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Abstract: Straight-line needle insertion is a prevalent tool in surgical interventions in the brain,
such as Deep Brain Stimulation and Convection-Enhanced Delivery, that treat a range of conditions
from Alzheimer’s disease to brain cancer. Using a steerable needle to execute curved trajectories
and correct positional deviation could enable more intervention possibilities, while reducing the
risk of complication in these procedures. This paper experimentally identifies model parameters
using an expectation–maximization (EM) algorithm for two different steerable needle models. The
results compared a physically motivated model to the established bicycle needle model and found
the former to be preferred for modeling soft brain tissue needle insertion. The results also supported
the experimentally parameterized models’ use in future applications such as needle steering control.

Keywords: steerable needles; expectation–maximization; flexible robots; medical robots

1. Introduction

Needles are a longstanding and widespread tool used by surgeons as they are min-
imally invasive and versatile in a wide range of clinical applications. In recent years,
robotically guided needles have been investigated, and one area with potential benefits is
needle insertions into the brain. One such surgical intervention is Deep Brain Stimulation
(DBS), which is applied to a wide range of central nervous system pathologies such as
Parkinson’s disease and Alzheimer’s disease [1,2]. DBS surgeries place an electrode in the
brain by inserting it through the skull along a straight path [3]. The required precision for an
effective DBS electrode placement is estimated at 2 mm [4], and current surgical procedures
achieve accuracies of about 2–3 mm [5], which means this technique can unfortunately
lead to inaccurate electrode placement. This results in the need for additional electrode
insertions, which reduce the likelihood of a positive surgical outcome [6]. Reducing or
correcting trajectory error can reduce the number of penetrations into the brain for this
procedure [7]. As most are bilateral, DBS surgeries typically require two entry points
through the skull [8]. Fewer entry points would allow safer, faster, and less traumatic
procedures and may be achieved by using curved trajectories to perform multiple electrode
placements during a single insertion. Entry points must also be chosen to provide a straight
path to the electrode placement target without penetrating sensitive areas of the brain
and compromising safety. This can be difficult if not impossible depending on patient
anatomy [9], whereas a curved trajectory could allow for an optimal insertion point while
still allowing a safe trajectory by circumventing sensitive areas.

Another clinical application that could benefit from needle navigation around obstacles
specifically in brain tissue is the treatment of cancerous brain tumors, such as glioblastoma.
These tumors can develop near sensitive tissues such as venous sinuses, the brain stem,
or deep cerebellar nuclei [10]. Convection-Enhanced Delivery (CED) is a targeted drug
delivery technique used to treat cancerous brain tumors, as well as Parkinson’s disease and
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Alzheimer’s disease, which, similarly to DBS, requires one or more insertions through burr
holes in the skull and accurate positioning of the needle at the injection site [11].

Expanding beyond in-brain applications, there are numerous medical procedures that
can benefit from steerable needle technology. A study conducted at the Annual Meeting of
Cardiovascular and Interventional Radiology Society of Europe in 2016 supports the desire
for steerable needles by practitioners in the field [12]. Respondents consisted primarily
of interventional radiologists with experience in needle placement. The study found
that added value for steerable needles in current interventions was seen by 93% of the
respondents, while 85% of the respondents found needle steering to be a useful tool for
steering around anatomical obstacles.

Both passive and active steering approaches to provide tip control to the surgeon have
been investigated, and both present their own challenges. Passive bevel-tip needles are
typically less complex, but manipulability is limited [13,14]. Active methods are typically
more capable, but achieve this through sacrificing the simplicity and flexibility of the
needle [15]. Magnetically steered needles may provide an ideal solution as the only added
complexity is a permanent magnet in the needle tip, yet they are highly steerable by virtue
of an external magnetic field. The design and actuation of a magnetic-tip steerable needle
for guiding a DBS electrode insertion was presented in [16], and its functionality was
demonstrated in an agar brain tissue phantom. The design followed curved trajectories
under direct human operator control and executed trajectories with multiple targets.

In their 2006 seminal paper, Webster et al. showed that a bevel-tip needle could
be represented with a bicycle model with a fixed steering angle [17]. Slight variations
and modifications to the needle model and design have been investigated, including
augmenting the model with a steerable angle [18] and, recently, magnetic control of a flexible
needle using the bicycle model modified to work with magnetic inputs [19]. However,
the bicycle model does not necessarily represent the physics of a magnetic-tip needle in
soft tissue. It is subject to a no-slip condition that constrains the velocity of the needle
wire and tip in the direction perpendicular to their orientation. This can be an effective
constraint on needle tip steering in stiff tissue, but has been found to be violated for
magnetic needle insertion in the softer brain tissue phantom [16]. Thus, despite its use
in previous applications, the scope of the bicycle model may be limited when applied to
magnetic needle steering, particularly in the brain.

Steerable needle models typically include parameters containing the physical prop-
erties of the system that dictate needle–tissue interaction. In order to implement a model,
these parameters must be identified. Many models directly parameterize tissue and needle
properties such as stiffness, elastic modulus, and cutting and friction forces [20,21]. This
often requires a specific setup and sensors to explore the tissue–needle interaction. Other
models use more abstract parameters that indirectly encode tissue parameters, which are
often identified by performing a calibration-specific testing protocol using a theoretically
derived best-fit optimization on the calibration data [16,17,22]. These needle model param-
eterization approaches do not incorporate the identification of measurement or process
noise covariances, which precludes optimal model implementation.

Recently, the authors presented a physically motivated magnetic needle model (MNM)
specifically for magnetic needle steering in soft tissue and an algorithmic parameter identi-
fication methodology for steerable needle models in general [23]. The experimental validity
of the model was left undetermined, while the parameter identification methodology was
validated in simulation. Building from this prior work, the three primary research contri-
butions of this paper are: (1) algorithmically parameterizing two steerable needle models
using the framework from [23] with empirical data, (2) presenting a generalizable method
to use the parameterization results to assess which model better fits the empirical data, and
(3) demonstrating that the MNM provides a simplified and more physically correct model
than the state-of-the-art bicycle needle model (BiNM) in artificial soft tissue.

The remainder of this paper is structured as follows: In Section 2.1, the needle models
MNM and BiNM used for parameterization are presented. In Section 2.2, the expectation–
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maximization (EM) technique presented in [23] to identify the unknown model parame-
ters, as well as process and measurement noise covariances is summarized and updated.
Section 2.3 describes the experimental methods for collecting data ex vivo in agar, while
Section 3 provides the results of running the EM algorithm with both the MNM and BiNM
to parameterize the models on the experimental data. Section 4 discusses the parameteriza-
tion results and directly compares the two models’ results.

2. Methods
2.1. Needle Models

The needle design, control, and MNM model were adapted from [23]. The needle
contains a nonmagnetic flexible trailing wire, permanent magnet ball joint, and permanent
magnet tip, as diagrammed in Figure 1. The needle model states are overlaid in Figure 1,
with the heading of the wire indicated by 3D Cartesian unit vector hw, the position of
the ball by p, and the direction of the B-field by B. The direction of the magnetic tip is
controlled with an external magnetic field (B-field), and the needle is inserted using a
motorized linear advancer at the proximal end of the trailing wire.

Position (p)

Heading (hw)
Magnetic 

Ball Joint

Trailing Wire

Figure 1. Magnetic-tip needle diagram adapted from [23] with states labeled in blue.

A deliberate choice was made to use the 2-degree-of-freedom (DOF) B-direction unit
vector as a model state rather than including B magnitude for a 3-DOF B-field vector.
As investigated in [16], there exists a minimum turn radius (100 ± 15 mm) before tissue
damage is inflicted. This minimum radius corresponds to a maximum field strength when
applied to maximum effect (perpendicular to the needle heading). If the field strength is
set constant at this maximum, the turn radius can be completely controlled up to this limit
by manipulating the B-direction alone. Thus, the assertion is made that this maximum
field strength is used and set constant, enabling a reduced DOF model that excludes the
B-field magnitude.

2.1.1. Magnetic Needle Model

The state-space kinematic needle steering model MNM from [23] is shown below,
where c is an unknown constant related to curvature, h(x) represents the generic measure-
ment model, and u indicates control inputs, where v is the scalar insertion velocity and ωB
is the angular rate of change of the B-field.

ẋ =

 ṗ
ḣw
Ḃ

 =

 hwv
cv(hw × B)× hw + hw(1− ‖hw‖2)

ωB × B + B(1− ‖B‖2)

 (1)

y = h(x) (2)

u =
[
v ωB

>] (3)
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Because measurement models are based on hardware and sensors and not physi-
cal dynamics, Equation (2) is expressed in the general form. For details on the specific
measurement models used for the hardware in this paper, see Section 2.3.9.

2.1.2. Bicycle Model

The development of the MNM was motivated by expected shortcomings of the BiNM
when used with a magnetic-tip needle, particularly in soft brain tissue. To assess this
premise and identify scenarios where MNM may provide superior performance, the meth-
ods and analysis presented in this paper were performed on both the MNM and the BiNM
to allow for direct comparison of the models.

Hong et al. presented a seven-state three-input BiNM for use in magnetic
applications [19]. Equation (4) shows this model converted to match the nine states and
four inputs of the derived MNM so the models can be used interchangeably.

ẋ =

 ṗ
ḣt
Ḃ

 =

 htv
linvv (ht×B)×ht

B̂>ht
+ ht(1− ‖ht‖2)

ωB × B + B(1− ‖B‖2)

 (4)

Additionally, the BiNM parameter l is moved to the numerator as linv, which allows it
to interact identically to c when parameterizing the model.

The mirroring states, inputs, and parameters of the MNM in the BiNM allow for the
direct interchangeability of the models. Thus, while the remainder of the paper is written
from the perspective of using the MNM, all methods and analysis can be equivalently
performed using the BiNM.

Despite these conversion efforts, one major distinction between the BiNM and MNM
remains. In the BiNM, the heading state is the needle tip heading ht, not the trailing
wire heading hw, as in the MNM. To avoid this potential inconsistency and retain model
interchangeability, our system intentionally does not measure the heading directly, but
allows the models to internally manage the heading by relying on an extended Kalman
filter (EKF) to estimate it.

Aside from the heading state, the other primary difference in the models is the B̂>ht
denominator term in ḣht in the BiNM (Equation (4)). This term represents the no-slip
singularity condition of the BiNM. When B is perpendicular to ht, the model is singular
and cannot move. This is a significant shortcoming of the BiNM when used with magnetic
needle steering and is further discussed in Section 4.2.

2.2. Parameterization

To identify the unknown parameters c, process noise covariance Q, and measurement
noise covariances Rj experimentally, the parameterization methods in [23] were used,
including augmenting the unknown constant c (or linv) to the state vector and expectation–
maximization. The following minor updates to this approach were also implemented.

The generic discrete nonlinear state-space measurement equation in Equation (5)
from [23] can be expanded to include multiple independent measurements and correspond-
ing measurement models and Rs (indicated with subscript j), that are time independent
from model updates (denoted by replacing subscript n with m), as shown in Equation (6).

yn = h(xn) + vn

v ∼ N (0, R)
(5)

yj,m = hj(xm) + vj,m

vj ∼ N (0, Rj)
(6)

These allow for the use of multiple generic measurement models, as seen in Section 2.3.9.
This update to EM can be seen in Algorithm 1.
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Algorithm 1: EM using the IEKS E-step and multiple measurement models.
Data: YN and UN
Result: Converged parameters Q, R1 · · · RJ , and X̂N

1 Guess parameters Q and R1 · · · RJ and initial state (x0) and covariance (P0)
2 do
3 E-Step: (IEKS)
4 do
5 Find the smoothed distribution estimate p(XN |YN , UN , Q, R1 · · · RJ) by

using EKS to find X̂N and P̂N
6 x0 ⇐ x̂0|N
7 while ‖∆x0‖ between iterations > tolE−Step;
8 M-step:
9 Maximize the likelihood function L(Q, R1 · · · RJ) independently for Q and

each Rj to obtain:
Q⇐ argmax

Q
L(Q, R1 · · · RJ)

for j=1:J do
10

Rj ⇐ argmax
Rj

L(Q, R1 · · · RJ)

11 end
12 while ‖∆Q‖+ ‖∆R1‖+ · · ·+ ‖∆RJ‖ between iterations > tolEM;

In addition, in this EM implementation, the more generic iterated EKS
(IEKS) [24,25] replaces the repeated E-step introduced in [23] to converge initial condi-
tions in the nonlinear E-step.

2.3. Experimental Setup
2.3.1. Manipulation System

The hardware setup used for these experiments is shown in Figure 2. A custom-built
3-pair nested Helmholtz coil system generates a homogeneous 3D magnetic field inside the
workspace. The workspace is 140 × 140 × 50 mm, and the maximum total field strength is
28 mT. A custom needle advancer linearly inserts the needle using tensioned rollers driven
by a geared-down DC motor and controller (Maxon Motor, Sachseln, Switzerland), capable
of insertion speeds up to 5 mm/s. A support sheath abuts the tissue phantom to prevent
the needle from buckling during insertion.

2.3.2. Visual Position Feedback

A 2D xy-plane needle tracking is performed by an overhead BFS-U3-51S5C camera
(Point Grey, Richmond, BC Canada) mounted above the tissue phantom, as seen in Figure 2.
The camera captures images at 6 Hz, which are processed in real-time using the OpenCV
library [26] to identify the needle tip. First, the image is converted to 8-bit grayscale. Then,
a manual mouse click on the needle image in the GUI is used to set the adaptive binary
threshold to 5 above the pixel value to identify the needle rectangle silhouette from the
background. OpenCV open then close operations are performed, and then, the needle
silhouette is identified using OpenCV findContours. The centroid of this rectangle is the
center position, and the direction of the long axis of this rectangle is the tip heading. Finally,
the adaptive threshold value is updated from the current needle center pixel value.

The needle tip’s center xy position and xy direction are transformed to the world frame
and extracted. The state position p is calculated by offsetting half the needle length from
the center position in the direction of the tip heading towards the trailing wire. Camera
calibration is performed before testing to generate the transform from image frame pixels
to world frame meters. The 800 × 668 pixel images correspond to a 90 × 75 mm field of
view of the workspace, resulting in a pixel resolution of about 0.1 mm.
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Helmholtz Coil 
B-Field Emitter

Needle-Tracking 
Camera

Needle Advancer

Needle in Agar

Z

Y

X

Figure 2. Hardware setup: needle advancer inserting needle into workspace via support sheath
inside the Helmholtz coil 3D B-field emitter system with overhead camera to track needle. “Needle
in Agar” shows magnified view of workspace with agar tissue phantom and abutted needle support
sheath. The needle is not visible, but passes through the support sheath into the phantom.

2.3.3. Brain Tissue Phantom

Brain tissue is simulated with an agar hydrogel phantom at a 0.6% concentration by
weight [27]. For each batch, the dry agar powder (Landor Trading Co, Williamsport, PA,
USA) is mixed with distilled water, heated to 100 ◦C, and stirred until dissolved. After
cooling at room temperature for 10 min, the mixture is poured into a mold 14 mm thick
and cooled at 4 ◦C for at least 3 h to solidify and reach thermal equilibrium. Immediately
before use, the agar is cut into four 80 × 80 mm pieces to fit in the camera field of view and
mounted onto transparent slides.

2.3.4. Needle Design and Fabrication

Petruska et al. described magnetic needle design considerations for use in DBS
electrode placement surgery [16]. The needle used in this paper is adapted from that
design. As shown in Figure 3, the needle wire consists of a 0.25 mm diameter nitinol wire
core (McMaster-Carr, USA. Elastic Modulus = 83 GPa) inside a 0.76 mm I.D. 1.65 mm
O.D. silicone rubber sheath (McMaster-Carr, USA. Elastic Modulus = 0.05 GPa). The
needle tip is a 1 mm diameter by 7 mm length axially magnetized NdFeB cylindrical
permanent magnet (HKCM Engineering, Eckernförde, Germany). Behind the needle is a
1 mm-diameter magnetized ball (HKCM Engineering, Germany). The nitinol wire and ball
joint are adhered to each other and the silicone sheath using Super Glue (The Gorilla Glue
Company, Cincinnati, OH, USA). The tip is capped with a Gorilla Glue hemisphere (The
Gorilla Glue Company, USA).
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(a)

(b) (c)

Figure 3. (a) Needle trailing nitinol wire, magnetic ball joint, and magnetic tip, all sheathed in a
silicone rubber sheath. Representative views of the completed needle insertion trajectory (b) cross-
sectioned through the yz-plane, and (c) in agar from overhead tracking camera.

2.3.5. Trajectories

For the purpose of model identification, the simulation results demonstrate that
a planar trajectory is sufficient. Thus, while the MNM is 3D-capable, the experiments
were performed using a 2D trajectory. This allows for a simplified hardware setup and
experimental design. A single overhead camera accurately tracks the position in the
xy-plane; the agar thickness was limited, and intuitive 2D test trajectories were used.

Trajectory variation was not expected to significantly affect parameterization, so two
disparate experimental trajectories were considered sufficient. Trajectory 1 (T1) (Figure 4)
is designed to provide path and magnetic control input variation for realistically expected
needle performance and behavior in application. T1 performs a downward S-turn via a
constantly increasing ωBz that inverts partially through the trajectory. Trajectory 2 (T2)
(Figure 4) attempts to achieve the minimum curvature by turning constantly in the same
direction. T2 also provides a convenient case where the models diverge, as shown in
Section 4.2.2.

Both trajectories are run at a constant insertion velocity of 2.0 mm/s for 27 s to
maximize the use of the camera’s field of view. The initial position is centered (x = 0) at
the top (+y) of the workspace with the needle inserted in the down (−y) direction. Both
trajectories are mirrored to run in both ±x directions to analyze trajectory and direction
results independently.
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Figure 4. Predicted experimental trajectories using MNM with various expected c values. (c = 1000 is
not expected, but is depicted to show the limit case.) T1 pictured in positive direction and T2 pictured
in negative direction for visual clarity. The black square represents the camera field of view.

2.3.6. Planar Control

In a 2D analysis, the trajectory is assumed perfectly planar, so deviation out-of-plane
reduces the accuracy of the results. The experimental 2D trajectories were implemented
using ωBz control only (ωBx = ωBy = Bz = 0), and without active magnetic control, the
needle can drift freely in the z-plane. To maintain a planar trajectory when collecting data,
we implemented proportional control on Bz, as shown in Equation (7). This control was
based on the relative opacity of the needle in the agar from the initial insertion point, as
measured by the 0–255 grayscale pixel values at the tip of the needle from the overhead
camera. The gain of 2.0 mT per pixel value was set empirically to provide the least deviation
of the needle in the z-plane, and the Bz control input was saturated at the±28 mT hardware
limit. Figure 3 shows a representative cross-section of a complete insertion trajectory. Cross-
sections were performed on the last trial in each agar piece, and all vertical displacement
from planar was found to fall within 3 mm.

Bz = 2.0(opacitycurrent − opacityinitial) (7)

2.3.7. Test Procedure

Three batches of agar were made, and each batch was cut into four pieces. Four trials
were performed in each piece, where, in each trial, the needle was inserted into a different
edge of the piece, resulting in a total of 48 individual trials.

2.3.8. Field Strength

As discussed in the model section, the application intent is to select a constant field
strength that optimally balances the max curvature without damaging the tissue [16].
However, this field strength was not known a priori, so three field strengths were tested:
10, 19 and 28 mT. This also allows for the analysis of the field strength to c relationship, as
they should be positively correlated.
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2.3.9. Measurement Models

In this system, two measurement models are used: one for the camera using p and
one for the Helmholtz coils using B. The overhead camera measures the position p of the
magnetic tip directly, so the measurement model is the identity:

y1 = hp(x) = p (8)

The camera can measure ht because it can identify the direction from the straight
needle tip, but it does not measure hw because it is not able to accurately identify a line
tangential to the distal end of the trailing wire. Thus, for consistency in the analysis between
models, in addition to the reasons listed in Section 2.1.2, a camera ht measurement is not
used, and instead, both models’ headings are estimated in the EKF.

The positional measurement model was enhanced to include a minimum noise thresh-
old to help prevent overfitting. This minimum was set at the sensor limit based on the
0.1 mm pixel resolution of the camera. Dividing the resolution by two for bidirectionality
and converting units resulted in a minimum positional measurement noise covariance
threshold of 2.5 × 10−9 m2.

The Helmholtz coil approximates a spinning magnetic field as described by the input
ωB by updating static field targets at 300 Hz. Discrete measurements were taken directly
from this input at 18 Hz. Thus, the B-field measurement model is the identity:

y2 = hB(x) = B (9)

The two measurement models in Equations (8) and (9) correspond to measurement
noise covariances Rp and RB, which are both maximized in the M-step of Equation (1).

We recognize that the B-field measurements are synthetic, since they come directly
from the input. The B-field is difficult to measure independently in this system because the
workspace is too spatially constrained to fit a magnetometer sensor, as it would interfere
with at least one of the following: camera view, needle advancer, or tissue phantom.
Fortunately, it is not necessary to measure the B-field, because the Helmholtz coils were
calibrated by a magnetometer before each series of trials. This resulted in an RB that did
not capture random measurement noise; it only captured quantization error resulting
from differences in the static field update and measurement frequencies, which should be
negligible. These synthetic measurements were used because they improve the algorithm’s
accuracy, and RB was still identified and reported for completeness. However, the analysis
of RB was omitted, because it did not provide meaningful information about algorithmic
performance or model differences.

3. Results

Four trials experienced experimental error, and the data were discarded, resulting in a
total of 44 successful individual trials. EM as described in Algorithm 1 was run on each
trial of experimental data for both the MNM and BiNM with a limit of 100 iterations. An
example trajectory result is shown in Figure 5. EM converged on all trials with the MNM,
but diverged on three trials when using the BiNM due to breaching the singularity. Those
three trials were excluded from results of both models for consistency.

The EM algorithm was parameterized c with an average of 5.3, 9.5, and 11.9 m−1 for the
three different field strengths tested and standard deviations (SDs) of 3.2, 4.8, and 5.6 m−1,
respectively, as shown in the first column of Table 1. Similarly, linv was parameterized with
an average of 1.6, 3.5, and 4.9 m−1 for the three different field strengths tested and standard
deviations of 1.6, 3.0, and 3.4 m−1, respectively, as shown in the first column of Table 2.

Since Q and R are matrices, we reduced them to single average value representations
by dividing their trace by the measurement dimension to facilitate our analysis and compar-
ison. As the trace is the sum of the eigenvalues, it provides a measure of the total variation,
and dividing provides an average variation per 3D dimension. Rp and RB are each reduced
using their trace to a single representative value because each measures only a single unit:
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position variance (m2) and B-field direction variance (unit vector 2), respectively. Note from
the squared units that the Q and R values are reported as variances in all tables and figures,
so to interpret variation with respect to states, the square root must be taken.

(a)

(b)

Figure 5. (a): Example experimental results for Trajectory 2 in the -X-direction with a field strength
of 28 mT. Converged EM position state estimates are shown for both models. (a) shows the trajec-
tories’ x-y position and experimental measurements, while (b) shows RMS position difference of
the EM trajectories from the measurements. As seen in both (a) and (b), these trajectories are nearly
indistinguishable, demonstrating strong agreement between models for these data.

Table 1. MNM parameterization results.

c tr(Qp) tr(Qh) tr(QB) tr(Rp) tr(RB)

@Field
Strength

10
mT

19
mT

28
mT All

Mean 5.3 9.5 11.9 1.10× 10−7 6.65× 10−4 7.32× 10−9 2.70× 10−9 5.6× 10−12

SD 3.2 4.8 5.6 1.23× 10−7 6.58× 10−5 1.18× 10−8 6.58× 10−10 5.8× 10−12

SD as Traj.
Err. (mm) 0.002 0.022 0.003 0.052 2× 10−13 NA 1

1 Analysis of RB is omitted as explained in Section 2.3.9.
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Table 2. BiNM parameterization results.

linv tr(Qp) tr(Qh) tr(QB) tr(Rp) tr(RB)

@Field
Strength

10
mT

19
mT

28
mT All

Mean 1.6 3.5 4.9 1.10× 10−7 6.40× 10−3 7.37× 10−9 2.72× 10−9 4.4× 10−12

SD 1.6 3.0 3.4 1.23× 10−7 2.04× 10−2 1.18× 10−8 7.68× 10−10 3.7× 10−12

SD as Traj.
Err. (mm) 0.114 0.302 0.360 0.200 0.001 NA 1

1 Analysis of RB is omitted as explained in Section 2.3.9.

Q contains three 3 × 3 sub-matrices corresponding to the three 3D states: position,
heading, and B-field direction. Results represent each sub-matrix as a singular value using
its trace: tr(Qp), tr(Qh), and tr(QB), respectively. Complete Q and R matrices’ cross-terms
were found to be at least one order of magnitude lower than the diagonals, while the
diagonals within each Q block and R were found to be within an order of magnitude, so
the information lost by this reduced representation should not significantly impact the
interpretation. These average parameterized values along with their standard deviations
are reported in Tables 1 and 2 for the MNM and BiNM, respectively. These results show
that, on the order of a 10−12 variance of a unit vector, RB is minuscule, as predicted in
Section 2.3.9, supporting its omission from further analysis.

The spread of the tr(Qp), tr(Qh), tr(QB), and tr(Rp) data are shown with boxplots in
Figure 6. The tight one-sided distribution of tr(Rp) was caused by the minimum noise
threshold set at 2.5 · 10−9 m2. Parameterization of tr(Qp), tr(QB), and tr(Rp) was nearly
identical for MNM and BiNM. In contrast, parameterization of tr(Qh) did not match
between models and on average was an order of magnitude higher in the BiNM than in the
MNM. Additionally, three extreme high-side outliers occurred in BiNM at tr(Qh) = 0.12,
0.036, and 0.026 (not pictured in Figure 6 for clarity).
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Figure 6. Boxplots of all 41 trials’ tr(Qp), tr(Qh), tr(QB), and tr(Rp) for MNM and BiNM. Boxes and
whiskers indicate quartiles; blue line indicates median; blue circles indicate outliers. tr(Qh) shown
without outliers for visual clarity.
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Ultimately, parameterization was used to improve the predictive accuracy of the
models. Thus, positional trajectory sensitivity to the parameters was explored. The last
row of Tables 1 and 2 presents a difference in the RMS distance trajectory error that could
be expected at one standard deviation from the mean for each parameter. To calculate
these values, both T1 and T2 were first simulated nominally using the average parameters
from Tables 1 and 2. Then, each parameter was separately inflated and deflated by the
ratio of its mean to the standard deviation. The average trajectory error from this nominal
trajectory was calculated, and this process was repeated 100 times and averaged. This
resulting measure of error provides a physical interpretation of the parameter variation.

4. Discussion

The experiments in this paper serve two goals: to use the EM algorithm to identify
needle model parameters and to examine differences between the MNM and the BiNM
to determine if and when the MNM provides superior performance to the BiNM. Having
better model state estimation will ultimately result in improved control of the needle and,
thus, more accurate electrode placement in surgery.

4.1. Parameter Identification

The EM algorithm converged to a solution for every single trial using the MNM. With
the BiNM, a solution was found for all but three trials, and these failed due to the known
model issue of approaching the singularity. Additionally, parameterization spread results
expressed by the standard deviations in Tables 1 and 2 demonstrate a level of consistency
between the solutions.

These variation measures of the c, Q, and R parameters help to understand the preci-
sion of the EM algorithm applied to these needle steering models. However, to practically
evaluate the parameterization, we considered the sensitivity of the trajectory error to this
variation. A higher trajectory error might indicate that the variance in parameterization
was too large, and the model did not capture all significant physical effects, while a lower
trajectory error indicates that average parameterization results can be generally applied.
As seen in Tables 1 and 2, the trajectory error produced by both models’ parameter spread
at one standard deviation was submillimeter across all parameters, with the largest being
0.360 mm from QB of the BiNM. This is very promising compared to the 2 mm surgical
accuracy target for electrodes in Deep Brain Stimulation [4] and supports using the resulting
parameterized model for general needle steering application.

The mean tr(Rp) for MNM as reported in Table 1 was 2.70 × 10−9 m2, so the error
in the position measurement (expressed as a standard deviation) was 0.05 mm. This is
comparable to the camera pixel resolution due to the tr(Rp) distribution falling very near
the minimum limit established at the camera resolution. Because both models use the same
measurements, the measurement noise should be the same. This is supported in the results,
as tr(Rp) closely matches between the models.

In these results, Q is expressed as a continuous variance per second, while R is a per
update value that applies to each measurement. Therefore, on average, to prevent Qp
noise from accumulating larger than Rp, position measurements would need to occur at a
frequency of the ratio of the two: 5.2 Hz. Experimental measurements occurred at 6 Hz,
which is not coincidentally very similar. This is because the EM algorithm matches model
positional error to measurement error by pushing uncertainty into the heading. Since the
heading is estimated, it has no measurement to reduce or correct its uncertainty like the
position and B-field direction. Qp from both models matched, which is reasonable, because
both models use position in the same way.

Similarly, QB also matched between the models. QB was extremely small, at 7 × 10−9,
which correlates with the 0.008 %/s error of a unit vector, or equivalently, a 0.005 ◦/s error
in direction. QB is not expected to experience significant error because no dynamics affect
the B-field direction, so it is free to follow the ωB control input precisely.
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Qh is the pivotal element of process noise for two reasons. First, because the heading
is estimated, the uncertainty of the models collects in Qh. This makes it a strong indicator of
model accuracy. Second, the primary difference between models is how the heading state
interacts, which will make it an important aspect of the model comparison in Section 4.2.
The average Qh for the MNM is 6.65 × 10−4, which correlates with the 2.6 %/s error of a
unit vector, or equivalently, a 1.5◦/s error. The average Qh for the BiNM was 6.40 × 10−3,
which correlates with the 8.0 %/s error of a unit vector, or a 4.6◦/s error, which is triple
that of the MNM.

4.2. Model Comparison

The MNM is presented as an alternative to the current de facto needle steering model,
the BiNM. Here, we compare the results from the two models, focusing on areas where
they differ, and present why the MNM is the preferred model to use for magnetic needle
steering.

4.2.1. Comparing Process Noise

Process noise Q is a measure of error accumulation per time of the difference be-
tween the true physical system and the model. When comparing Q between models, the
model with a lower Q can be interpreted as more representative of the truth, and thus the
better model.

The percent difference of BiNM to MNM noise traces is shown in the first row of
Table 3. To ensure no significant differences exist in any term, as was done in calculating the
simulation results, full Q and R matrix blocks were compared between models by finding a
percent difference between median data matrices using the matrix norm. Results are shown
in the second row of Table 3.

Both comparisons resulted in the same trends. Qp, QB, and Qp showed negligible
differences, while Qh was much larger in the BiNM than the MNM. This 863% larger Qh in
the BiNM demonstrates a significant disparity between the models and supports the MNM
being a more physically representative model of the data than the BiNM.

Table 3. The % difference in Q and R of BiNM from MNM.

Q Rp

p h B Overall

Trace 0.0% 863% 0.6% 0.7%

Blockwise 5.9% 369% 2.6% 0.0%

To understand the practical effect of this difference in Q, Figure 7 presents data
boxplots of the trajectory effect as both the average position RMS difference and the
final position RMS difference between the two models. All measures of the difference
in trajectory as a result of the difference in Q between the models were negligible, with
the largest being 0.04 mm. It is possible that with fewer or less accurate measurements
where the model would play a greater role, there could be a larger distinction, but in this
experimental data, there was no practical difference.
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Figure 7. Boxplots of all 41 trials’ average and final position RMS difference between MNM and
BiNM. Boxes and whiskers indicate quartiles; blue line indicates median; blue circles indicate outliers.

4.2.2. Bicycle Model Singularity Problem

To test the difference between models, we designed an experimental trajectory scenario
where they diverged significantly. The model that more closely matches the data for this
scenario will be the more physically realistic model. This trajectory scenario, T2prelim,
occurred as the BiNM approaches its singularity and is shown in Figure 8.

Figure 8. Models’ predicted position trajectories diverge as they approach the BiNM singularity
(h ⊥ B) in T2prelim. MNM position trajectories are plotted using several realistic c values, with
c = 1000 also shown as the limit case. Corresponding BiNM trajectories are plotted alongside the
MNM’s using Linv values manually tuned to match each MNM trajectory as closely as possible.

If the data followed the BiNM, the curvature would increase when approaching the
singularity, effectively causing a “pulling” effect of the BiNM that keeps the model out of
the singularity. On the other hand, the MNM allows crossing h ⊥ B without issue, and so
predicts a straighter trajectory. This effect becomes more pronounced at lower c and Linv
values, as c allows an even less capable turning rate, thus reaching h ⊥ B earlier, while the
BiNM forces the heading to stay out of the singularity, regardless of Linv.
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Preliminary data were collected using T2prelim and found to most closely match the
MNM. As shown in Figure 9, the measurements better followed the predicted open-
loop MNM trajectory, thus violating the singularity in the BiNM, and diverged from the
predicted open-loop BiNM trajectory.

(a)

(b)

Figure 9. Example experimental results for T2prelim in the -X-direction with a field strength of
28 mT. Converged EM position state estimate is shown for the MNM. Predicted open-loop posi-
tion trajectories are shown for both models, using average data c and Linv values at 28mT from
Tables 1 and 2, respectively. (a) shows the trajectories’ x-y-position and experimental measurements
(every 8th interval for visual clarity), while (b) shows the RMS position difference of each calculated
trajectory from the measurements. As seen in both (a) and (b), while the MNM open-loop prediction
agrees with the data, the BiNM prediction diverges significantly. The heading state estimate of the
EKF forward pass of the BiNM is also plotted in (a) as it became increasingly incongruous with the
positional trajectory data.

An EKF forward pass of the BiNM is overlaid, which shows its heading diverging from
the trajectory in a nonsensical way so that the model does not enter the singularity. This can
be seen more starkly by plotting h>B directly (Figure 10). The EM MNM estimate is shown
crossing the singularity (h>B = 0) in a continuous smooth line, while the forward pass
BiNM estimate follows a similar trajectory until the singularity. There, it has a sharp slope
discontinuity and remains just outside the singularity, predicting exceedingly unreasonable
headings, as was seen in Figure 9a, and diverging from the measurements, as seen in
Figure 9b. When attempting to refine the BiNM estimate using multiple EM passes, the
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algorithm became unstable because it cannot reconcile the position measurements with the
BiNM while avoiding the singularity.

Figure 10. h>B of the T2prelim example data from Figure 9 shows a discontinuity in the BiNM at the
singularity (h>B = 0). The EKF forward pass of the BiNM does not cross the singularity boundary. It
instead persists just above for the remainder of the trajectory, while the MNM continuously passes
through the singularity without disruption.

Because these data were unusable for the parameterization of the BiNM using the EM
algorithm, T2prelim had to be modified to avoid the BiNM singularity. This resulted in the
experimental T2, which is shown in Figure 11. However, avoiding the BiNM singularity
necessarily resulted in model trajectories that did not diverge, because divergence occurred
near and as a result of the singularity. Thus, in comparing parameterization results for the
purpose of identifying the more physically accurate model, as in Section 4.2.1, the models
predicted similar results, and only small differences were found, which did not significantly
affect the resulting estimated trajectories. However, it must be recognized that while in this
limited region, the models were similar, it is more important that, where they would not be
similar, the BiNM cannot be used at all, because it failed due to its singularity.

Figure 11. Models do not appreciably diverge in the predicted T2 trajectory (T2prelim modified to
avoid the singularity). MNM position trajectories are plotted using several realistic c values, with
c = 1000 also shown as the limit case. Corresponding BiNM trajectories are plotted alongside the
MNM’s using Linv values manually tuned to match each MNM trajectory as closely as possible.
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5. Conclusions

We derived a physically motivated needle steering model and demonstrated the use
of an EM algorithm with IEKS to identify the unknown model curvature parameters and
process and measurement noise covariances, both in simulation and experimentally. The
simulation analyzed the convergence envelope and accuracy of the model parameters based
on the variables themselves, as well as their initial guesses. The parameters consistently
converged, and under expected conditions, parameterization reduced the RMS position
trajectory error to 0.81 mm, which compares favorably to the approximately 2 mm accuracy
that is required in the final placement of electrodes in DBS [4]. These simulation results
support the application of this EM algorithm in identifying c, Q, and R experimentally.

We collected experimental data in an agar brain tissue phantom using open-loop
linear needle insertion and B-field steering inputs. These data were used to parameterize
both our derived magnetic needle model and the commonly used bicycle needle model.
Parameterization converged for all trials using the MNM, but the BiNM failed to converge
with data near its singularity. Variation in c and linv curvature parameterization, when
averaged for each field strength tested, did not express a significant effect on positional
trajectory error. Variation in Q and R parameterization also did not manifest a significant
effect on positional trajectory error, suggesting the experimental results were sufficiently
accurate to use the parameterized models in future applications, such as prediction and
control. The next step towards clinical application is developing a controller for this system.
The physically determined c, Q, and R parameters will be needed to apply and demonstrate
needle steering control in a physical system.

The MNM parameterized a lower Q than the BiNM in the experimental results,
indicating that it more accurately models needle steering in soft brain tissue. For data not
near the singularity however, there was no practical difference between the models, as the
difference in the position trajectories was negligible. Therefore, if care is taken to avoid
the singularity, either model can be used with similar success. However, being near the
singularity is not only a likely scenario: it is desirable due to its strong influence on steering.
In this case, the BiNM model breaks down and cannot be algorithmically parameterized,
because it fails to represent reality. Given that no such limitations exist in the MNM and
that it better models needle steering in all cases tested, our results support the use of the
MNM over the BiNM in all magnetic needle steering applications.
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