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Abstract: Path planning is a key technology for the autonomous mobility of intelligent robots.
However, there are few studies on how to carry out path planning in real time under the confrontation
environment. Therefore, based on the deep deterministic policy gradient (DDPG) algorithm, this
paper designs the reward function and adopts the incremental training and reward compensation
method to improve the training efficiency and obtain the penetration strategy. The Monte Carlo
experiment results show that the algorithm can effectively avoid static obstacles, break through
the interception, and finally reach the target area. Moreover, the algorithm is also validated in the
Webots simulator.

Keywords: deep reinforcement learning (DRL); deep deterministic policy gradient (DDPG); dynamic
path planning; confrontation environment

1. Introduction

With the development of science and technology, intelligent robots have made great
progress and played an important role in production and life [1]. Path planning and obsta-
cle avoidance are challenging problems in the field of intelligent robots. However, most
current studies focus on large, unknown environments or obstacles with static or random
movement, without considering the confrontation environment. The confrontation and
coordination of unmanned aerial vehicles (UAVs) are indispensable for the future. The
traditional penetration strategy mainly includes deception and maneuver penetration [2].
Deception includes bait, stealth and interference, etc. Maneuvering penetration includes
procedural, real-time intelligent maneuvers and multiple warhead maneuvers [3]. Com-
pared with the traditional methods, intelligent strategy has advantages in online computing,
wide applicability and strong robustness.

Reinforcement learning (RL), which is able to autonomously learn optimal strategies
through continuous interaction with the environment, has become a research hotspot
and is considered one of the most likely and important approaches to achieve general
artificial intelligence computing [4–6]. Deep reinforcement learning (DRL) is widely used in
intelligent control, path planning and other fields [7–10]. Lei et al. proposed a method based
on DRL to solve the problem of dynamic path planning of an unknown environment [11].
Based on layered control strategy and RL, a robust controller was proposed to realize
robust control in the case of unknown dynamics parameters of quadrotors [12]. Gao
et al. proposed a new incremental training model to solve the path planning problem
of indoor robots based on RL [13]. Choi et al. proposed LSTM based RL to solve the
navigation problem of robots with limited field of vision in a crowded environment [14].
The sampling-based planning is combined with RL to solve the large-range path planning
problem [15]. Feng et al. solved collision avoidance problems with the help of DRL [16]. Dai
et al. proposed a new distributed RL optimization algorithm to solve the dynamic economic
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dispatch problem for smart grid [17]. By virtue of the fitting and generalization ability
of neural networks, DRL is more robust than traditional methods. In order to solve the
problem of path planning in a large dynamic environment, Wang et al. proposed a globally
guided RL method, in which the reward structure can be extended to any environment [18].
RL is also applied to the cooperative control of multi-agents [19]. Bei et al. proposed a new
method for cooperative multi-agent reinforcement learning in both discrete and continuous
action spaces [20].

However, few of the studies considered path planning in the confrontation scenario.
In the face of this urgent requirement, we propose a penetration strategy based on the
incremental training and reward compensation Deep Deterministic Policy Gradient (DDPG)
algorithm, which does not need to model the environment. Furthermore, the strategy has
real-time decision-making ability and can be applied to different environments.

The remainder of this paper is organized as follows. In Section 2, the confrontation
environment is modeled. Then the reward function and the incremental training process
are proposed in Section 3. In Section 4, the effectiveness of the proposed strategy is shown
by Monte Carlo experiments and simulations in the Webots simulator. The superiority
is confirmed by comparing with artificial potential-field-based path planning. Finally,
Section 5 draws the conclusion.

2. The Confrontation Environment

To simplify the problem, it is assumed that UAVs fly at a constant speed and altitude,
and the confrontation environment is simplified to a two-dimensional environment. The
confrontation scenario includes penetrators, interceptors, static obstacles and a target area.
The penetrator should break through the interception, bypass static obstacles, and reach the
target area as soon as possible. Meanwhile, the interceptors try their best to intercept the
penetrator before it reaches the target area. The confrontation scenario is shown in Figure 1.
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Figure 1. The confrontation scenario.

P is the penetrator, and B is the interceptor. θp is the direction of the penetrator’s
velocity vp, and θb is the direction of the interceptor’s velocity vb. The penetrator has a
limited field of vision, while the interceptor has global vision.

Mathematical models of the penetrator and the interceptor are established as follows: ẋi
ẏi
θ̇i

 =

 vi cos θi
vi sin θi

0

+

 0
0

ωi

, (1)
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where i is the penetrator P or the interceptor B, (xi, yi) is the agent’s position, θi is the
direction of the agent, and ωi is the angular velocity, ωi ∈ [−ωi_max, ωi_max].

In the scenario of Figure 1, it is shown that P and B have different maneuverability.
Set that ap > ab, where ai = viωi.

Figure 2 shows the limited view of the penetrator. The agent can sense whether there
are obstacles in the 12 directions evenly distributed around it. The detection radius is rp.
When obstacles enter the detection range of the penetrator, the corresponding detection
signal is 1; otherwise, it is 0. The interceptor, on the other hand, has a global view and
can sense the position and speed of the penetrator in real time. The interceptor adopts
proportional guidance as the interception strategy.
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Figure 2. The sensory ability of the penetrator.

3. RL-Based Penetration Strategy

In this paper, the path-planning problem is expressed as a Markov decision process
(MDP), modeled as a tuple (S, A, T, R, γ), where S is the system’s state space, A is the action
space, and T : T(st+1 = s

′ |st = s, at = a) is the state transition model. R : S× A→ R is the
reward function. γ ∈ [0, 1] is the discount factor that reflects the preference of immediate
rewards over future ones. π : S→ A is the policy that prescribes an action a ∈ A for each
state s ∈ S. The value function Vπ(s) = ∑a∈A π(a|s)qπ(s, a) is defined as the excepted
return, starting with state s following policy π. While the maximum value of Vπ is defined
as V∗(s). qπ(s, a) is the action value function, whilst the optimal action value function is
called q∗(s, a).

For the confrontation scenario, as Figure 1 shows, both state and action are continuous
variables. So the neural network is used to approximate the action value function Q :
qw(s, a) = f (s, a, w), where w represents the parameters of the neural network Q. The
training of DRL is to find the appropriate network parameters.

3.1. DDPG Based Game Penetration Strategy

The penetration strategy used in this paper is the DDPG algorithm, which is the
extension of the deep Q network (DQN). DDPG adds a policy network to output actions
directly, which is why it can be applied in continuous space [21]. DDPG needs to learn both
the Q network and the policy network. The structure is shown in Figure 3.
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Figure 3. The structure of DDPG.

ϑ is the parameters of the policy network. Such a structure is called actor–critic. The Q
network is used to export the action value, which is called the critic. The policy network
output represents actions, which is called the actor. Specifically, the network structures
used in this paper are shown in Figures 4 and 5. Compared with the actor network, the
critic network has a more complex structure. This difference enables the critic to infer the
underlying state from the measurements and deal with the state transition.
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Figure 4. Structure of the actor network.
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Figure 5. Structure of the critic network.

In order to reduce the correlation of data and difficulty of training, this paper adopts
the method of experiential replay and independent target network training. The algorithm
flow presented in this paper is shown in Algorithm 1.

Algorithm 1 Attack and defense adversarial algorithm.

Randomly initialize Q network qw and policy network gϑ parameters
Initialize the target network parameters qt

w and gt
ϑ

Initialize the experience pool
for episode = 1, 2 · · ·N do

Random initialization of penetration position, target area, static obstacle area and
interceptor position within a certain range
for i = 1, 2 · · · T do

State S1 is obtained according to the local field of vision
Select the action based on the current state and exploration noise at = gϑ(St) + ξi
Perform the action at,observe the return rt, get the next state st+1
Put the sample (st, at, rt, st+1) in the experience pool D
Sample random mini-batch of (st, at, rt, st+1) from D
Optimize Critic network parameters w:
Loss = MSE[qw(s, a), r + γqw](s′, a′)
Optimize Actor network parameters θ:
Loss = −qw(s, a)
Every C steps update w, θ:
w = τw + (1− τ)w,θ = τθ + (1− τ)θ

end for
end for

The state input of DDPG is an 18-dimensional vector. They are 12-dimensional detec-
tion states, position xp, yp, speed vxp, vyp and position of the target area (xt, yt), respectively.
The action output is a 1-dimensional variable, i.e., the angular velocity of the penetrator.

3.1.1. Design of the Reward Function

In the confrontation scenario shown in Figure 1, the main objective of the penetrator is
to break through the interception, bypass fixed obstacles, and reach the target area as soon
as possible. At the same time, the movement range of the penetrator is limited. When it
is intercepted, moves out of the boundary or hits static obstacles, the task fails, and this
round of training is terminated in advance. The reward function is a key element in DRL
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that supervises agents to learn and obtain the optimal policy. The reward function consists
of three parts:

R1 = β1RT + β2RP + β3RS, (2)

where RT is the instant reward associated with the distance between the target area, RP is
the sparse penalty for terminating the round of training in advance, and RS is the instant
reward associated with survival time. Specially, their expressions are as follows:

RT =



20− D D ≤ 1
10− D 1 < D ≤ 2
5− D 2 < D ≤ 3
3− D 3 < D ≤ 4
−D 4 < D

, (3)

where D =‖XP − Xt‖2.{
Rp = −800 i f terminate in advance
RS = 20 i f survive

(4)

Instant rewards can be obtained by the reward function at each time step. Therefore,
the model can learn the specified functions on the condition that the reward function is
designed reasonably. In this paper, βi(i = 1, 2, 3) represents the weights of each reward
function. Different weights cause different training results. When β3 > 0, the agent is
positively rewarded for survival and tends to learn to survive. However, when β3 < 0, the
agent is penalized for survival and tends to end the training as soon as possible. When a
set of parameters is selected, the reward function is drawn as follows. It can be seen from
Figures 6 and 7 that the reward function is correctly set up to guide the agent toward the
target area.

Figure 6. The reward function.
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Figure 7. Top view of reward function.

3.1.2. Reward Compensation and Incremental Training

In Equation (3), the reward function RT is related to the distance from the starting
point to the target region, which causes the reward function to vary greatly with the initial
points. The different sizes of the return functions make training harder. To solve this, a
compensation reward is proposed:

R2 =
∫

l
‖XP − Xt‖2ds, (5)

where l is the directed line from XP to Xt.
In summary, the total reward function is

R =

{
R1 + R2 i f success
R1 else

(6)

It should be pointed out that incremental training scheme can effectively improve
the training efficiency and reduce training times [13]. Therefore, the task is decomposed
according to the difficulty of the training. Meanwhile, it should be noted that the weight of
the reward functions should be adjusted reasonably in different training stages.

1. In the early stage of training, the interceptor is not included. The main purpose is to
train the agent to survive, and avoid the agent collision boundary and static obstacles;

2. In the middle stage, the interceptor is also not included, but β3 is decreased to make
the agent reach the target area as soon as possible and avoid collisions;

3. In the final stage, the interceptor is included. The further training enables the agent to
break through the intercept.

3.1.3. Artificial Potential Field (APF) Based Path Planning Algorithm

APF is a widely used path planning algorithm at present [22]. Its basic principle is to
construct an APF environment in which the target point provides gravity and the obstacles
provide repulsion. The improved APF method is defined as{

Uatx(x) = 1/2k(x− xt)2

Uaty(y) = 1/2k(y− yt)2 , (7)
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where k represents the gravitational gain, and Uat(x, y) is the potential energy at (x, y). The
gravitation functions are expressed as{

Fatx(x) = −grad[Uatx(x) = −k(x− xt)]

Faty(y) = −grad[Uaty(y) = −k(y− yt)]
(8)

The repulsive potential field function generated by the obstacles is defined as

Ure(x, y) =

{
1/2η[1/ρ− 1/ρ0]

2d2 ρ ≤ ρ0

0 ρ > ρ0
(9)

d =
√
(x− xt)2 + (y− yt)2 (10)

ρ =
√
(x− xb)2 + (y− yb)2 − r, (11)

where η is the repulsive gain coefficient, ρ represents the shortest distance between the agent
and the obstacles, and r is the radius of the obstacles. ρ0 is a constant parameter, represents
the influence range of the obstacles. Similarly, the repulsion functions are expressed as

Frex =

{
Frex1 + Frex2 ρ ≤ ρ0

0 ρ > ρ0
(12)

Frey =

{
Frey1 + Frey2 ρ ≤ ρ0

0 ρ > ρ0
, (13)

where Frex1 = η[ 1
ρ −

1
ρ0
] 1

ρ3 (x− xb)d2

Frey1 = η[ 1
ρ −

1
ρ0
] 1

ρ3 (y− yb)d2 (14)

{
Frex2 = −η[ 1

ρ −
1
ρ0
]2(x− xt)

Frey2 = −η[ 1
ρ −

1
ρ0
]2(y− yt)

(15)

3.1.4. Proportional Guidance-Based Interception Algorithm

The proportional guidance is to make the interceptor’s rotational angular velocity pro-
portional to the line-of-sight angular velocity. Assuming that the position of the interceptor
is xb, yb, the speed is vxb, vyb, the position of the penetrator is x, y, and the speed is vx, vy.
The relative position and speed of the interceptor to the penetrator are shown in (16):

xr = xb − x
yr = yb − y
vxr = vxb − vx

vyr = vyb − vy

(16)

The interceptor’s line-of-sight angle to the penetrator can be obtained as

q = arctan(
xr

yr
) (17)

and the angle’s rate can be written as

q̇ =
vyrxr − vxryr

x2
r + y2

r
(18)

Then, the angular velocity of the interceptor can be obtained by

ωb = K(q̇), (19)
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where K is the coefficient. In this paper, K = 2 and K = 3, respectively.

4. Simulations and Results
4.1. Simulations Based on RL

The parameters are shown in Table 1.

Table 1. Parameters of the scenario.

Item Value

Boundaries (m) −1 ≤ x ≤ 20,−1 ≤ y ≤ 20
Speed of the penetrator (m/s) vp = 1

Angular velocity of the penetrator (rad/s) −0.5 ≤ ωp ≤ 0.5
Speed of interceptors (m/s) vb = 1.2

Angular velocity of interceptors (rad/s) −0.4 ≤ ωb ≤ 0.4
Radius of obstacles (m) r = 0.7

Radius of the target area (m) rt = 1
Intercept radius (m) rb = 0.3

Detection radius of the penetrator (m) rp = 1
The target area (m) 10 ≤ xt ≤ 12, 10 ≤ yt ≤ 12

Initial area of the penetrator (m) 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
Initial direction of the penetrator (rad/s) π/4

Initial position of interceptors (xt, yt, π/4 rad)

The three subtasks all adopt the same network structure, as Figures 4 and 5 show. The
weight factors β1, β2, β3 are changed only during the training. Figure 8 shows the training
results for different subtasks.
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Figure 8. Results in different training stages. (a) Out of bounds before training; (b) the shortest path
to reach the target area; (c) intercepted by the interceptors; (d) break through the interception.
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Figure 8a shows that the agent adopts a random strategy and exceeds the boundary
before training. After the first and the second stages of training, the penetrator finds the
shortest path that meets its overload constraint to reach the target area. However, when the
proportional guidance-based interceptors are added, the penetrator is blocked, as Figure 8c
illustrates. After further training, the agent learns to penetrate finally, as Figure 8d shows.

In the scene shown in Figure 8d, the angular velocity of the penetrator and the
interceptor is illustrated in Figure 9. It can be seen that the penetrator reaches its maximum
overload for penetration. Figure 10 illustrates the line-of-sight angles and their rates. The
line-of-sight angles change rapidly with the decrease in the relative distance. This increases
the difficulty of interception and is conducive to the penetration. The penetrator breaks
through the interception by taking advantage of its higher maneuverability, which proves
the effectiveness of the penetration strategy.
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Figure 9. Angle velocity of agents.
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Figure 10. Line-of-sight angles and their rate.
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4.2. Simulations of Contrast Algorithm

To compare the effectiveness of the proposed algorithm, the APF-based path planning
algorithm is adopted. Figures 11 and 12 show that APF is usable when facing static obstacles.
However, when the interceptor is added, APF is no longer valid, or the parameters need
to be tuned carefully. Figures 13 and 14 show that the penetrator is intercepted for its
slow-change line-of-sight angle. However, the RL approach enables the intuitive setting of
performance objectives, shifting the focus toward what should be achieved, rather than
how, which simplifies the design process [23].

Furthermore, when there is no reward compensation, Figure 15 illustrates that, although
the network can still converge, the total rewards vary greatly based on the distances from
the initial points to the target area. Even if the same policy is adopted, the total rewards
obtained from different initial points are quite different, and it is difficult to effectively judge
the convergence of the network, which increases the difficulty of training. On the other hand,
when the initial point is closer to the target point, due to the high rewards, even if a suboptimal
strategy is adopted, an acceptable reward can also be obtained, which makes it difficult to
converge to the optimal strategy. When the reward function without compensation is used,
agents only obtain the suboptimal strategy, and the selected route is not the optimal one.
However, when the reward compensation is adopted, the total rewards are independent of
the distances, which is more beneficial to train to find the shortest path, as shown in Figure 16.

Figure 11. Artificial field.
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Figure 12. Motion trail based on APF.
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Figure 13. Motion trail with interceptor based on APF.
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Figure 14. Line-of-sight angle and its rate based on APF.
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Figure 16. Motion trails with and without compensation.

4.3. Monte Carlo Experiments

To verify the stability and generalization of the algorithm, 100 Monte Carlo experi-
ments were carried out. In all simulations, the initial point, target area, and obstacles were
randomly initialized within a certain range. The results are shown in Figures 17 and 18,
with a high success rate of 84%. It can be seen from the simulations that, in similar scenarios,
agents are able to choose the learned optimal policy. That is, DRL converged to the optimal
strategy through training. The simulation results also indicate that the method proposed
has the generalization ability to a certain extent.

Through the analysis of failure cases, it is found that 50% of the cases are caused by
a limited field of vision and low maneuverability, but the others are caused by wrong
decision making.
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Figure 17. Trajectories in the Monte Carlo experiments.
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Figure 18. The 100 Monte Carlo experiments.

4.4. Simulation Results in the Webots Simulator

Unlike the mathematical model created in Matlab, which is simplified to a second-
order system, robots are more complex in the physical world. Webots is an open-source
and multi-platform desktop application used to simulate robots. It provides a complete
development environment to model, program and simulate robots. Hence, the Webots
simulator is employed to verify the reliability of the algorithm proposed.

The environment and the robots are modeled as Figure A1a illustrates. In Webots, a
one-layer LiDAR with a range of up to 3.5 m and a field of view up to 360 degrees is used
to sense the surrounding environment. Its standard deviation of the Gaussian depth noise
is 0.0043 m. At the same time, motor models are also added to simulate robots in the real
world. The detection results in different stages are shown in Figure A1a–d, and the motion
trails of the penetrator and the interceptor are shown in Figure 19.
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Figure 19. Simulation results in Webots.
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It can be seen from the results above that the penetration algorithm proposed in this
paper not only has a good performance in mathematical models, but also has feasibility in
the Webots simulator.

5. Conclusions

In order to solve the problem that traditional methods-based robots cannot effectively
break through the interception in a rejection environment, this paper proposes the DRL-
based interception strategy. Aiming at addressing the issues of poor convergence of DRL,
an incremental training method is proposed. The task is divided into three sub-tasks,
and the agent is trained to gradually learn to survive, reach the target area, and break
through the interception. Meanwhile, in order to reduce the difficulty of training and
improve the training effect, reward compensation is adopted. The simulation results
show that the introduction of reward compensation can unify the total return, which is
beneficial for the agent to converge to the optimal policy. The simulation results in Webots
also demonstrate the feasibility of the proposed algorithm in practical applications. In
contrast, APF-based agents can only bypass static obstacles, but cannot break through the
interception of interceptors. Navigation in the 3D environment is challenging, and we
intend to refine this approach to make it applicable in our future work.
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Appendix A. Simulation Results in Webots
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Figure A1. Results in different stages in Webots. (a) The initial stage; (b) avoid the static obstacles;
(c) break the interception; (d) reach the target area.
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