer to the discretized view. Finally, a navigation scenario
is tested for different cell decomposition methods and an inflation layer size. The obtained results
indicate that a nearly constant coarse size triangular mesh is a good candidate for a fixed-size robot
in a non-changing environment. Moreover, the varying size of the triangular mesh and grid cell
representations are better choices for factories with changing plans and multi-robot sizes due to the
effect of the inflation layer. Based on the definition of a metric, which is a criterion for quantifying the
performance of path planning on a representation type, constant or variable size triangle shapes are the
only and best candidate for discretization in about 59% of industrial environments. In other cases, both
cell types, the square and the triangle, can together be the best representation.

Keywords: AGV; robotics mapping; mesh representation; path planning

1. Introduction

Automated guided vehicles (AGVs) have been used for several decades [1,2]. They
mostly rely on predefined routes to move from one point to another. However, the flexi-
bility and agility introduced by industry 4.0 [3] are pushing these technologies towards a
complete autonomous navigation capability [4]. The required autonomy forces the AGVs to
know the environment prior to moving intelligently and safely. Therefore, one of the most
important tasks for these vehicles is to model the navigation environment as accurately
as possible [5]. In indoor navigation on a planar floor of a factory, a 2D model of the envi-
ronment, including the specifications of the obstacle-free area, is required to perform path
planning. Abstracting, encoding, and saving this type of information is called ‘mapping’
in mobile robots [6]. A mobile robot uses this map repeatedly to find a path between
the current position and the goal position. The essential information for constructing
the environment model is usually obtained from raw sensor data with the help of data
structures. There are different types of data structures for saving and reading necessary
spatial information in navigation. After saving the information, path planning uses this
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information via queries (by means of the data structure) to perform a task. Therefore, the
data structure types, spatial models, and the resulting map all play decisive roles in the
performance of the global planners.

One of the most well-known mapping methods, which has gained special attention
due to its simplicity and robustness, is the occupancy grid technique [7]. This method is
composed mainly of uniform grids with simple square shapes, which are made cell by cell,
independently. Other shapes such as triangles (with application in polygonal mesh [8],
reconstruction [9], etc.) can be used for the discretization of the environment. Squares and
triangles are the most famous cell types in a planar application. The analogy between the
occupancy grid map and a triangular mesh is the creation of a discretized environment
model using the cell concept. Their difference, though, lies on the shape and number of
cells, as well as their connection rules (topology) in forming a complete and accurate free
space model. By utilizing such a model, a global path planner, e.g., cell decomposition
method [10], can be used to find an efficient path between two points.

The efficiency of the path planning algorithm is highly dependent on the environ-
ment model, which in turn is impacted by the representation type (cell’s shape, number,
and topology). For instance, according to the number of cells, it may take a shorter or a
longer time to find a path. Moreover, the realized path may have different lengths and
distances to the obstacles considering the cell shape and size in the environment. An
efficient path should consider all of these essential parameters (such as length, distance,
and computational time) [11]. Another aspect worth noting is that, when the conditions of
an environment change (new distribution of obstacles), a new representation (discretized
model) may lead to a more efficient path. However, investigating the influence of envi-
ronment model representation on generating a suitable path has escaped the attention of
many researchers. Works such as [12,13] have tried to define the environment’s difficulty
based on parameters such as obstacle shape and distribution or distance to the nearest
obstacles. Nevertheless, they did not consider the effect of a navigation scenario (position
of start and goal points) and map representation, and they did not propose any solution
to consider this difficulty. Recently, valuable work such as that of [14] tried to relate this
difficulty to the robot’s traversal time in navigation benchmarking. However, this work
focused on the overall performance of the navigation platform and does not consider the
global planner effect. In a similar task, [14] only considers the effect of cell shape and size
on computational efficiency and does not consider their effect on the path length and safety.
In addition, ref. [13] defines some metrics and compares different path planning methods
only on grid-type cells. Other works such as [15], which uses an adaptive mesh for risk-
aware path planning, do not mention important parameters such as distance to the nearest
obstacle and the effect of robot size. When the environment is cluttered, to our knowledge,
there is no straightforward method to select the most appropriate navigation environment
approach. For consideration of robot size in path planning, there are various methods. The
first strategy applies offset to the boundary of the obstacles, then uses this scaled view as
an input for discretization [16]. This strategy is unsuitable when it is necessary to modify
the map according to changes in the environment or when the real model of the obstacles
is necessary for manipulation. The second strategy is used in the game industry (famous as
navigation mesh [17]) and checks each triangle for the input and output edge’s length as
a possibility of robot passage [18,19]. The third strategy is map generation based on the
actual boundary, then applying the inflation layer on the discretized view (the offset or
inflation layer is the robot’s radius plus any optional value for safety, such as the method
implemented in the ROS (Robot operating System) [20]). In addition, it is usual to build an
inflated map on top of the metric map in robotic applications [21]. Nevertheless, no specific
study has been carried out to select the best environment representation based on the effect
of this inflation. Therefore, the main contributions of this paper are:

• Showing that the type of environment representation has a direct impact on path
planning, and quantifying this by a metric.
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• Presenting the results showing the pros and cons of each representation when consid-
ering the inflation layer

By considering the points discussed, this paper explores the effect of the environment
representation on the performance of an AGV. In this regard, a multi-objective cost function
is developed, and three kinds of cell decomposition (quadrangle, irregular triangle, and
varying-size irregular triangle) are used for environment modeling. Furthermore, the robot
size is considered through an inflation layer imposed on the model. To the best of the
authors’ knowledge, this is one of the first attempts to explore the impact of different cell
decomposition techniques and robot size on the performance of an AGV. A specific platform
is used to generate the three representations with different applicable sizes [22]. Then,
a performance comparison is performed for each representation using a fixed scenario
obtained by a global planner [13,14].

The rest of the paper is organized as follows. Section 2 depicts the problem formu-
lation and assumptions. Section 3 introduces some common concepts concerning cells
and neighbors regarding all the representations. In Section 4, the methodology for all
representations is explained by a mathematical formulation. Section 5 discusses all the
results, corresponding to the simulation tests on various environments and representations.
Section 6 summarizes the outcomes and puts forward future directions.

2. Problem Formulation and Assumption

An AGV (Automated guided vehicle), denoted by A, navigates in a factory as workspace
Ws. The workspace contains obstacles, Bi, with i ∈ {1, 2, 3, . . . , No} and No, the number
of obstacles. The obstacle boundaries (Γ(Bi)) are generated by a LIDAR (Light Detection
and Ranging) placed on the AGV [23]. These can be polygonal or curvilinear curves. The
Ws is divided into WB, the union of all obstacles, and Wfree, the free space. S and G are the
start point and the goal point of A, respectively, in the Wfree. According to the distribution
of Bis and the size of A, various paths (τ) can be traversed to get to G from S. From an
economic point of view, τ must be realized quickly, be as short as possible, and keep a
safe distance to Bis. If τ does not satisfy one of these properties, AGV cannot be used
reliably for a long time. In this regard, an optimal path (τopt) is the one that has the best of
the properties mentioned. It is typically determined by a global planner with the help of
encoding Wfree to an environment map (Mreps). The subscript “reps” denotes the encoding
types or representations, which have a significant impact on finding τopt.

This study assumes a perfect circular robot without any sensor noise and environment
modeling uncertainty, in order to be able to map spatial information into various represen-
tation formats. The index for comparing different representations is a multi-objective cost
function (f) which takes the length of τopt, the complexity of finding the τopt (correlated
with running time), and minimum distance to obstacles into account [24]. Furthermore, no
post-processing on the generated path, such as path smoothing [25], has been performed,
since this work studies the behavior of various representations on a global planner (as in
the deliberative approach concept, in which information is complete before starting the
navigation) [26]). The next section discusses common concepts regarding the environment
representation types used in mapping and navigation.

3. Environment Modelling for Navigation

The simplest required information to perform navigation in an environment is the
Wfree. In this regard, one of the best-known methods is cell decomposition, in which Wfree
is converted into digitized cells or a graph of cells. Various shapes can be used for the
discretization of the environment. In the planar application, squares and triangles are the
most famous cell types. Another practical cell type is the irregular triangular mesh (ITM),
used extensively in computer graphics and gaming [17,18] as well as outdoor robotics
applications [27]. Using these cells for navigation needs the definition of the neighbor types
as either common-edge and common-node neighbors. In a quadrangle (QUAD) cell in
a general condition (far from the obstacle), the number of common-edge neighbors and
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common-node neighbors is four and four. However, in an ITM, these numbers are generally
three for common-edge neighbors or a variable number, depending on the degree of nodes.

As is clear, a QUAD cell with the edges parallel to the global frame of an environment
cannot be flexible enough to show the boundary of obstacles in the environment except for
shapes parallel with the global frame. This limitation causes some inaccuracy in the defini-
tion of the area around obstacles and presents limitations to accessing this area. Solving
this problem requires a fine square, which, on the other hand, increases the computational
burden. An ITM cell, with the flexibility of an edge’s direction, can accurately show the
boundaries of obstacles. Nevertheless, their irregular shape requires the saving of topologi-
cal and geometrical information, which makes the map larger. Therefore, each cell shape
has its own pros and cons. These features can affect the performance of the algorithm that
uses the encoded information of these cells.

The cell decomposition method takes a point as the representative of a cell in a navigation
task in order to model the Wfree. The cell’s center can be a simple selection for square cells,
in order to calculate properties such as the nearest distance to an obstacle, or as a reference
for the position of cells and for moving between cells. After obtaining a representative for
each cell, a path can be defined as the lines connecting the start and goal points through the
center of cells, if they exist. For a fair comparison between QUAD and ITM, the center of the
triangle is selected as the representative of each cell in this study (other methods like that
of [28] consider the middle of the edges, with lower computational time but with a longer
path). Optimal searching in this graph is performed according to criteria such as the cost and
the heuristic of each cell with respect to start and goal points. Since the building block of
this graph is a cell, the selection of its size is an effective parameter for the construction and
searching of the graph. Small cells give more information than large cells after digitizing, but
increase the computational effort of the agent. In addition to cell size, the rules of neighboring,
which are different for each cell shape, can change the graph. Hence, finding a good path
presents the challenge of finding contradictory parameters. The selection of a suitable cell
shape and size can help find a reasonable solution. In the next section, the methodology for
studying the effects of these various representations will be described.

4. Methodology

The performed analysis in this study is divided into two parts. First, the effect of
representation is considered regardless of the robot size. Second, the robot size is considered
using the concept of inflation layer. This concept generates the map based on the real
boundary. Then, it applies an inflation layer to the discretized view. In fact, the offset or
inflation layer is the radius of the robot plus any optional value for safety [20]. This strategy
has already been implemented in the ROS (Robot Operating System) [20]. In what follows,
the decomposition methods are described.

4.1. Pure Decomposition

The geometry and the physical size of the robot are not considered in this section. Further-
more, the discretized cell is general and does not depend on the specific type of representation.
For navigation on a planar surface by cell decomposition method, it is necessary to encode and
abstract the environment information into a map representation, Mreps.

Mreps = {All ci (i = 1, 2, . . . N) ; ∑ ci ≈Wfree} (1)

where ci denotes the ith cell and implies that the union of all discretized cells (finite number
of N) can approximately estimate the free space Wfree. Each path between S and G points
in the map is defined as τ, which is a set of cells:

τ =
{

cs, c1, c2, . . . , cg
}

, g ≤ N (2)
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A set of cells as a path is divided into several segments Sij between successive cells
ci and cj in τ. This leads to:

τ =
{

Ss1, S12, S23, . . . , Sij, . . . , Sig
}

, g ≤ N, i = g− 1 (3)

where Sij is generally a curve connecting two cells (ci and cj) together with all the possible
points inside the cells. This segment will be a building unit of movement for AGV according
to its controller. So, each movement between ci and cj is a line segment between their
centers. However, linear movement between the centers of two neighbors does not always
guarantee safety near the obstacles. Therefore, it is necessary to check the feasibility of
movement for some cells near obstacles. To do so, Mov

(
ci, cj

)
is defined as:

Mov
(
ci, cj

)
=

{
True if ∀p ∈ Line

(
cent(ci), cent

(
cj
))

=⇒ p ∈Wfree
False if ∃p ∈ Line

(
cent(ci), cent

(
cj
))

=⇒ p /∈Wfree
(4)

If Mov
(
ci, cj

)
is true, it shows that the movement between the centers of ci and cj is

feasible. Otherwise, there is the possibility of collision between agents and obstacles. In
the geometrical view, if the combination of neighbor’s vertices is convex, then the linear
segment will be inside the union of cells, and the movement is safe. Nevertheless, if the
combination of ci and cj’s vertices is concave, then the movement is not permitted. This
is because it increases the possibility of collision with an obstacle. To include this extra
condition into τ:

τ =
{{

cs, c1, c2, . . . , cg
}

, ∀ ci and cj =⇒ Mov
(
ci, cj

)
= True

}
(5)

Checking the movement feasibility is simple for QUAD cells as the common-edge
neighbor produces a convex shape. However, in ITM, it is possible to have a concave shape
even for common-edge neighbors near obstacles. Hence, the movement feasibility needs
to be checked in this mesh. This extra checking enhances the computational effort of this
mesh type [29].

Among all possible τ, finding τopt is of great interest. According to the discretized
nature of the path, it is possible to convert cells and movement between them into vertices
and edges of a graph. Then a graph search algorithm can be used to find τopt between
the start and goal cells. A*, as a popular graph search method [30], is employed in this
study. This method uses Euclidean distance for calculating the cost and heuristic criterion
between start and goal [31]. The cost of cell
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(ci) = ∑ ‖ cent(ci), cent(par(ci)) ‖ (6)

where cent(ci) stands for the center of the cell, Symbol ‖ a, b ‖ is the Euclidean distance
between point a and point b, which are the center of two successive cells, and par(ci) is
the parent of ci. This cost starts from S and, in each sequence, accumulates the Euclidean
distance between the current cell and its parent in a graph. The heuristic criterion of the
cell (h(ci)) is calculated by:

h(ci) =‖ cent(ci), goal ‖ (7)

The result of A* is a τ with the minimum cost between two cells containing start and
goal points. This τ is shown by τopt:

τopt =
{{

cs, c1, c2, . . . , cg
}

, ∀ ci and cj,

ci = par
(
cj
)
=⇒ Lτopt ≈ min(Lτ) (8)

where Lτ denotes the length of a path.
As stated earlier, in this study, the utilized multi-objective cost function is composed

of three metrics. These are the complexity of A* algorithm for finding τopt, length of τopt,
and minimum distance between AGV and obstacles when it follows τopt.
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Herein, the complexity (Creps) is defined by counting the number of visited (In A*,
visited cells go to a list named open list, so Creps = size (Open list)) nodes during A*.

Creps = Number of visited cells in A∗ (9)

The length of the optimal path (Lτopt, reps) is calculated as follows:

Lτopt, reps =
i=G

∑
i=S
‖ cent(ci), cent(par(ci) ‖ (10)

The minimum distance to the nearest obstacle is calculated with the help of the
Euclidean distance grid, as explained in [32,33].

DT(p) = dk, p ∈ cRG,k (11)

where DT(p) is a function for mapping each point of free space p into a cell cRG,k in the
reference grid (RG), which is a Euclidean distance transform on a 200 × 100 grid. cRG,k
contains the value of distance to the nearest obstacle as dk.

Therefore, Dmin,reps, as the minimum distance between all agent’s distances to the
nearest obstacles, is given by:

Dmin,reps = min(DT(τ))
which ∀ci ∈ τ

∧
cent(ci) ∈ cRG,k

(12)

In triangular representation, as shown in Figure 1, there are some free points near
obstacles that are not placed inside any cells in the RG. In this situation, the Euclidean
distance between the point and other nodes and edges, which are tagged as the obstacle, is
calculated. Then, the minimum value is returned as the minimum distance. This value may
be smaller and larger than the previous distance value of the path and must be compared
to the current minimum distance.
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After calculating the three normalized metrics, a linear weighted sum approach is
utilized to define the cost function for each representation.

LNreps =
Lτopt, reps

Lmax

CNreps =
Creps
Cmax

DNreps =
Dmin

Dmin,reps

(13)
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where LNreps is the normalized optimal length, CNreps is the normalized complexity for
finding optimal length, DNreps is the minimum distance of agent to the nearest obsta-
cle when following the optimal path, Lτopt,reps is the optimal length obtained by (10),
Creps is the calculated complexity from (9), Dmin,reps is the minimum distance of the optimal
path from (12), and Lmax, Cmax, and Dmin are the maximum lengths between start and
goal, maximum complexity to find this maximum length path, and the minimum possible
distance between agent and obstacle, respectively. Finally, the multi-objective cost function
(freps) is formulated as:

freps = ω1 × LNreps +ω2 × CNreps + ω3 × DNreps (14)

whereω1, ω2 andω3 are the weights. For simplicity, equal importance is considered for
all weights: ω1 =ω2 =ω3 = 0.333.

4.2. Decomposition of Inflation Layer

In this sub-section, the robot size is integrated into the inflation layer. The inflation
layer is defined as follows:

Inflation layer = {∀ p ∈Wfree, DT(p) < (rAGV + SD)} (15)

where rAGV is the radius of AGV, and SD is an optional value for a safe distance between
the AGV and an obstacle. According to (15), the inflation layer is formed by all the points
in Wfree whose distance to the nearest obstacle is lower than a specific value. With this
definition, the resulting map considering this inflation will be:

Mreps = {∀ci(i = 1, 2, . . . N); ∑ ci ≈Wfree; cent(ci)
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5. Results and Discussion

This section presents the results regarding the AGV performance in different condi-
tions. After this, the considered case studies and the utilized platform are first explained.
Subsequently, the results concerning environment representation and the inflation layer
are discussed.

5.1. Platform for Experiment

The intended comparative study is expected to clarify the best representation (Mreps)
for each obstacle’s distribution (Ws) according to the above-explained multi-objective cost
function (f). In this regard, a fixed scenario (a path planning between S and G) is utilized
for various Mreps and Ws. The following types of representation (Mreps) are considered in
this study:

• QUAD mesh (GRID Nx × Ny): four cell sizes (GRID 100 × 50, GRID 120 × 60, GRID
160 × 80, and GRID 200 × 100) are considered for this mesh where Nx and Ny are the
number of cells in horizontal and vertical directions.

• ITM: four cell sizes (ITM-700, ITM-500, ITM-300, ITM-100) are also considered for this
mesh. ITM-100 refers to a triangle with an average of 100 mm edges. For some environ-
ments where this was not applicable, larger triangles and smaller ones were used.

• Varying-size ITM (VITM): Concerning this mesh, ITM-100-700 is utilized. This size
refers to a triangular mesh with an average edge size of 700 mm, which has been refined
to size 100 mm in some places. When confronting narrow passages, VITM-50-700 or
VITM-30-700 have also been utilized.

Concerning various factory environments, the following Ws are taken into account
(see Figure A1):

• Area with single obstacle: Map_1 (small-size obstacle), Map_2 (medium-size polygonal
obstacle), Map_3 (medium-size circular obstacle)

• Space with dividers (Map_4)
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• Narrow passage (Map_5)
• Curvilinear passage: Map6
• Area with regular multi-obstacles: Map_7, Map_8 (two groups), Map_9 (different size)
• Area with irregular multi-obstacles: Map_10, Map_11 (two groups), Map_12 (circular),

Map_13 (different shapes)
• Hybrid with wide space: Map_14
• Corridor and dividers: Map_15
• Hybrid narrow space environments: Map_16, Map_17 (including all the previous

environments)

In this study, a research platform developed by our team (ERICCA, Equipe de
Recherche en Integration Cao-CAlcul) is utilized to perform the mesh generation for
different environments. This platform is based on the Unified Topological Model [22] and
automatic meshing and remeshing tools, as explained in [34–37]. The computer for using
this platform and simulation was Intel Core i7-4790 RAM 32GiB. Since the main task is to
study the effect of the discretized cell types and sizes on the generated path by the global
planner, the required map preprocessing is performed by the operator. For instance, an
STP file (the STP is a standard format for exchange of modelling data) is used to define the
boundary edges of obstacles and the exterior frame of the environment. This preprocess
is similar to changing a point cloud, as sensor data, into a continuous curve of the obsta-
cle’s boundary. Using the STP file as an input, various representations (QUAD, ITM, and
VITM) with different sizes can be produced by the mentioned platform. A rectangle area of
10,000 × 5000 (mm) is utilized as the environment for all the performed simulations. Var-
ious types of obstacle distribution (single and multi-obstacles) are carried out regularly
and randomly in this environment. A fixed scenario, navigation between points (300, 300)
as the start and (9600, 4400) as the goal, is utilized for all the tests. The reason for select-
ing this path is that AGV needs to turn around the obstacles to pass the optimal length.
After the generation of each map, the UTM platform makes it possible to perform global
path planning and find the length, distance, and complexity in order to calculate the cost
function for different representations. The running time of the utilized search algorithm
is calculated by means of the number of visited cells in the graph search. This strategy is
selected in order to be independent of coding details while comparing different cases.

5.2. Result—Environment and Representations

Consider an environment with a single medium obstacle as an example, which has
been discretized by the three representations (QUAD, ITM, and VITM) with different sizes.
Figure 2 represents the optimal path obtained by A* solely for one size of each representa-
tion. The scenario is to find a path between the start (300, 300) and goal (9600, 4400) points
without considering inflation. Table 1 reports the length, minimum distance to obstacles,
complexity, and cost of each case. From this table, ITM-700 has reached the lowest cost
followed by VITM-100-700 while the GRID 200 × 100 has led to the highest cost. Therefore,
ITM-700 and VITM-100-700 perform better than GRID 200 × 100 in terms of finding an
optimal path in an environment with medium-size obstacles in parallel with the global frame.
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Figure 2. Different paths for a fixed scenario in an environment according to different representations.
(a) A GRID 200 × 100. (b) An ITM-700. (c) A VITM-100-700.

Table 1. The length, minimum distance to obstacle, complexity, and cost function values for three
sample representations for a sample map with a fixed scenario.

Representations Calculated Parameters f (Single Criteria)

Item Type Size Length
(mm)

Min Distance
(mm) Complexity Cost Function

1 QUAD GRID
200 × 100 10,992 25 8323 0.145

2 ITM 700 10,749 155 134 0.006
3 VITM 100_700 10,521 19 177 0.007

Similar scenarios have been performed for various environments and cell sizes, as
shown in Figure A2. The considered environments are the different distributions variously
mentioned in Section 5.1. Moreover, different cell sizes of QUAD, ITM, and VITM, as
explained earlier, are considered. The complete result is presented in Table A1, and for
simplicity, only the best representation of each environment (minimum f values among
others) is shown in Table 2. According to this table, a coarse ITM (like ITM-700 or ITM-500)
seems to be a good candidate for almost all environments except the hybrid environment
where a VITM (VITM-100-700) shows better performance. It is worth reminding the reader
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that the detailed results, as in Table 1, are presented in the Appendix for all environments.
The discussed results have been obtained by considering the pure decomposition effect
without an inflation layer. In the next sub-section, the results concerning the effect of robot
size or inflation layer are explored.

Table 2. Best representation for each environment according to f, cost function values without inflation.

MAP Environment
Description

Representation
with the Lowest f

Value
MAP Environment Description

Representation
with the Lowest f

Value

Map_1 Small obstacle ITM-700 Map_9 Regular different size ITM-700

Map_2 Medium polygonal
obstacle

ITM-700
Map_10 Irregular obstacles ITM-700ITM-500

VITM-100-700

Map_3 Medium circular
obstacle

ITM-700
Map_11 Irregular two groups ITM-700ITM-500

VITM-100-700

Map_4 Space with
dividers ITM-700 Map_12 Irregular circular obstacles ITM-700

Map_5 narrow passage ITM-700 Map_13 Irregular different shape
obstacles ITM-700

Map_6 Curvilinear
passage ITM-700 Map_14 Hybrid with wide-spaced

obstacles ITM-700

Map_7 Regular obstacles ITM-700 Map_15 Corridor and dividers ITM-700

Map_8 Regular two
groups ITM-700 Map_16,17 Hybrid narrow-space

environments
VITM-28-700

VITM-100-700

5.3. Result—Inflation Effect on the Representations

In practice, it is necessary to consider the robot size in path planning. This is normally
done by imposing an inflation layer around the obstacles. In this regard, the tests performed
in the previous sub-section are repeated herein, considering the inflation layer.

Firstly, the test regarding the environment with medium-size obstacles is repeated by
considering a robot size diameter of 354 mm (turtle bot 2 [38]). Figure 3 shows the obtained
optimal path for this new case. The red layer around the obstacle and exterior boundary is
not accessible by the robot. Therefore, the movements between the neighbors are affected
by this layer, and the results will be changed. The new values considering this limitation
are given in Table 3 for the three different representations. From this table, VITM-100-700
reaches the best performance ( freps : 0.009) compared to the other two cases. This shows
that considering the inflation layer influences the choice of the best representation, due to
the change in complexity.

Secondly, all the previously considered environments of different types and sizes are
repeated, considering the inflation layer. The obtained results are shown in Table 4. In this
new analysis, as opposed to the case in which inflation was ignored, it is seen that many
ITM representations have not been able to find the path, and they have been replaced by the
VITM and QUAD representations. Furthermore, it has been necessary for the VITM to use
finer triangles in the narrow passages that have not been blocked completely. Decreasing
the size of triangles (increasing their number) can increase the chance of finding more
triangles whose centers are inside the free space, and movement between them and their
children is possible. Some of the generated paths are presented in Figure 4. According to
Table 4, coarse ITM shows the best performance for a single obstacle or hybrid environment,
with enough wide space (for Map_1, Map_3, and Map_14). Regarding the corridor and
regular multi-obstacles, the coarse grid is the best method. In irregular multi-obstacles and
a curvilinear passage, a VITM indicates the best performance.
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(a) A GRID 200 × 100. (b) An ITM-700. (c) A VITM-100-700.

Table 3. The length, minimum distance to obstacle, complexity, and cost function values for three
sample representations considering the inflation layer.

Representations Calculated Parameters F (Single
Criteria)

Item Type Size Length
(mm)

Min
Distance

(mm)
Complexity Cost Function

1 QUAD GRID
200 × 100 10,992 22 7555 0.132

2 ITM 700 10,878 98 532 0.013
3 VITM 100_700 10,469 48 327 0.009
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Table 4. Best representation for each environment according to f, cost function values with considera-
tion of the inflation layer.

MAP Environment
Description

Representation with
the Lowest f Value MAP Environment Description

Representation
with the Lowest f

Value

Map_1 Small obstacle
ITM-500 Map_9 Regular different size ITM-700

VITM-100-700 GRID 100 × 50

Map_2 Medium polygonal
obstacle VITM-100-700 Map_10 Irregular obstacles VITM-30-700

Map_3 Medium circular
obstacle ITM-700 Map_11 Irregular two groups ITM-500

Map_4 Space with
dividers ITM-700 Map_12 Irregular circular obstacles ITM-700

Map_5 narrow passage VITM-50-700 Map_13 Irregular different shape
obstacles

VITM-100-700
GRID 100 × 50

Map_6 Curvilinear
passage VITM-50-700 Map_14 Hybrid with wide-spaced

obstacles ITM-700

Map_7 Regular obstacles GRID 100 × 50 Map_15 Corridor and dividers
VITM-50-700

GRID 100 × 50

Map_8 Regular two
groups

VITM-100-700
Map_16,17 Hybrid narrow-space

environments

GRID 120 × 60
VITM-28-700

GRID 100 × 50
VITM-50-700

GRID 160 × 80

To find the effect of inflation on each type of representation, Table 5 shows the average
cost function (f values) for all environments in two conditions, without inflation and with
an inflation layer. Their ratio shows that ITM is more sensitive to the inflation layer, and
misses its benefit. QUAD representation shows better behavior when using inflation.

Table 5. Average of cost function value on all environments, without and with inflation, and its ratio.

Reps fwithout_infl fwith_infl fwith/fwithout

QUAD 0.114 0.089 0.78
ITM 0.038 0.217 5.71

VITM 0.016 0.036 2.25

To compare the complexity of finding a path for each type of representation, we have
calculated the average complexity (number of visited cells when graph searching) of each type
of representation in Table 6. If any size could not give a path, a smaller size has been used to
produce one. Overall, VITM shows the lowest complexity as compared to other types.

Table 6. Average of complexity value for all environments and each representation type.

Reps QUAD ITM VITM

Average Complexity 3958 4244 1453
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Figure 4. Different paths for some environments. (a) Blue path for Map_10-VITM-30-700. (b) Blue
path for Map_8-100-700. (c) Blue path showing the capability of ITM in a maze map. (d) Blue
path passing a narrow curvilinear passage by VITM method. (e) Blue path for a narrow passage
by GRID 120 × 60 (f) Path in the corridor by GRID 160 × 80 (g) Representation ITM-700 with the
generated path on a wide hybrid map (h,i) Two hybrid-narrow-passage environments with VITM
representation.
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5.4. Results—Discussion

Finding the best representation for an AGV inside a factory according to different
environment encounters during its navigation is an important part of the use of autonomous
agents. Different representations give different path. A good path has a short length with
a maximum distance to obstacles that can be calculated quickly. Without knowing this
path, a mobile robot can be an unfeasible solution for a factory, along with increasing
energy consumption due to a less than optimal path, lowering efficiency by inappropriate
planning time and increased cost due to the high risk of an inadequate distance to obstacles
(high probability of collision). By considering all these important parameters of path
planning, this work defined a single criterion and checked it for different types and sizes of
representation for the various environments inside a factory.

The obtained results show that for various types of environments, such as single or
multi obstacles and corridor-like, some level of coarse ITM is the predominant strategy
for achieving a compromise solution for length, safety, and computation time; this verifies
the work in [14], which shows that refinement is not necessary for some motion planning.
However, what has not been considered is that, when considering the inflation layer around
obstacles, VITM and GRID representations are better. It is clear that, by increasing the
resolution or decreasing the cell size, the complexity increases, and in most cases, the
nearest distance to the obstacles decreases, with some average improvement in length.
According to this result, when the robot is of a fixed size in a static environment, and
it is possible to apply first the robot size to the map, it is better to use the ITM method
with coarse size like [16] in which inflation has been applied as offset during the first
mapping. However, when there are the following situations, it is better to use VITM or
GRID representations:

• In multi-robot sizes conditions, when is not possible to apply the offsetting method.
• Some changes in the environment make it necessary to apply online inflation to the

map, and not by offsetting the obstacles in the primary map.
• There are narrow passages for a robot which makes ITM representation useless.

This benchmark also demonstrated that varying the size of the triangular mesh with a
different strategy for refinement could be a competitive method when ITM cannot find the
answer. Of course, this needs to be more refined when using the elements in an area with
narrow passages. The other benefit of VITM is the more straightforward implementation
relative to the quadtree method for neighbor finding, such as regular triangulation.

Robotic navigation in a real factory with multi AGVs with non-circular shapes is a more
complicated task. This paper surveyed the effect of environment and map representation
types on path planning considering a single circular AGV. Although a circle can cover any
shape as a peripheral circle, it cannot obtain a path in some narrow passages. According to
the robot’s footprint, this limitation leads to consideration of a more complex definition of
the inflation layer. In addition, to show the clear behavior of various cell shapes in response
to A* search graph, we did not consider any path smoothing, which causes a non-optimal
path from the point of energy consumption.

6. Conclusions and Future Work

In using an AGV as a feasible solution in a factory in response to the fourth industrial
revolution, it is necessary to consider a flexible multi-objective path planner to give better
answers according to the changes in the environment. Hence, this paper investigates the
impact of two important factors, environment model representation and robot size, on
the performance of an AGV. In this regard, a multi-objective cost function, considering
length, complexity, and minimum distance to obstacles, is formulated for a perfect circular
robot with a fixed path. Subsequently, three types of representation, namely QUAD, ITM,
and VITM, with different cell sizes are employed to model the environment. Moreover, an
inflation layer is imposed on the discretized view to check its influence on the performance.
A* is utilized to find the optimal path for the different cell representations and sizes with
and without the inflation layer. The obtained results show that a coarse ITM is a good
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candidate for a relatively unchanging environment with fixed robot size and wide space.
However, when it is possible to repeatedly change the factory’s plan and use different ‘robot
sizes, VITM and GRID representations give better performance by applying an inflation
layer, especially in narrow spaces. In comparing triangle and square representations, in
about 59% of industrial environments, constant or variable size triangle shapes are the only
best for the discretization of that specific environment.

Future work can pursue the following paths, which will bring important practical
application in the field of AGV environment modeling and navigation. Consideration of
dynamic environments will enrich the optimization function with more complex criteria
using a solution such as right-hand traffic, and applying some simultaneous constraints on
the navigation of a narrow passage. Furthermore, the results of this paper can be used as
an efficient map server that selects the best representation according to the environment.
This can bring a smarter AGV platform to industry.
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Figure A2. Various environments with different representation types and sizes of QUAD, ITM
and VITM. (a) Map_1-ITM-700, (b) Map_2-ITM-100, (c) Map_3-VITM-100-700, (d) Map_7-GRID
200 × 100 (e) Map_7-ITM-300, (f) Map_11-ITM-500, (g) Map_10-VITM-100-700, (h) Map_10-ITM-300,
(i) Map_8-VITM-100-700, (j) Map_4-VITM-100-700, (k) Map_6-VITM-100-700, (l) Map_14-ITM-700,
(m) Map_16-VITM-30-700, (n) Map_16-ITM-100, (o) Map_15-VITM-100-700, (p) Map_17-GRID
200 × 100, (q) Map_178-ITM-300, (r) Map_17-VITM-100-700.
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Table A1. The length, minimum distance to obstacle, complexity, and cost function values for all
representations without considering the inflation layer in the same scenario.

Representations
S (300, 300)

G (9600,
4400)

Parameters Single
Criteria

Map Name

Type Size Inflation Length mm
Min

Distance
mm

Complexity f Cost
Function

QUAD GRID 100 ×
50 0 10,986 75 2269 0.042

QUAD GRID 120 ×
60 0 11,022 125 3160 0.056

QUAD GRID 160 ×
80 0 11,007 75 5463 0.095

QUAD GRID 200 ×
100 0 10,992 25 8359 0.143

ITM 700 0 10,451 133 114 0.005

ITM 500 0 10,433 275 168 0.006

ITM 300 0 10,381 46 358 0.010

ITM 100 0 10,329 275 1644 0.031

Map_1

VITM 100_700 0 10,292 1 118 0.008

QUAD GRID 100 ×
50 0 10,986 25 2251 0.042

QUAD GRID 120 ×
60 0 11,022 25 3206 0.058

QUAD GRID 160 ×
80 0 11,007 25 5452 0.097

QUAD GRID 200 ×
100 0 10,992 25 8323 0.145

ITM 700 0 10,749 155 134 0.006

ITM 500 0 10,375 25 153 0.006

ITM 300 0 10,484 46 369 0.010

ITM 100 0 10,570 125 3030 0.055

Map_2

VITM 100_700 0 10,521 19 177 0.007

QUAD GRID 100 ×
50 0 10,986 25 2255 0.042

QUAD GRID 120 ×
60 0 11,022 25 3049 0.056

QUAD GRID 160 ×
80 0 11,007 25 5269 0.093

QUAD GRID 200 ×
100 0 10,992 25 8117 0.141

ITM 700 0 10,521 17 106 0.006

ITM 500 0 10,559 75 190 0.007

ITM 300 0 10,456 3 444 0.012

ITM 100 0 10,399 19 2191 0.041

Map_3

VITM 100_700 0 10,394 40 173 0.007
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Table A1. Cont.

Representations
S (300, 300)

G (9600,
4400)

Parameters Single
Criteria

Map Name

Type Size Inflation Length mm
Min

Distance
mm

Complexity f Cost
Function

QUAD GRID 100 ×
50 0 12,416 25 2695 0.051

QUAD GRID 120 ×
60 0 12,409 25 3707 0.069

QUAD GRID 160 ×
80 0 12,340 25 6468 0.117

QUAD GRID 200 ×
100 0 12,293 25 10,078 0.179

ITM 700 0 12,565 116 164 0.007

ITM 500 0 12,438 75 295 0.010

ITM 300 0 12,222 75 747 0.017

ITM 100 0 12,031 13 5613 0.102

Map_4

VITM 100_700 0 11,953 15 412 0.012

QUAD GRID 100 ×
50 0 10,986 75 2102 0.039

QUAD GRID 120 ×
60 0 11,022 25 2917 0.053

QUAD GRID 160 ×
80 0 11,007 25 5064 0.090

QUAD GRID 200 ×
100 0 10,992 25 7812 0.136

ITM 700 0 10,294 87 92 0.005

ITM 500 0 10,285 125 153 0.006

ITM 300 0 10,339 133 308 0.009

ITM 100 0 10,379 116 2316 0.043

Map_5

VITM 100_700 0 10,404 125 220 0.007

QUAD GRID 100 ×
50 0 11,630 25 1579 0.053

QUAD GRID 120 ×
60 0 11,657 25 2134 0.070

QUAD GRID 160 ×
80 0 11,592 25 3726 0.116

QUAD GRID 200 ×
100 0 11,519 25 5740 0.175

ITM 700 0 11,109 46 94 0.009

ITM 500 0 11,403 75 188 0.012

ITM 300 0 11,048 46 360 0.017

ITM 100 0 11,065 14 2859 0.091

Map_6

VITM 100_700 0 11,052 25 275 0.015
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Table A1. Cont.

Representations
S (300, 300)

G (9600,
4400)

Parameters Single
Criteria

Map Name

Type Size Inflation Length mm
Min

Distance
mm

Complexity f Cost
Function

QUAD GRID 100 ×
50 0 12,386 25 2289 0.066

QUAD GRID 120 ×
60 0 12,380 25 2995 0.085

QUAD GRID 160 ×
80 0 12,327 25 5502 0.150

QUAD GRID 200 ×
100 0 12,173 25 8388 0.225

ITM 700 0 12,760 46 190 0.012

ITM 500 0 12,357 20 226 0.013

ITM 300 0 12,233 11 552 0.021

ITM 100 0 11,798 0.4 4428 0.130

Map_7

VITM 100_700 0 12,031 45 513 0.020

QUAD GRID 100 ×
50 0 11,566 25 2224 0.054

QUAD GRID 120 ×
60 0 11,640 25 3418 0.080

QUAD GRID 160 ×
80 0 11,521 25 5532 0.126

QUAD GRID 200 ×
100 0 11,511 25 8836 0.199

ITM 700 0 11,938 20 167 0.009

ITM 500 0 11,465 27 242 0.011

ITM 300 0 11,444 39 611 0.019

ITM 100 0 11,181 0 4737 0.117

Map_8

VITM 100_700 0 11,584 5 435 0.015

QUAD GRID 100 ×
50 0 11,408 25 1705 0.046

QUAD GRID 120 ×
60 0 11,461 25 2483 0.064

QUAD GRID 160 ×
80 0 11,373 25 4069 0.102

QUAD GRID 200 ×
100 0 11,343 25 6520 0.160

ITM 700 0 11,207 31 120 0.008

ITM 500 0 11,108 2 190 0.011

ITM 300 0 10,921 13 379 0.015

ITM 100 0 10,878 10 2793 0.072

Map_9

VITM 100_700 0 10,925 17 315 0.013
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Table A1. Cont.

Representations
S (300, 300)

G (9600,
4400)

Parameters Single
Criteria

Map Name

Type Size Inflation Length mm
Min

Distance
mm

Complexity f Cost
Function

QUAD GRID 100 ×
50 0 11,239 25 1458 0.037

QUAD GRID 120 ×
60 0 11,189 25 2252 0.055

QUAD GRID 160 ×
80 0 11,222 25 3771 0.089

QUAD GRID 200 ×
100 0 11,201 25 5759 0.132

ITM 700 0 11,105 14 119 0.008

ITM 500 0 11,149 45 209 0.010

ITM 300 0 11,292 2 583 0.020

ITM 100 0 10,814 3 2507 0.061

Map_10

VITM 100_700 0 10,854 32 440 0.015

QUAD GRID 100 ×
50 0 11,156 25 1650 0.036

QUAD GRID 120 ×
60 0 11,120 25 2498 0.053

QUAD GRID 160 ×
80 0 11,119 25 4214 0.086

QUAD GRID 200 ×
100 0 11,119 25 6395 0.128

ITM 700 0 10,500 13 95 0.006

ITM 500 0 10,615 45 140 0.007

ITM 300 0 10,519 32 356 0.011

ITM 100 0 10,550 18 2998 0.062

Map_11

VITM 100_700 0 10,596 21 317 0.010

QUAD GRID 100 ×
50 0 11,069 25 1651 0.039

QUAD GRID 120 ×
60 0 11,091 25 2321 0.053

QUAD GRID 160 ×
80 0 11,058 25 4066 0.089

QUAD GRID 200 ×
100 0 11,033 25 6316 0.135

ITM 700 0 10,531 4 94 0.007

ITM 500 0 10,454 24 153 0.008

ITM 300 0 10,369 29 230 0.009

ITM 100 0 10,522 24 2026 0.046

Map_12

VITM 100_700 0 10,398 42 299 0.011
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Table A1. Cont.

Representations
S (300, 300)

G (9600,
4400)

Parameters Single
Criteria

Map Name

Type Size Inflation Length mm
Min

Distance
mm

Complexity f Cost
Function

QUAD GRID 100 ×
50 0 11,239 25 1479 0.036

QUAD GRID 120 ×
60 0 11,189 25 2366 0.055

QUAD GRID 160 ×
80 0 - - - -

QUAD GRID 200 ×
100 0 11,201 25 5999 0.132

ITM 700 0 11,048 12 126 0.008

ITM 500 0 11,026 44 160 0.008

ITM 300 0 11,011 23 494 0.015

ITM 100 0 10,891 14 3802 0.086

Map_13

VITM 100_700 0 11,063 21 254 0.010

QUAD GRID 100 ×
50 0 11,903 25 3025 0.060

QUAD GRID 120 ×
60 0 11,855 25 4270 0.083

QUAD GRID 160 ×
80 0 11,918 25 7623 0.145

QUAD GRID 200 ×
100 0 11,892 25 11,932 0.225

ITM 700 0 11,568 42 214 0.008

ITM 500 0 11,469 46 327 0.010

ITM 300 0 11,573 46 771 0.019

ITM 100 0 11,346 9 5936 0.114

Map_14

VITM 100_700 0 11,590 5 298 0.010

QUAD GRID 100 ×
50 0 17,192 25 3118 0.068

QUAD GRID 120 ×
60 0 17,246 25 4422 0.093

QUAD GRID 160 ×
80 0 17,031 25 7472 0.153

QUAD GRID 200 ×
100 0 16,769 25 11,676 0.235

ITM 700 0 17,764 31 209 0.011

ITM 500 0 18,192 46 353 0.014

ITM 300 0 17,480 29 919 0.025

ITM 100 0 16,593 8 7053 0.145

Map_15

VITM 100_700 0 16,786 1 403 0.020
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Table A1. Cont.

Representations
S (300, 300)

G (9600,
4400)

Parameters Single
Criteria

Map Name

Type Size Inflation Length mm
Min

Distance
mm

Complexity f Cost
Function

QUAD GRID 200 ×
100 0 29,830 25 13,978 0.303

ITM 100 0 30,072 0 8215 0.219
Map_16

VITM 28_700 0 30,183 5 1538 0.045

QUAD GRID 120 ×
60 0 32,876 25 5157 0.119

QUAD GRID 160 ×
80 0 32,308 25 9484 0.206

QUAD GRID 200 ×
100 0 32,075 25 15,000 0.318

ITM 300 0 32,204 5 1207 0.039

ITM 100 0 31,732 3 2455 0.064

ITM 50 0 30,498 0 9232 0.216

Map_17

VITM 100_700 0 31,494 1 1095 0.037

Table A2. The length, minimum distance to obstacle, complexity, and cost function values for all
representations considering the inflation layer in the same scenario (Robot diameter = 354 mm).

Representations
S (300, 300)

G (9600,
4400)

Parameters Single
Criteria

Map Name

Type Size Inflation Length mm
Min

Distance
mm

Complexity f Cost
Function

QUAD GRID 100 ×
50 1 10,986 48 2160 0.040

QUAD GRID 120 ×
60 1 11,022 4 3017 0.055

QUAD GRID 160 ×
80 1 11,007 4 5222 0.092

QUAD GRID 200 ×
100 1 10,992 22 7978 0.137

ITM 700 1 10,560 98 367 0.010

ITM 500 1 10,433 98 331 0.009

ITM 300 1 10,472 98 581 0.013

ITM 100 1 10,329 98 1845 0.034

Map_1

VITM 100_700 1 10,362 98 345 0.009
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Table A2. Cont.

Representations
S (300, 300)

G (9600,
4400)

Parameters Single
Criteria

Map Name

Type Size Inflation Length mm
Min

Distance
mm

Complexity f Cost
Function

QUAD GRID 100 ×
50 1 10,986 48 2101 0.040

QUAD GRID 120 ×
60 1 11,022 48 2995 0.055

QUAD GRID 160 ×
80 1 11,007 22 4987 0.089

QUAD GRID 200 ×
100 1 10,992 22 7555 0.132

ITM 700 1 10,878 98 532 0.013

ITM 500 1 10,492 48 457 0.011

ITM 300 1 10,597 48 749 0.016

ITM 100 1 10,635 10 3714 0.067

Map_2

VITM 100_700 1 10,469 48 327 0.009

QUAD GRID 100 ×
50 1 10,986 48 2029 0.038

QUAD GRID 120 ×
60 1 11,022 10 2842 0.052

QUAD GRID 160 ×
80 1 11,007 10 4902 0.087

QUAD GRID 200 ×
100 1 10,992 22 7458 0.130

ITM 700 1 10,671 98 324 0.009

ITM 500 1 10,566 4 464 0.012

ITM 300 1 10,519 98 622 0.014

ITM 100 1 10,508 4 2869 0.053

Map_3

VITM 100_700 1 10,641 67 673 0.015

QUAD GRID 100 ×
50 1 13,099 48 2387 0.046

QUAD GRID 120 ×
60 1 13,076 4 3396 0.064

QUAD GRID 160 ×
80 1 13,126 4 6016 0.110

QUAD GRID 200 ×
100 1 13,151 4 9240 0.166

ITM 700 1 12,777 81 928 0.021

ITM 500 1 12,633 10 1365 0.028

ITM 300 1 12,988 81 1742 0.035

ITM 100 1 12,751 4 7671 0.138

Map_4

VITM 100_700 1 12,686 10 1334 0.028
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Table A2. Cont.

Representations
S (300, 300)

G (9600,
4400)

Parameters Single
Criteria

Map Name

Type Size Inflation Length mm
Min

Distance
mm

Complexity f Cost
Function

QUAD GRID 100 ×
50 1 - - - -

QUAD GRID 120 ×
60 1 11,022 48 2665 0.049

QUAD GRID 160 ×
80 1 11,007 4 4611 0.083

QUAD GRID 200 ×
100 1 10,992 22 7057 0.124

ITM 700 1 - - - -

ITM 500 1 - - - -

ITM 300 1 - - - -

ITM 100 1 10,402 4 2554 0.048

Map_5

VITM 50_700 1 10,409 4 681 0.016

QUAD GRID 100 ×
50 1 - - - -

QUAD GRID 120 ×
60 1 - - - -

QUAD GRID 160 ×
80 1 - - - -

QUAD GRID 200 ×
100 1 11,900 4 4607 0.143

ITM 500 1 - - - -

ITM 300 1 - - - -

ITM 100 1 - - - -

ITM 50 1 11,668 4 13,978 0.418

Map_6

VITM 50_700 1 11,545 4 1111 0.040

QUAD GRID 100 ×
50 1 12,756 48 730 0.026

QUAD GRID 120 ×
60 1 12,800 4 1188 0.038

QUAD GRID 160 ×
80 1 12,779 4 2049 0.061

QUAD GRID 200 ×
100 1 12,797 22 2828 0.080

ITM 700 1 - - - -

ITM 500 1 - - - -

ITM 300 1 - - - -

ITM 100 1 13,176 4 4933 0.136

Map_7

VITM 100_700 1 16,061 4 1706 0.054
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Table A2. Cont.

Representations
S (300, 300)

G (9600,
4400)

Parameters Single
Criteria

Map Name

Type Size Inflation Length mm
Min

Distance
mm

Complexity f Cost
Function

QUAD GRID 100 ×
50 1 11,703 48 1523 0.039

QUAD GRID 120 ×
60 1 11,668 4 2193 0.054

QUAD GRID 160 ×
80 1 11,690 4 3892 0.091

QUAD GRID 200 ×
100 1 11,668 22 5802 0.132

ITM 700 1 - - - -

ITM 500 1 - - - -

ITM 300 1 - - - -

ITM 100 1 11,854 4 5765 0.132

Map_8

VITM 100_700 1 12,003 4 1138 0.031

QUAD GRID 100 ×
50 1 11,584 48 1095 0.032

QUAD GRID 120 ×
60 1 11,604 4 1580 0.044

QUAD GRID 160 ×
80 1 11,581 4 2656 0.069

QUAD GRID 200 ×
100 1 11,584 22 4125 0.103

ITM 700 1 12,842 48 969 0.029

ITM 500 1 12,047 4 1250 0.036

ITM 300 1 11,964 22 1613 0.044

ITM 100 1 11,584 4 4978 0.124

Map_9

VITM 100_700 1 11,972 4 1432 0.041

QUAD GRID 100 ×
50 1 - - - -

QUAD GRID 120 ×
60 1 13,171 4 2037 0.052

QUAD GRID 160 ×
80 1 12,162 4 2461 0.061

QUAD GRID 200 ×
100 1 12,211 4 3731 0.089

ITM 500 1 - - - -

ITM 300 1 - - - -

ITM 100 1 - - - -

ITM 50 1 12,065 4 13,897 0.313

Map_10

VITM 30_700 1 12,547 4 1485 0.039
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Table A2. Cont.

Representations
S (300, 300)

G (9600,
4400)

Parameters Single
Criteria

Map Name

Type Size Inflation Length mm
Min

Distance
mm

Complexity f Cost
Function

QUAD GRID 100 ×
50 1 11,404 10 1541 0.034

QUAD GRID 120 ×
60 1 11,258 4 2295 0.049

QUAD GRID 160 ×
80 1 11,274 4 3894 0.080

QUAD GRID 200 ×
100 1 11,284 4 5876 0.135

ITM 700 1 - - - -

ITM 500 1 11,074 4 851 0.021

ITM 300 1 - - - -

ITM 100 1 11,214 4 6390 0.128

Map_11

VITM 100_700 1 12,754 4 2012 0.044

QUAD GRID 100 ×
50 1 11,915 22 1333 0.033

QUAD GRID 120 ×
60 1 11,465 4 1791 0.043

QUAD GRID 160 ×
80 1 11,494 4 3110 0.070

QUAD GRID 200 ×
100 1 11,411 22 4630 0.101

ITM 700 1 11,602 4 853 0.023

ITM 500 1 11,796 4 1123 0.029

ITM 300 1 10,895 10 1119 0.028

ITM 100 1 11,533 4 4676 0.102

Map_12

VITM 28_700 1 11,449 4 1263 0.032

QUAD GRID 100 ×
50 1 12,425 10 1878 0.045

QUAD GRID 120 ×
60 1 12,205 4 2780 0.065

QUAD GRID 160 ×
80 1 12,256 4 4808 0.108

QUAD GRID 200 ×
100 1 12,316 4 7430 0.164

ITM 700 1 - - - -

ITM 500 1 - - - -

ITM 300 1 - - - -

ITM 100 1 12,133 4 9511 0.208

Map_13

VITM 100_700 1 12,306 4 1797 0.044
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Table A2. Cont.

Representations
S (300, 300)

G (9600,
4400)

Parameters Single
Criteria

Map Name

Type Size Inflation Length mm
Min

Distance
mm

Complexity f Cost
Function

QUAD GRID 100 ×
50 1 14,540 22 2421 0.050

QUAD GRID 120 ×
60 1 13,245 10 3860 0.076

QUAD GRID 160 ×
80 1 14,370 4 5985 0.117

QUAD GRID 200 ×
100 1 13,247 22 10,293 0.195

ITM 700 1 12,918 4 1345 0.030

ITM 500 1 14,584 4 1573 0.035

ITM 300 1 14,258 48 2399 0.050

ITM 100 1 12,786 4 10,729 0.203

Map_14

VITM 50_700 1 13,208 10 1717 0.037

QUAD GRID 100 ×
50 1 18,640 10 2073 0.048

QUAD GRID 120 ×
60 1 18,717 4 3107 0.069

QUAD GRID 160 ×
80 1 18,525 4 5312 0.112

QUAD GRID 200 ×
100 1 18,651 4 8180 0.168

ITM 700 1 - - - -

ITM 500 1 - - - -

ITM 300 1 - - - -

ITM 100 1 18,584 4 10,910 0.221

Map_15

VITM 50_700 1 18,918 4 1701 0.042

QUAD GRID 120 ×
60 1 35,929 4 2661 0.071

QUAD GRID 200 ×
100 1 35,954 4 6878 0.159

ITM 100 1 36,679 4 11,402 0.253

Map_16

VITM 28_700 1 36,430 4 2801 0.074
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Table A2. Cont.

Representations
S (300, 300)

G (9600,
4400)

Parameters Single
Criteria

Map Name

Type Size Inflation Length mm
Min

Distance
mm

Complexity f Cost
Function

QUAD GRID 120 ×
60 1 - - - -

QUAD GRID 160 ×
80 1 37,557 4 4020 0.098

QUAD GRID 200 ×
100 1 38,084 4 6242 0.143

ITM 300 1 - - - -

ITM 100 1 - - - -

ITM 50 1 37,727 4 28,135 0.588

Map_17

VITM 50_700 1 38,756 4 3180 0.081
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