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Abstract: This paper presents a screw theory approach for the computation of the instantaneous
rotation centers of indeterminate planar linkages. Since the end of the 19th century, the determination
of the instantaneous rotation, or velocity centers of planar mechanisms has been an important topic
in kinematics that has led to the well-known Aronhold–Kennedy theorem. At the beginning of
the 20th century, it was found that there were planar mechanisms for which the application of the
Aronhold–Kennedy theorem was unable to find all the instantaneous rotation centers (IRCs). These
mechanisms were denominated complex or indeterminate. The beginning of this century saw a
renewed interest in complex or indeterminate planar mechanisms. In this contribution, a new and
simpler screw theory approach for the determination of indeterminate rotation centers of planar
linkages is presented. The new approach provides a simpler method for setting up the equations.
Furthermore, the algebraic equations to be solved are simpler than the ones published to date. The
method is based on the systematic application of screw theory, isomorphic to the Lie algebra, se(3),
of the Euclidean group, SE(3), and the invariant symmetric bilinear forms defined on se(3).

Keywords: planar linkages; indeterminate linkages; screw theory

1. Introduction

The instantaneous rotation center (IRC) of two links in a one-DOF planar linkage is
defined as a pair of coincident points that belong to each body and have the same velocity,
with respect to another reference frame. Therefore, the relative motion between the two
links is a rotation around an axis perpendicular to the plane of motion passing through
the coincident points. Some IRCs can be easily determined by inspection. These IRCs are
defined as primary. For example, each revolute pair constitutes the IRC of the two links
that the revolute pair connects. If the IRC is not primary, then it is defined as secondary.

The Aronhold–Kennedy theorem was independently formulated by Aronhold [1],
in Germany, and Kennedy [2], in England, in the second part of the 19th century. The
Aronhold–Kennedy theorem is the main tool for determining secondary IRCs. The theorem
indicates that the location of the IRCs associated with the relative movements of three
arbitrary rigid bodies on the plane must be collinear. The great majority of planar linkages
allow for the locating of all the IRCs of planar linkages using the Aronhold–Kennedy
theorem. Therefore, for many decades, this theorem provided an efficient graphical method
for the kinematic analysis of planar linkages; see Shigley and Uicker [3].

Nevertheless, since 1915, Klein [4] showed the existence of planar linkages for which
the application of the Aronhold–Kennedy theorem was insufficient to determine the IRCs.
These planar linkages were called complex planar linkages and, later, indeterminate planar
linkages. Klein [4] proposed a graphical trial and error method for locating those IRCs that
resisted the application of the Aronhold–Kennedy theorem.
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In the middle of the 20th century, Modrey [5] employed influence coefficients to find
the secondary IRCs of the so-called complex planar linkages. The posterior discussion by
Goodman [6] is also quite illuminating. The method involves the solution of the velocity
analysis of the indeterminate linkage and, from these results, it obtains the required IRCs.
This approach reappeared in later dates, as in Yan et al. [7], and even in recent contributions,
as in Kim et al. [8]. Nevertheless, in this latter case, the method was loosely applied—with
many conceptual mistakes—to simple determinate planar linkages. Recently, Valderrama-
Rodríguez et al. [9] generalized the approach for any spatial linkage and rebutted several
statements presented in Kim et al. [8]. Moreover, from a historical point of view, the
determination of the IRCs was employed precisely to carry out the velocity analysis of
the linkages. In addition, the determination of the IRCs provides important insights on
the performance of planar linkages, such as transmissibility, analysis of singularities (Di
Gregorio [10]), and mechanical advantage (Zarkandi [11]), among others.

About 15 years ago, Pennock and Foster [12] presented a graphical technique that was
able to find all the IRCs of indeterminate linkages and improved substantially the approach
proposed by Klein. A few years later, Di Gregorio [13] introduced an analytical technique
that generated a system of equations involving both the closure equations of the planar
linkages and the location of the indeterminate IRCs, so that he was able to find the location
of the indeterminate rotation centers. In 2009, Kung and Wang [14] employed graph theory
to obtain a graph associated with the IRCs of a linkage. This graph allowed Kung and
Wang to formulate a system of iterative equations, whose unknowns are the coordinates of
the indeterminate IRCs. The solution of the problem comes down to solving a quadratic
equation and then a quartic equation.

There is another line of research of the determination of the IRC of planar linkages.
The origin of this line of research is due to Chang and Her [15], who in 2008 presented a
virtual cam method for locating the IRCs of indeterminate linkages. This approach has
been extended by Liu and Chang [16,17]. They extended the approach by introducing the
“virtual cam–hexagon” method. They embarked themselves on the task of determining the
IRCs of all indeterminate linkages, up to ten bar. It is important to note that the approach
is almost completely graphical; Liu and Chang indicate that the [17] “. . .Virtual Cam–
Hexagon Method is not a truly universal technique yet, but, at this moment all the other
graphical and geometrical approaches are extremely limited which can only be applied
on several specific constructions of kinematically indeterminate linkages, and all of those
approaches either change the constructions of the original linkages dramatically, or some
even alter the original system’s DOF. Virtual Cam–Hexagon Method does not change the
construction of the original linkage, nor alter the system’s DOF in the procedure. With a
nearly 75% success rate on all planar single DOF linkages up to ten-bar. . .”.

In this contribution, which follows a similar technique for indeterminate spherical
linkages, Valderrama-Rodríguez et al. [18] introduced a more efficient approach than those
presented previously for the determination of the IRCs of indeterminate spherical linkages.
However, in the case of spherical linkages, only the Killing form is needed, whilst in the
case of planar linkages, both the Killing and Klein forms are necessary. However, the
influence of the Killing form is only recognized after the general analysis presented in this
paper is carried out. Therefore, the analysis and application of both the Killing and Klein
forms are required.

Some of the advantages of the method presented in this contribution are:

1. The method requires a reduced set of equations. It will be shown that the development
of the complete graph of the IRCs of the linkage, as proposed by Kung and Wang [14],
is unnecessary. More specifically, by properly selecting a pair of sub-graphs of the
complete graph, the determination of all secondary IRCs can be readily obtained;

2. The required equations are simpler. The method presented by Di Gregorio [13]
requires the solution of a nonlinear set of 10 equations, in one case, and a nonlinear
set of 12 equations, in another case. The method presented by Kung and Wang [14]
requires first the solution of a quadratic equation and, later, the solution of a quartic
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equation. The method presented in this contribution only requires the solution and
comparison of 2 quadratic equations in one case, and a quadratic and a cubic equation
in the other.

The rest of the contribution is revised in this paragraph. Section 2 presents the
fundamental equation of the Aronhold–Kennedy theorem and the symmetric bilinear
forms defined on, se(3), the Lie algebra of the special Euclidean group, SE(3), namely, the
Killing and the Klein forms. The purpose of this section is two-fold. On the one hand, it
shows that the application of the algebraic structure of the Lie algebra, se(3), provides a
unifying approach for the determination of the instantaneous screw axes of any spatial
linkage; on the other hand, it shows that for planar linkages, the approach is reduced
to the application of the Klein form to screws perpendicular to the plane motion—i.e.,
the classical Aronhold–Kennedy theorem. The importance of the Killing form has been
obscured due to the history of kinematics, which for many decades was reduced to planar
kinematics exclusively. Section 3 presents the complete approach for an eight-bar, partially
indeterminate planar linkage. Section 4 solves an eight-bar, completely indeterminate
planar linkage. Section 5 provides constructive proof for the validity of the method for
all indeterminate linkages. Finally, some conclusions are drawn in Section 6. This paper
contains a small Appendix A, which shows how to represent a secondary IRC as a linear
combination of two primary IRCs.

2. The Fundamental Equation for the General Aronhold–Kennedy Theorem

This section starts with a definition of the velocity state of a body with respect to
another body.

Definition 1. Let j and m be a pair of different rigid bodies or reference frames, and let O be a point
fixed in body m. The velocity state of body m with respect to body j is defined as

jVm
O ≡

[ jωm

jvm
O

]
(1)

where jωm is the angular velocity of body m with respect to body j, and jvm
O is the velocity of a point

O, fixed to the rigid body m as observed from the rigid body j. Ball [19] defined jVm
O as a twist on

a screw.

Proposition 1. Let j, k, and m, be three different bodies or reference frames, see Figure 1, and let
jVk

O, jVm
O , and kVm

O be their corresponding velocity states, as given by Definition 1. Then:

jVm
O = jVk

O + kVm
O

or [ jωm

jvm
O

]
=

[ jωk

jvk
O

]
+

[ kωm

kvm
O

]
(2)

m

k

j

A

B
O

O
     k

     m

p r

q

Figure 1. Three rigid bodies and the related points and vectors.
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It is important to note that Equation (2) is valid whether the bodies are connected via
kinematic pairs or are unconnected. This result is presented in Rico et al. [20], but it is quite
likely that it was well known from the beginning of the last century, and that Ball [19] was
aware of its meaning, despite not using the vector notation.

In the Lie algebra se(3) of the Euclidean group SE(3), two invariant symmetrical
bilinear forms can be defined.

Definition 2. Consider the Lie algebra, se(3), of the Euclidean group, SE(3). Then, it is possible
to define a bilinear symmetric form, denoted as the Killing form for any screws VO1, VO2 ∈ se(3),
as follows:

Ki : se(3)× se(3)→ R Ki(VO1, VO2) =Ki((ω1; vO1), (ω2; vO2)) = ω1 ·ω2

where “·” is the scalar product of three-dimensional vector algebra.

Definition 3. Consider the Lie algebra, se(3), of the Euclidean group, SE(3). Then, it is possible
to define a bilinear symmetric form, denoted as the Klein form, for any screws VO1, VO2 ∈ se(3),
as follows:

Kl : se(3)× se(3)→ R Kl(VO1, VO2) = Kl((ω1; vO1), (ω2; vO2)) = ω1 · vO2 + ω2 · vO1

where "·" is the scalar product of three-dimensional vector algebra. This symmetric bilinear form is
also called the reciprocal product of the screws.

It can be proved that both symmetrical bilinear forms, Killing and Klein, are well
defined or invariant, i.e., the result is independent of the point O used to determine
the velocity state or the selection of the coordinate system; see, for example, Brand [21],
although the reader is cautioned that Brand used the “motor” terminology for screws.
Moreover, it can be proved that the Klein form is a nonsingular indefinite symmetric
bilinear form on se(3), while the Killing form is a singular positive semi-definite symmetric
bilinear form on se(3) (Rico and Duffy [22]).

Finally, given a screw $, any screw $a that satisfies Ki($, $a) = 0 is called an orthogonal
annihilator, regarding the Killing form of the original screw $. It should be noted that,
if Ki($, $a) = 0, the direction of the axes of the screws are perpendicular. Similarly, any
screw $a that satisfies Kl($, $a) = 0 is called an orthogonal annihilator, regarding the Klein
form of the original screw $; frequently, the screw $a, in this latter case, is also called the
reciprocal screw of the original screw $.

Symbolically, Equation (2) can be written as:

jωm
j$m = jVm

O = jVk
O + kVm

O = jωk
j$k + kωm

k$m (3)

where the infinitesimal screw, let us say, j$m, is given by:

j$m =

[ jum

jrm × jum + jhm
jum

]
(4)

with jum being a corresponding unit vector in the direction of the screw axis, jrm is the
position vector of a point along the screw axis, about the origin of the coordinate system, jhm
is the pitch of the screw, and “×” is the vector product of three-dimensional vector algebra.

The determination of an instantaneous screw axis, for example, j$m, requires the
orthogonal annihilators, regarding the Klein and Killing forms, of the subspace of se(3)
generated by {j$k, k$m}, denoted also as

[
j$k, k$m

]
. (This notation should not be confused

with the Lie product, which in this contribution does not play any role.) Therefore, we will
look for those screws $ajm that:



Robotics 2022, 11, 6 5 of 34

1. are orthogonal concerning the Klein form (also called reciprocal):

Kl($ajm, j$k) = Kl($ajm, k$m) = 0; (5)

2. are orthogonal regarding the Killing form (also called perpendicular):

Ki($ajm, j$k) = Ki($ajm, k$m) = 0. (6)

Therefore, for the Klein and Killing forms, one has:

Kl($ajm, jωm
j$m) =Kl($ajm, jVm

O) = Kl($ajm, jVk
O + kVm

O)

=Kl($ajm, jωk
j$k + kωm

k$m)

= jωk Kl($ajm, j$k) + kωm Kl($ajm, k$m) = jωk (0) + kωm (0) = 0 (7)

and

Ki($ajm, jωm
j$m) =Ki($ajm, jVm

O) = Ki($ajm, jVk
O + kVm

O)

=Ki($ajm, jωk
j$k + kωm

k$m)

= jωk Ki($ajm, j$k) + kωm Ki($ajm, k$m) = jωk (0) + kωm (0) = 0 (8)

Summarizing, one may conclude that the orthogonal annihilators of the subspace gen-
erated for {j$k, k$m} annihilate also the screw j$m associated with the instantaneous screw
axis of the relative movement between links j and m. These two Equations (7) and (8), are
the fundamental equations of the Aronhold–Kennedy theorem for general spatial linkages.

2.1. The Simplification for Planar Linkages

It is important to note that the role of the Klein and Killing forms can be drastically
simplified if the linkages to be analyzed are planar. Without loss of generality, it will
be assumed that the common plane of motion is perpendicular to the Z-axis. In planar
linkages, kinematic pairs can be revolute or prismatic joints. The axes of the revolute pairs
are all parallel to the Z-axis, while the directions of prismatic pairs must be perpendicular
to the Z-axis; therefore, the screws representing revolute and prismatic pairs, Equation (4),
can be, respectively, reduced as:

j$m =

[
k

jrm × k

]
, and n$r =

[
0

nur

]
, where nur · k = 0. (9)

Without loss of generality, it can be assumed that k · jrm = 0, for any jrm, i.e., jrm and k,
are perpendicular.

It follows that, for planar linkages, the corresponding Lie algebra is not se(3), but the
subalgebra gk is also denominated se(2). This is the Lie subalgebra associated with the
planar displacement subgroup, Gk; it is also called the planar subgroup. Furthermore, gk
continues to be an orthogonal space under the restrictions of the Klein and Killing forms to
gk itself. However, the restricted Klein and Killing forms, in gk, have properties that are
different from those in se(3).

The Killing form for any pair of screws, j$m and n$r, associated with the revolute pairs
of any planar linkage, becomes

Ki : gk × gk → R Ki(j$m, n$r) = Ki
([

k
jrm × k

]
,
[

k
nrr × k

])
= k · k = 1. (10)

If one of the screws, namely, j$m, represents a prismatic pair, it follows that:

Ki : gk × gk → R Ki(j$m, n$r) = Ki
([

0
jum

]
,
[

k
nrr × k

])
= 0 · k = 0. (11)
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In the language of orthogonal spaces, the restriction of the Killing form to the subalge-
bra gk becomes a singular symmetric bilinear form.

Similarly, the Klein form for any pair of screws, j$m and n$r, associated with the
revolute pairs of any planar linkage, becomes:

Kl : gk × gk → R Kl(j$m, n$r) = Kl
([

k
jrm × k

]
,
[

k
nrr × k

])
= k · (nrr × k) + k · (jrm × k) = 0 (12)

for any j$m, n$r ∈ gk. This result is consistent with a well-known result in screw theory
that states that any pair of parallel 0-pitch screws are reciprocal, i.e., they are orthogonal
regarding the Klein form.

If one of the screws, namely, j$m, represents a prismatic pair, it follows that:

Kl : gk × gk → R Kl(j$m, n$r) = Kl
([

0
jum

]
,
[

k
nrr × k

])
= 0 · (nrr × k) + k · jum = 0 + 0 = 0. (13)

Thus, the restriction of the Klein form to the subalgebra gk becomes also a lsingular
symmetric bilinear form.

2.2. Application of the Killing and Klein Forms to Planar Linkages

This section shows the detailed process to obtain the equations that allow determin-
ing the secondary centers using the Aronhold–Kennedy theorem, as it was outlined in
Equations (7) and (8).

Consider a pair of screws associated with a revolute joint and a prismatic joint of a
planar linkage, as shown in Equation (9), repeated here:

j$m =

[
k

jrm × k

]
n$r =

[
0

nur

]
, with nur · k = 0

As indicated previously, without loss of generality, it will be assumed that the common
plane of displacements is perpendicular to the Z-axis. Therefore, the axes of the revolute
pairs are all parallel to the Z-axis, while the directions of the prismatic pairs must be
perpendicular to the Z-axis. Additionally, without loss of generality, it can be assumed that
k · jrm = 0, namely, jrm and k, are perpendicular. Moreover, the vector jrm provides the
location of the instantaneous rotation, or velocity center represented by j$m. The process
must consider two cases.

First Case. The two kinematic pairs are revolute joints. Consider a subspace of gk,
given by

[j$m, n$r], where:

j$m =

[
k

jrm × k

]
and n$r =

[
k

nrr × k

]
.

Let

$a =

[
u

ra × u

]
be an orthogonal annihilator of the subspace

[j$m, n$r] regarding both the Killing and Klein
forms. Then:
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1. applying the Killing form, it follows that:

Ki($a, j$m) = Ki
([

u
ra × u

]
,
[

k
jrm × k

])
= u · k = 0

Ki($a, n$r) = Ki
([

u
ra × u

]
,
[

k
nrr × k

])
= u · k = 0

Therefore, u and k must be perpendicular. Hence, u must be of the form u = ux i+ uy j
and, without loss of generality, it will be assumed that ra = rax i + ray j. Therefore, $a, the
orthogonal annihilator of the subspace

[j$m, n$r] regarding the Killing form, is given by:

$a =

[
u

ra × u

]
=

[
ux i + uy j

(rax i + ray j)× (ux i + uy j)

]
;

2. applying the Klein form, it follows that:

Kl($a, j$m) = Kl
([

u
ra × u

]
,
[

k
jrm × k

])
= u ·

(
jrm × k

)
+ k · (ra × u) = 0 (14)

Kl($a, n$r) = Kl
([

u
ra × u

]
,
[

k
nrr × k

])
= u · (nrr × k) + k · (ra × u) = 0 (15)

Using the identities of the scalar triple product on Equations (14) and (15), one obtains:

0 = u ·
(

jrm × k
)
+ k · (ra × u) = k ·

(
u× jrm

)
+ u · (k× ra)

= jrm · (k× u) + ra · (u× k) = (jrm − ra) · (k× u) (16)

and

0 = u · (nrr × k) + k · (ra × u) = k · (u× nrr) + u · (k× ra)

= nrr · (k× u) + ra · (u× k) = (nrr − ra) · (k× u) (17)

Denoting, by k× u = u⊥, a unit vector perpendicular to both u and k, and therefore
in the X–Y plane, Equations (16) and (17) can be written as:

jrm · u⊥ = nrr · u⊥ = ra · u⊥ or
(

jrm − nrr
)
· u⊥ = 0 (18)

Equation (18) indicates that jrm − nrr is perpendicular to u⊥. Since u and u⊥ must lie
in the X–Y plane; then:

(u⊥)⊥ = u

Therefore, jrm − nrr must be parallel to u; consequently:

jrm − nrr = λ u (19)

Equations (15), (16) and (19) indicate that the orthogonal annihilator $a must lay in
the X–Y plane and intersect with both j$m and n$r. Hence, the following proposition has
been proved:

Proposition 2. Let j$m and n$r be the screws representing a pair of revolute pairs whose common
direction is the Z-axis, and let jrm and nrr be the position vectors of two points in the X–Y plane
along the corresponding screw axis. Then, the orthogonal annihilator $a must lie in the X–Y plane,
and it must pass through jrm and nrr.
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Second Case. One kinematic pair is a revolute joint, the other is a prismatic joint.
Consider a subspace of gk, given by

[j$m, n$r]:
j$m =

[
k

jrm × k

]
and n$r =

[
0

nur

]
where nur lies on the X–Y plane. Let

$a =

[
u

ra × u

]
be an orthogonal annihilator of the subspace

[j$m, n$r] regarding both the Killing and Klein
forms. Then:
1. applying the Killing form, it follows that:

Ki($a, j$m)=Ki
([

u
ra × u

]
,
[

k
jrm × k

])
= u · k = 0

Ki($a, n$r)=Ki
([

u
ra × u

]
,
[

0
nur

])
= u · 0 = 0

Therefore, u and k must be perpendicular. Hence, u must be of the form u = ux i+ uy j
and, without loss of generality, it will be assumed that ra = rax i + ray j. Therefore, $a, the
orthogonal annihilator of the subspace

[j$m, n$r] regarding the Killing form, is given by:

$a =

[
u

ra × u

]
=

[
ux i + uy j

(rax i + ray j)× (ux i + uy j)

]
;

2. applying the Klein form, it follows that:

Kl($a, j$m)=Kl
([

u
ra × u

]
,
[

k
jrm × k

])
= u ·

(
jrm × k

)
+ k · (ra × u) = 0 (20)

Using the identities of the scalar triple product on Equation (20), it yields:

0 = u ·
(

jrm × k
)
+ k · (ra × u) = k ·

(
u× jrm

)
+ u · (k× ra)

= jrm · (k× u) + ra · (u× k) = (jrm − ra) · (k× u) (21)

Denoting, by k× u = u⊥, a unit vector perpendicular to both u and k, and therefore
in the X–Y plane, Equation (21) can be written as:

jrm · u⊥ = ra · u⊥ or
(

jrm − ra

)
· u⊥ = 0 (22)

Equation (22) indicates that jrm − ra is perpendicular to u⊥. Since u and u⊥ must lie
in the X–Y plane, then:

(u⊥)⊥ = u

Therefore, jrm − ra must be parallel to u; consequently:

jrm − ra = λ u or jrm = ra + λ u (23)

and

Kl($a, n$r)=Kl
([

u
ra × u

]
,
[

0
nur

])
= u · nur + 0 · (ra × u) = u · nur = 0 (24)
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Therefore, u must be perpendicular to nur. These two last results provide proof of the
following proposition.

Proposition 3. Let j$m and n$r be the screws representing a revolute pair and a prismatic pair,
respectively. The direction of the revolute pair is parallel to the Z-axis and jrm locates a point in
the X–Y plane lying on the revolute axis. Let nur be the direction of the prismatic pair on the X–Y
plane. Then, the orthogonal annihilator $a must lie on the X–Y plane, pass through the point given
by jrm, and be perpendicular to the unit vector nur.

These two last propositions provide graphical techniques used for finding secondary
centers of rotation, in planar linkages, using the Aronhold–Kennedy theorem. It should be
noted that the orthogonal annihilators are precisely the lines that, in the planar case, must
be intersected to find the secondary IRCs. Propositions 2 and 3 are the working tools of
the Aronhold–Kennedy theorem. It is important to note that even recent papers wrongly
indicate the foundations of the generalization of the Aronhold–Kennedy theorem to the
spherical and spatial cases, called the Three-Axes Theorem. Zhang et al. [23] indicate
“...Sugimoto and Duffy firstly obtained the IS of planar 4R and spatial RCCC mechanisms
by the reciprocal screw theory. Aronhold–Kennedy Theorem is an effective geometrical
method computing the IS of planar mechanism and was generalized to the spatial case
using the reciprocal screw theory...”. There is no reference to the important role played by
the Killing form, for example, in spherical linkages, where the reciprocal product or Klein
form is useless.

3. First Case Study: A “Single Flyer” Eight-Bar Linkage

Consider the planar linkage shown in Figure 2. The linkage is known as the eight-bar
“single flyer” mechanism. This linkage was proposed by Klein [4], who determined the
secondary IRCs using a trial-and-error method. Foster and Pennock [12] determined the
secondary IRCs by applying a graphical method. Di Gregorio [13] computed the secondary
IRCs using an analytical method that combined the closure equation of the linkage and
the unknown locations of the centers. This linkage had eight links, three of them ternary
and the remaining links binary. The linkage is a trivial one, and it can be proven that its
mobility is 1.
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Figure 2. A, eight-bar “single flyer” undetermined planar linkage.
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The first step in the process is to obtain the screws associated with the linkage’s
kinematic pairs with respect to the origin of the coordinate system, O. To that end, the
common direction of all revolute pairs, u, is required, given by:

u =
[

0 0 1
]T

and by the position vectors of points located along the revolute axes, with respect to the
origin, O. They are given in terms of an arbitrary unit of length, by:

r21 =
[

0 0 0
]T , r32 =

[
70 184 0

]T , r43 =
[

160 120 0
]T ,

r41 =
[

180 0 0
]T , r52 =

[
10 176 0

]T , r85 =
[
−52 240 0

]T ,

r86 =
[

32 260 0
]T , r63 =

[
172 260 0

]T , r87 =
[

140 420 0
]T ,

r74 =
[

252 168 0
]T .

From these data, the screws associated with the kinematic pairs, with respect to the
origin of the coordinate system, O, are given by:

2$1
O =

[
1; 0 0

]T , 3$2
O =

[
1; 184 −70

]T , 4$3
O =

[
1; 120 −160

]T ,
4$1

O =
[

1; 0 −180
]T , 5$2

O =
[

1; 176 −10
]T , 8$5

O =
[

1; 240 52
]T ,

8$7
O =

[
1; 420 −140

]T , 7$4
O =

[
1; 168 −252

]T , 8$6
O =

[
1; 260 −32

]T ,
6$3

O =
[

1; 260 −172
]T .

It must be noted that, due to space considerations, only the non-zero terms are shown
separated by a semicolon to indicate the different units.

3.1. Equations for the Location of Secondary IRCs

Regarding Figure 2, the primary IRCs are:

O21, O32, O43, O41, O52, O85, O87, O74, O86, O63.

The upper triangular arrangement in Table 1 indicates the primary centers of the
linkage with the number −1 and the secondary centers with the number −2.

Table 1. IRCs associated with the eight-bar planar linkage.

O21(−1) O31(−2) O41(−1) O51(−2) O61(−2) O71(−2) O81(−2)
O32(−1) O42(−2) O52(−1) O62(−2) O72(−2) O82(−2)

O43(−1) O53(−2) O63(−1) O73(−2) O83(−2)
O54(−2) O64(−2) O74(−1) O84(−2)

O65(−2) O75(−2) O85(−1)
O76(−2) O86(−1)

O87(−1)

The linkage is denominated as partially undetermined because the direct application
of the Aronhold–Kennedy theorem allows determining two secondary IRCs. Throughout
this paper, whenever a sequence for determining an IRC is presented, the primary and
secondary IRCs will be enclosed in boxes and circles, respectively. From Table 1, it follows
that O31 can be found using links 2 and 4.

=⇒ 1ω3
3$1

O = 1ω2
2$1

O + 2ω3
3$2

OO31 O21 O32
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=⇒ 1ω3
3$1

O = 3ω4
4$3

O + 1ω4
4$1

OO31 O43 O41

The equations that determine the secondary center, and therefore, the screw character-
istics, are:

Ki($2
a,Ki,Kl ,

3$1) = 0 Kl($2
a,Ki,Kl ,

3$1) = 0 (25)

and

Ki($4
a,Ki,Kl ,

3$1) = 0 Kl($4
a,Ki,Kl ,

3$1) = 0 (26)

where {$2
a1,Ki,Kl} is a basis for the orthogonal annihilator of the subspace [2$1, 3$2], and

{$4
a1,Ki,Kl} is a basis for the orthogonal annihilator of the subspace [4$3, 4$1], regarding the

Killing and Klein forms.
From Equations (25) and (26), and applying the Aronhold–Kennedy theorem with the

Klein form, the equations necessary to determine the location of the secondary center O31
are given by:

Eq312 =

[
0, 180− 1

6
y31 − x31, 0, 0

]
(27)

Eq314 =

[
0,

35
92

y31 − x31, 0, 0
]

. (28)

The vector expression Eqijk indicates that it was obtained while finding the center ij
and using link k as a third link. The expression is implicitly equated to the vector 0 to form
a vector equation; however, only the second component is different from zero. Hence, only
one scalar equation is obtained. From Equations (27) and (28), one obtains:

0 = 180− 1
6

y31 − x31 (29)

0 =
35
92

y31 − x31 (30)

Equations (29) and (30) form a linear system of two equations in two unknowns, the
coordinates x31 and y31 associated with the secondary center O31. Solving the linear system,
the position vector r31 and the infinitesimal screw associated with the secondary center O31
are given by:

r31 =
[ 18900

151
49680
151 0

]T , 3$1
O =

[
1; 49680

151 − 18900
151

]T

Similarly, the secondary center O42 can be found by using links 1 and 3, Table 1.

=⇒ 2ω4
4$2

O = 2ω3
3$2

O + 1ω4
4$1

OO42 O21 O41

=⇒ 2ω4
4$2

O = 2ω3
3$2

O + 3ω4
4$3

OO42 O32 O43

Following a similar process as in the secondary center O31, the position vector and the
screw associated with the secondary center O42, are found as:

r42 =
[ 1315

4 0 0
]T , 4$2

O =
[

0 0 1 0 − 1315
4 0

]T .

There is no other additional secondary IRC that can be determined by the direct
application of the Aronhold–Kennedy theorem. The IRCs O31 and O42 will also be marked
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with the number −1. Moreover, they will be regarded as primary centers for all purposes.
Further, the upper triangular array of the IRCs, after this step, is given in Table 2.

Table 2. IRCs associated with the eight-bar planar linkage after determining O31 and O42.

O21(−1) O31(−1) O41(−1) O51(−2) O61(−2) O71(−2) O81(−2)
O32(−1) O42(−1) O52(−1) O62(−2) O72(−2) O82(−2)

O43(−1) O53(−2) O63(−1) O73(−2) O83(−2)
O54(−2) O64(−2) O74(−1) O84(−2)

O65(−2) O75(−2) O85(−1)
O76(−2) O86(−1)

O87(−1)

The flow chart of the algorithm proposed for solving indeterminate linkages is pre-
sented in Figure 3. The computation of the undetermined IRCs starts at step 4. The first 3
steps are simple and they do not require additional explanation.

Start

1. Initially mark all the centers with a -2. Identify all primary centers and change
the mark from -2 to -1

2. Using Aronhold-Kennedy theorem determine all possible secondary centers

The linkage is determined.
Exhibit the IRCs

All the IRCs
were

determined?

End 3. The linkage is indetermined. The secondary IRCs found will be regarded as primary and marked with a -1

4. All secondary centers that can be computed as linear combinations of two primary centers are identified. Choose
one of these centers and assume it is known. Change its mark from -2 to 0. Set the counter to k=1

5.1. Determine all the secondary centers that can be located by using the Aronhold-Kennedy theorem using the
IRC marked with -1, and 0. The secondary centers obtained in this step will change their mark from -2 to 1

5.2. Repeat Step 5.1 with the IRC marked with -1, 0, and 1. The secondary centers obtained in this step will
change their mark from -2 to 2

5.3. Repeat Steps 5.1 and 5.2 using all the IRCs obtained so far and changing the mark of the newly found IRCs
from -2 adding to the maximum previous value the number 1. The process ends when an overconstrained IRC is
found; i.e., an IRC that can be found by three or more pair combinations that yield independent equations. The
location of these overconstrained IRC yields a quadratic or cubic equation in λ. The roots determine the possible
locations of the overconstrained IRC and all the unknown IRC needed in the process

while k ≤ 2 do

6. Set the counter k=2. The process indicated in Steps 5.1 to 5.3 is repeated with a different secondary IRC
that can be written as a linear combination of two primary IRC. The location of the overconstrained IRC yields a
quadratic or cubic equation in λ∗. The roots determine the possible locations of the overconstrained IRC and all
the unknown IRC needed in the process

7. Using the results of Steps 5.3 and 6 the true location of an IRC can be determined by comparison. The IRC
which provides the solution is the secondary center common to both processes. Using the newly found IRC the
remaining secondary centers can be found

Exhibit the IRCs

End

yes

no

yes

no

Figure 3. Flow diagram of the proposed algorithm.
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Step 4. Choose a secondary center, i$j, whose location can be written as a linear com-
bination of the position of two primary centers, namely, those marked with the
number −1. Appendix A shows the procedure to accomplish this task; the secondary
center can be written in terms of only one variable, denoted λ or λ∗. From a theo-
retical point of view, any such center can be employed. However, it is convenient to
choose secondary centers that yield a minimum number of equations. The marking
of this secondary center will change from −2 to 0, and it will be assumed that its
location is known. Set the counter k = 1.

Step 5.1. Determine all the secondary centers that can be located by the Aronhold–
Kennedy theorem using the centers marked with −1 and 0, namely, the center chosen
in step 1. The secondary centers obtained in this step will change their mark from
−2 to 1.

Step 5.2. Repeat Step 5.1, but now, it is necessary to locate all the secondary centers that
can be determined, by using the Aronhold–Kennedy theorem, on the IRCs marked
with the numbers −1, 0, and 1. The IRCs obtained in this step will change their mark
from −2 to 2.

Step 5.3. Repeat Step 5.2 using all the secondary centers obtained so far and changing the
mark of the newly found IRCs, adding to the maximum previous value the number 1.
The process finishes when an overconstrained center is found, namely, a rotation
center that can be determined by using more than two pairs of already-known IRCs
that yield independent equations. Simplifying the resulting system of equations
yields a quadratic or cubic equation in λ. The roots of the equation determine the
possible locations of the secondary center.

Step 6. Set the counter k = 2. Steps 5.1 to 5.3 must be repeated with a new secondary
center that can be expressed as a linear combination of two primary centers. The
process eventually yields an overconstrained secondary center, whose location can be
obtained through a system of equations that yields a quadratic or cubic equation in
λ∗. The roots of the equation determine the possible locations of the secondary center.

Step 7. The correct location of the secondary center, obtained through the values of λ and
λ∗, is determined by choosing the location of a secondary center common to the two
processes outlined in the two previous paragraphs. In the process, the location of
many other secondary IRCs, usually all, are also found.

The proposed algorithm is used in the rest of the paper.

3.2. Determination and Solution of the System of Equations

The objective of this analysis is to determine the position vectors, in the plane z = 0,
of a point along the rotation axes of the relative movements associated with the secondary
centers shown in Table 2. The secondary centers that can be written as a linear combination
of two primary centers are O51, O61, O71, O62, O72, O82, O53, O73, O83, O54, O64, O84, O65,
O75, and O76. Table 3 shows only the secondary centers used in the process.

Table 3. Secondary centers whose location can be written as a linear combination of the location of
two primary centers.

O62 is found on the line determined by O32 and O63
O72 is found on the line determined by O42 and O74
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3.2.1. Selection of a First Arbitrary Center and Determination of an Overconstrained Center

From Table 3, the secondary center O62 is chosen. This center can be written as:

r62 = λ r32 + (1− λ)r63 (31)

The upper triangular arrangement of centers, after this point, is given by:

O21(−1) O31(−1) O41(−1) O51(−2) O61(−2) O71(−2) O81(−2)
O32(−1) O42(−1) O52(−1) O62(0) O72(−2) O82(−2)

O43(−1) O53(−2) O63(−1) O73(−2) O83(−2)
O54(−2) O64(−2) O74(−1) O84(−2)

O65(−2) O75(−2) O85(−1)
O76(−2) O86(−1)

O87(−1)

From this selection, it is possible to find the secondary centers. (The text shows only
the required centers. However, the subsequent upper triangular arrangements show all
centers that can be found. This convention will be followed in the rest of the contribution.)
O82 and O64 are indicated, from now on, in blue color and dashed lines.

=⇒ =⇒O82 O52 O85 O64 O42 O62

=⇒ =⇒O82 O62 O86 O64 O43 O63

After identifying the secondary centers O82 and O64 with the number 1, the upper
triangular arrangement of the IRCs is given by:

O21(−1) O31(−1) O41(−1) O51(−2) O61(1) O71(−2) O81(−2)
O32(−1) O42(−1) O52(−1) O62(0) O72(−2) O82(1)

O43(−1) O53(−2) O63(−1) O73(−2) O83(−2)
O54(−2) O64(1) O74(−1) O84(−2)

O65(1) O75(−2) O85(−1)
O76(−2) O86(−1)

O87(−1)

The next step is to employ all the centers found so far to find all additional secondary
centers. Therefore,

=⇒ =⇒ =⇒O84 O42 O82 O84 O64 O86 O84 O74 O87

After identifying the overconstrained secondary center, indicated from now on in
red color and dotted lines, O84, with the number 2, the final upper triangular arrangement
of IRCs is given by:

O21(−1) O31(−1) O41(−1) O51(2) O61(1) O71(−2) O81(2)
O32(−1) O42(−1) O52(−1) O62(0) O72(2) O82(1)

O43(−1) O53(2) O63(−1) O73(−2) O83(2)
O54(2) O64(1) O74(−1) O84(2)

O65(1) O75(−2) O85(−1)
O76(2) O86(−1)

O87(−1)
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From Equation (31), the position vector associated with the chosen secondary center
O62 is given by:

r62 =
[

172− 102 λ 260− 76 λ 0
]T (32)

The position vectors associated with the secondary centers involved in this step are:

r82 =
[

x82 y82 0
]
, r64 =

[
x64 y64 0

]
, r84 =

[
x84 y84 0

]
. (33)

The required equations are obtained applying systematically the Aronhold–Kennedy
theorem together with the Klein form, Equations (34)–(40). These are vector equations;
however, only one component is different from zero. Due to space considerations, only the
non-zero component is indicated. (The two numbers of the equation indicate the IRC to
be calculated, and the subscript indicates the third link required to apply the Aronhold–
Kennedy theorem.).

Eq825 =
361

2
− 31

32
y82 − x82 (34)

Eq826 =
38λ x82 − 51λ y82 + 12044λ + 70 y82 − 18200

λ
(35)

Eq643 =
1048

7
+

3
35

y64 − x64 (36)

Eq642 =
304λ x64 − 408λ y64 − 99940λ− 1040 x64 − 627 y64 + 341900

19λ− 65
(37)

Eq847 =
980

3
− 4

9
y84 − x84 (38)

Eq842 =
4 x82 y84 − 4 x84 y82 + 1315 y82 − 1315 y84

y82
(39)

Eq846 =
x64 y84 − x84 y64 + 260 (x84 − x64) + 32 (y64 − y84)

y64 − 260
(40)

From Equations (34)–(40), the final set of equations is:

0 =
361

2
− 31

32
y82 − x82 (41)

0 =
38λ x82 − 51λ y82 + 12044λ + 70 y82 − 18200

λ
(42)

0 =
1048

7
+

3
35

y64 − x64 (43)

0 =
304λ x64 − 408λ y64 − 99940λ− 1040 x64 − 627 y64 + 341900

19λ− 65
(44)

0 =
980

3
− 4

9
y84 − x84 (45)

0 =
4 x82 y84 − 4 x84 y82 + 1315 y82 − 1315 y84

4 y82
(46)

0 =
x64 y84 − x84 y64 + 260 (x84 − x64) + 32 (y64 − y84)

y64 − 260
(47)

The coordinates yij of each linear equation are solved in terms of the corresponding
coordinates xij. Thus, Equations (41), (43) and (45) yield the following coordinates: y82, y64,
and y82:

y82 =
5776− 32 x82

31
, y64 =

35 x64 − 5240
3

, y84 = 735− 9
4

x84. (48)
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Substituting the results of Equations (48) into Equations (42), (44), (46) and (47), it
follows that:

0 =
−1405 x82 λ− 39394 λ + 1120 x82 + 79940

λ
(49)

0 =
8 x64 λ− 1100 λ + 15 x64 − 2580

19 λ− 65
(50)

0 =
604 x82 x84 − 196240 x82 − 274469 x84 + 89467340

−361 + 2 x82
(51)

0 =
167 x64 x84 − 10180 x64 − 24944 x84 + 952960

172− x64
(52)

From Equation (52), x84 is solved in terms of x64 to obtain:

x84 =
20(509 x64 − 47648)

167 x64 − 24944
(53)

The solution for x84, from Equation (53), is substituted into Equation (51) to solve x82
also in terms of x64, so that:

x82 =
1
2

37959223 x64 − 6156610471
41599 x64 − 6749098

(54)

This result for x82, from Equation (54), is substituted into Equation (49) to obtain a
solution for x64 in terms of λ. Therefore,

x64 =
296186633709 λ− 257240306960
−1585973480 + 1826135817 λ

(55)

Substituting the solution for x64 into Equation (50), a quadratic equation in λ is
obtained:

0 =
40082630108 λ2 − 64664725545 λ + 25911886000

(−1585973480 + 1826135817 λ)(19 λ− 65)
(56)

After clearing the denominator, the two possible solutions of Equation (56) are:

λa =
711865
816796

, λb =
36400
49073

. (57)

The two roots of Equation (56) are substituted into (32), thus obtaining the possible
position vectors of the secondary center O62:

r62a =
[ 33939341

408398
39566305
204199 0

]T , r62b =
[ 4727756

49073
9992580

49073 0
]T . (58)

Finally, position vectors in Equation (58) can be used to compute the two possible
position vectors associated with the secondary center O82:

r82a =
[ 1286974

2949 − 779024
2949 0

]T r82b =
[
− 935697

1436
308360

359 0
]T (59)

3.2.2. Selection of a Second Arbitrary Center and Determination of an
Overconstrained Center

The procedure must be repeated for another secondary center. From Table 3, the
secondary center O72 is chosen. The location of this center can be written as:

rO72 = λ∗ rO42 + (1− λ∗)rO74 (60)
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The upper triangular arrangement of centers becomes:

O21(−1) O31(−1) O41(−1) O51(−2) O61(−2) O71(−2) O81(−2)
O32(−1) O42(−1) O52(−1) O62(−2) O72(0) O82(−2)

O43(−1) O53(−2) O63(−1) O73(−2) O83(−2)
O54(−2) O64(−2) O74(−1) O84(−2)

O65(−2) O75(−2) O85(−1)
O76(−2) O86(−1)

O87(−1)

Using the centers found up to this point, it is possible to find the following secondary
centers: O82, O73.

=⇒ =⇒O82 O52 O85 O73 O32 O72

=⇒ =⇒O82 O72 O87 O73 O43 O74

After identifying the secondary centers O82 and O73 with the number 1, the upper
diagonal arrangement becomes:

O21(−1) O31(−1) O41(−1) O51(−2) O61(−2) O71(1) O81(−2)
O32(−1) O42(−1) O52(−1) O62(−2) O72(0) O82(1)

O43(−1) O53(−2) O63(−1) O73(1) O83(−2)
O54(−2) O64(−2) O74(−1) O84(−2)

O65(−2) O75(1) O85(−1)
O76(−2) O86(−1)

O87(−1)

The final step requires employing all the secondary centers found so far to find
additional secondary centers, in particular, an overconstrained secondary center. Therefore,

=⇒ =⇒ =⇒O83 O32 O82 O83 O63 O86 O83 O73 O87

After identifying the overconstrained secondary center O83 with the number 2, the
final upper triangular arrangement of centers becomes:

O21(−1) O31(−1) O41(−1) O51(2) O61(−2) O71(1) O81(2)
O32(−1) O42(−1) O52(−1) O62(2) O72(0) O82(1)

O43(−1) O53(2) O63(−1) O73(1) O83(2)
O54(2) O64(−2) O74(−1) O84(2)

O65(−2) O75(1) O85(−1)
O76(2) O86(−1)

O87(−1)

Now, it is possible to generate the equations required for the location of the secondary
centers involved in this process. From Equation (60), the position vector of the center O72,
the secondary center chosen, is given by:

r72 =
[

252 + 307 λ∗
4 168− 168 λ∗ 0

]T
(61)
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The position vectors of the centers O82, O73, and O83 involved in this process are:

r82 =
[

x82 y82 0
]T , r73 =

[
x73 y73 0

]T , r83 =
[

x83 y83 0
]T .

The equations are obtained by applying systematically the Aronhold–Kennedy theo-
rem together with the Klein form. It should be noted that these expressions are equated
to the vector 0, generating four scalar equations, only one of which is non-trivial. Due to
space considerations, only the non-zero component is shown.

Eq825 =
361

2
− 31

32
y82 − x82, (62)

Eq827 =
672λ∗ x82 + 307λ∗ y82 − 223020λ∗ + 1008 x82 + 448 y82 − 329280

3 + 2λ∗
, (63)

Eq734 = −70 +
23
12

y73 − x73, (64)

Eq732 =
672λ∗ x73 + 307λ∗ y73 − 103528λ∗ + 64 x73 + 728 y73 − 138432

2 + 21λ∗
, (65)

Eq836 = −260 + y83, (66)

Eq832 =
x82 y83 − x83 y82 − 184 x82 + 184 x83 + 70 y82 − 70 y83

y82 − 184
, (67)

Eq837 =
x73 y83 − x83 y73 − 420 x73 + 420 x83 + 140 y73 − 140 y83

y73 − 420
, (68)

From Equations (62)–(68), a final set of equations is obtained:

0 =
361

2
− 31

32
y82 − x82 (69)

0 =
672λ∗ x82 + 307λ∗ y82 − 223020λ∗ + 1008 x82 + 448 y82 − 329280

3 + 2λ∗
, (70)

0 = −70 +
23
12

y73 − x73 (71)

0 =
672λ∗ x73 + 307λ∗ y73 − 103528λ∗ + 64 x73 + 728 y73 − 138432

2 + 21λ∗
(72)

0 = −260 + y83 (73)

0 =
x82 y83 − x83 y82 − 184 x82 + 184 x83 + 70 y82 − 70 y83

y82 − 184
(74)

0 =
x73 y83 − x83 y73 − 420 x73 + 420 x83 + 140 y73 − 140 y83

y73 − 420
(75)

Systematically, the coordinates yij are solved, from the linear equations, in terms of
the coordinates xij. Hence, the coordinates y82, y73, and y83, solved from Equations (69),
(71) and (73), are given, respectively, by:

y82 =
5776− 32 x82

31
, y73 =

840 + 12 x73

23
, y83 = 260. (76)
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Substituting the results of Equation (76) into Equations (70), (72), (74) and (75), it
follows that:

0 =
1285097 λ∗ − 2752 λ∗ x82 − 4228 x82 + 1905008

7812 + 5208 λ∗
(77)

0 =
1664 λ∗ − 15 λ∗ x73 − 8 x73 + 2016

2 + 21 λ∗
(78)

0 =
8 x82 x83 + 29 x82 − 18 x83 − 39970

−9 + 4 x82
(79)

0 =
3 x73 x83 + 500 x73 − 2205 x83 + 179900

−735 + x73
(80)

From Equation (80), x83 is solved in terms of x73, to obtain:

x83 = −500 x73 + 179900
−2205 + 3 x73

(81)

The solution for x83, obtained from Equation (81), is substituted into Equation (79) to
solve x73 in terms of x82, thus obtaining:

x73 = (−35)
42947 x82 − 2610630

3913 x82 + 110910
(82)

The result for x73, obtained from Equation (82), is substituted into Equation (78) to
solve x82 in terms of λ∗:

x82 =
51566370 λ∗ + 22060080

1263409 λ∗ + 865816
(83)

Finally, the solution for x82, obtained from Equation (83), is substituted into Equation (77)
to obtain a quadratic equation in λ∗:

0 =
47796531143 λ∗2 + 104539672384 λ∗ + 50197302848

(106126356 λ∗ + 72728544) (3 + 2 λ∗)
(84)

After clearing the denominator, the possible solutions of the quadratic Equation (84)
are given by:

λ∗a = −1138984
1599991

, λ∗b = −44072
29873

. (85)

The two roots of Equation (85) are substituted into Equation (61) to obtain the two
possible locations of the secondary center O72:

r72a =
[ 315780710

1599991
460147800

1599991 0
]T , r72b =

[ 4145470
29873

12422760
29873 0

]T . (86)

Finally, from the position vectors r72a, r72b, the two possible position vectors of the
secondary center O82 are given by:

r82a =
[ 1286974

2949 − 779024
2949 0

]T , r82b =
[ 129290

2389
311664
2389 0

]T . (87)

Summarizing, in the first process, the secondary IRC O62 is assumed to be known, and
the overconstrained rotation center is O84. In the second process, the secondary IRC O72 is
assumed to be known, and the overconstrained rotation center is O83. The subgraphs of
the secondary rotation centers needed to accomplish this task is shown in Figure 4.
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O84

O64 O62

O82 O83 O73

O82 O72

1

Figure 4. The subgraph of secondary rotation centers required to solve the “single-flyer” indetermi-
nate planar linkage.

Comparing the results obtained in both processes for the position vector associated
with IRC O82, the only coincident result is given by:

r82a =
[ 1286974

2949 − 779024
2949 0

]T

Therefore, the infinitesimal screw associated with the secondary center O82 is given by:

8$2
O =

[
1; − 779024

2949 − 1286974
2949

]T (88)

Hence, the position vector associated with the secondary center O62 is given by:

r62 =
[ 33939341

408398
39566305
204199 0

]T

Furthermore, the infinitesimal screw associated with the secondary center O62 is
given by:

6$2
O =

[
1; 39566305

204199 − 33939341
408398

]T (89)

Finally from the result of Equation (89), together with the primary centers, applying the
Aronhold–Kennedy theorem and using the Klein form, it is possible to find the remaining
secondary centers following the procedure illustrated for the determination of the centers
O31 and O42, Equations (25) and (26). Therefore, the position vectors corresponding to the
remaining secondary centers are given by:

r72 =
[ 315780710

1599991
460147800
1599991 0

]T , r64 =
[ 144519259

897343
118698915

897343 0
]T ,

r84 =
[ 72796180

206947 − 11685360
206947 0

]T , r73 =
[
− 41572265

133901 − 16799580
133901 0

]T ,

r83 =
[ 68378

8695 260 0
]T , r76 =

[
− 112144664

850397
14647860
850397 0

]T ,

r71 =
[ 5684052780

11857451
8282660400

11857451 0
]T , r81 =

[
− 347482980

1624111
210336480

1624111 0
]T ,

r75 =
[
− 9105880

26227 − 3854865
104908 0

]T , r51 =
[ 62723700

3852029
1103937120

3852029 0
]T

r53 =
[
− 99285

241
86570

723 0
]T , r54 =

[ 56976220
511177

61329840
511177 0

]T ,

r61 =
[ 3665448828

27164597
8546321880

27164597 0
]T , r64 =

[ 144519259
897343

118698915
897343 0

]T .

The determination of the remaining infinitesimal screw representing the secondary
IRCs is straightforward and, due to space considerations, is not presented here.

The location of the secondary IRCs, obtained from the position vectors, is shown in
Figure 5. Therein, one can observe that the three centers associated with three relative
movements, namely, i$k, i$j, and j$k, between three arbitrary links lie on a straight line,
according to the Aronhold–Kennedy theorem.
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Figure 5. All rotation centers of a “single flyer” planar eight-bar linkage.

4. Second Case Study: Eight-Bar “Double-Butterfly” Planar Linkage

Consider the linkage shown in Figure 6, which is known as a “double-butterfly” eight-
bar undetermined planar linkage. The linkage was proposed by Klein [4], who determined
the secondary centers by using a trial-and-error method. Foster and Pennock [12] deter-
mined the secondary centers using a graphical method. Di Gregorio [13] determined the
secondary centers by developing an algebraic method that combines the closure equations
and the location of the secondary centers. This linkage has eight links, four of them ternary,
and the remaining four binary, and it has ten revolutes. The linkage is trivial, and its
mobility is 1.

X

Y

O

1

2
8

7

4

3

5

6

O81

O21

O71

O85

O53
O32

O42

O64

O65

O76

Figure 6. Eight-bar “double-butterfly” undetermined planar linkage.
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The first step in the process is to obtain the screws associated with the linkage’s
kinematic pairs about the origin of the coordinate system, O. To that end, the common
direction of all revolute pairs, u, is required, given by:

u =
[

0 0 1
]T

and the position vectors of points located along the revolute axes, about the origin, O. They
are given in terms of an arbitrary unit of length, by:

r21 =
[

0 0 0
]T , r81 =

[
−80 −50 0

]T , r71 =
[

250 −50 0
]T ,

r32 =
[

20 250 0
]T , r53 =

[
−80 290 0

]T , r85 =
[
−225 300 0

]T ,

r65 =
[

60 375 0
]T , r42 =

[
195 225 0

]T , r64 =
[

180 415 0
]T ,

r76 =
[

370 650 0
]T .

From this data, the screws associated with the kinematic pairs, about the origin of the
coordinate system, O, are given by:

2$1
O =

[
1; 0 0

]T , 3$2
O =

[
1; 250 −20

]T , 5$3
O =

[
1; 290 80

]T ,
8$5

O =
[

1; 300 225
]T , 8$1

O =
[

1; −50 80
]T , 4$2

O =
[

1; 225 −195
]T ,

6$4
O =

[
1; 415 −180

]T , 6$5
O =

[
1; 375 −60

]T , 7$6
O =

[
1; 650 −370

]T ,
7$1

O =
[

1; −50 −250
]T .

4.1. Determination of the Secondary Rotation Axes

From the enumeration of the links shown in Figure 6, the primary IRCs, namely, those
that can be determined by inspection of the linkage, are:

O21, O32, O53, O85, O81, O42, O64, O65, O76, O71

The upper diagonal arrangement of IRCs, where the primary centers are marked with
the number −1, and the secondary centers are marked with the number −2, are shown in
Table 4.

Table 4. Instantaneous rotation axes associated with the planar eight-bar linkage.

O21(−1) O31(−2) O41(−2) O51(−2) O61(−2) O71(−1) O81(−1)
O32(−1) O42(−1) O52(−2) O62(−2) O72(−2) O82(−2)

O43(−2) O53(−1) O63(−2) O73(−2) O83(−2)
O54(−2) O64(−1) O74(−2) O84(−2)

O65(−1) O75(−2) O85(−1)
O76(−1) O86(−2)

O87(−2)

This linkage is completely undetermined since no secondary center can be found by
the direct application of the Aronhold–Kennedy theorem. The search for these secondary
IRCs will require two steps. In the first step, an arbitrary secondary center is chosen and
the location of an overconstrained secondary center is determined up to the two possible
roots of a quadratic equation. In the second step, another arbitrary secondary center is
chosen and the location of the same overconstrained secondary center is determined up to
the two possible roots of a quadratic equation. The comparison between the solutions of
the two quadratic roots yields the correct solution and, from the intermediate results, the
location of many other secondary centers will be accomplished. Therefore, Table 5 shows
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the secondary centers, which can be written as a linear combination of two primary centers
employing a single variable λ, and which are used in this example.

Table 5. Secondary centers that can be written as a linear combination of two primary centers.

O51 is found along the line determined by O81 O85
O74 is found along the line determined by O76 O64

4.1.1. Selection of a First Arbitrary Center and Determination of an Overconstrained Center

From Table 5, the secondary center O51 is chosen. This center can be written as:

r51 = λ r81 + (1− λ) r85 (90)

Thus, the upper triangular arrangement of IRC becomes:

O21(−1) O31(−2) O41(−2) O51(0) O61(−2) O71(−1) O81(−1)
O32(−1) O42(−1) O52(−2) O62(−2) O72(−2) O82(−2)

O43(−2) O53(−1) O63(−2) O73(−2) O83(−2)
O54(−2) O64(−1) O74(−2) O84(−2)

O65(−1) O75(−2) O85(−1)
O76(−1) O86(−2)

O87(−2)

Therefore, following the approach indicated in Section 3.1, the application of the
Aronhold–Kennedy theorem renders the location of the IRCs O61, O52

=⇒ =⇒O61 O51 O65 O52 O21 O51

=⇒ =⇒O61 O71 O76 O52 O32 O53

After marking the secondary IRCs O61 and O52 with the number 1, the upper triangular
arrangement of the IRCs becomes:

O21(−1) O31(1) O41(−2) O51(0) O61(1) O71(−1) O81(−1)
O32(−1) O42(−1) O52(1) O62(−2) O72(−2) O82(−2)

O43(−2) O53(−1) O63(−2) O73(−2) O83(−2)
O54(−2) O64(−1) O74(−2) O84(−2)

O65(−1) O75(1) O85(−1)
O76(−1) O86(−2)

O87(−2)

In the next step, all the IRCs found so far will be employed to find additional centers.
In this case, the overconstrained center O62 is found.

=⇒ =⇒ =⇒O62 O21 O61 O62 O42 O64 O62 O52 O65
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After marking the overconstrained IRC O62 with the number 2, the upper triangular
arrangement of the IRC is given by:

O21(−1) O31(1) O41(2) O51(0) O61(1) O71(−1) O81(−1)
O32(−1) O42(−1) O52(1) O62(2) O72(2) O82(2)

O43(−2) O53(−1) O63(2) O73(2) O83(2)
O54(2) O64(−1) O74(−2) O84(−2)

O65(−1) O75(1) O85(−1)
O76(−1) O86(2)

O87(2)

From Equation (90), the position vector associated with the secondary IRC O51 is:

r51 =
[

145 λ− 225 −350 λ + 300 0
]T (91)

Furthermore, the position vectors associated with the involved IRC are:

r61 =
[

x61 y61 0
]T , r52 =

[
x52 y52 0

]T , r62 =
[

x62 y62 0
]T .

The necessary equations to solve the problem are obtained by systematically applying
the Aronhold–Kennedy theorem employing the Klein form, Equations (25) and (26). It
should be noted that these expressions are equated to the vector 0, generating four scalar
equations, of which only one is non-trivial. Due to space considerations, only the non-zero
component is shown.

Eq617 =
1810

7
+

6
35

y61 − x61, (92)

Eq615 =
70λ x61 + 29λ y61 − 15075λ + 15 x61 − 57 y61 + 20475

3 + 14λ
(93)

Eq523 = 645− 5
2

y52 − x52, (94)

Eq521 =
70λ x52 + 29λ y52 − 60 x52 − 45 y52

7λ− 6
, (95)

Eq624 =
8085

38
− 3

38
y62 − x62, (96)

Eq621 =
x61 y62 − x62 y61

y61
, (97)

Eq625 =
x52 y62 − x62 y52 − 375 x52 + 375 x62 + 60 y52 − 60 y62

y52 − 375
(98)

From Equations (92)–(98), the final set of equations is formed:

0 =
1810

7
+

6
35

y61 − x61 (99)

0 =
70λ x61 + 29λ y61 − 15075λ + 15 x61 − 57 y61 + 20475

3 + 14λ
(100)

0 = 645− 5
2

y52 − x52 (101)

0 =
70λ x52 + 29λ y52 − 60 x52 − 45 y52

7λ− 6
(102)

0 =
8085

38
− 3

38
y62 − x62 (103)

0 =
x61 y62 − x62 y61

y61
(104)

0 =
x52 y62 − x62 y52 − 375 x52 + 375 x62 + 60 y52 − 60 y62

y52 − 375
(105)
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Systematically, the coordinates yij from each linear equation are solved in terms of the
coordinates xij. Therefore, the coordinates y61, y52, and y62 from Equations (99), (101) and
(103) are written as:

y61 = −4525
3

+
35 x61

6
, y52 = 258− 2 x52

5
, y62 = 2695− 38 x62

3
. (106)

Substituting the results of Equation (106) into Equations (100), (102), (104) and (105),
it follows that:

0 =
287 λ x61 − 70580 λ− 381 x61 + 127740

3 + 14 λ
(107)

0 =
146 λ x52 + 18705 λ− 105 x52 − 29025

7 λ− 6
(108)

0 =
111 x61 x62 − 16170 x61 − 9050 x62

−1810 + 7 x61
(109)

0 =
184 x52 x62 − 34440 x52 − 13155 x62 + 2193300

585 + 2 x52
(110)

From Equation (110), x62 is solved in terms of x52 to obtain:

x62 =
60 (574 x52 − 36555)

184 x52 − 13155
(111)

The result for x62, obtained from Equation (111), is substituted into Equation (109) to
solve x52 in terms of x61, so that:

x52 =
1024665 x61 − 661645500

28252 x61 − 10389400
(112)

Similarly, the result for x52 of Equation (112) is substituted into Equation (108) to solve
x61 in terms of λ, therefore:

x61 =
3620 (214316 λ− 273315)
−2473611 + 1808146 λ

(113)

Finally, the result for x61, from Equation (113), is substituted into Equation (107) to
obtain a quadratic equation in λ, given by:

0 =
−60 (264007001 λ2 − 483296570 λ + 169395681)

(−2473611 + 1808146 λ)(3 + 14 λ)

After clearing the denominator, the two solutions of λ are given by:

λa =
1861491
3940403

, λb =
91
67

. (114)

These solutions are substituted into Equation (91) to obtain the two possible locations
of the center O51.

r51a =
[
− 616674480

3940403
530599050

3940403 0
]T , r51b =

[
− 1880

67 − 11750
67 0

]T (115)

4.1.2. Selection of a Second Arbitrary Center and Determination of an
Overconstrained Center

The process must be repeated with another secondary center. From Table 5, the center
O74 is chosen, and its position vector can be written as:

r74 = λ∗ r76 + (1− λ∗) r64 =
[

180 + 190 λ∗ 415 + 235 λ∗ 0
]T (116)
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The upper triangular array of IRCs, with the center O74 marked with the number 0, is
given by:

O21(−1) O31(−2) O41(−2) O51(−2) O61(−2) O71(−1) O81(−1)
O32(−1) O42(−1) O52(−2) O62(−2) O72(−2) O82(−2)

O43(−2) O53(−1) O63(−2) O73(−2) O83(−2)
O54(−2) O64(−1) O74(0) O84(−2)

O65(−1) O75(−2) O85(−1)
O76(−1) O86(−2)

O87(−2)

Using this secondary center O74, the secondary centers O41 and O72 can be found:

=⇒ =⇒O41 O21 O42 O72 O21 O71

=⇒ =⇒O41 O71 O74 O72 O42 O74

After identifying the secondary centers O41 and O72 with the number 1, the upper
triangular arrangement of centers becomes:

O21(−1) O31(−2) O41(1) O51(−2) O61(1) O71(−1) O81(−1)
O32(−1) O42(−1) O52(−2) O62(−2) O72(1) O82(−2)

O43(−2) O53(−1) O63(−2) O73(−2) O83(−2)
O54(−2) O64(−1) O74(0) O84(−2)

O65(−1) O75(−2) O85(−1)
O76(−1) O86(−2)

O87(1)

The next step employs all the centers found so far to find additional centers. The
relevant ones are:

=⇒ =⇒O61 O41 O64 O62 O42 O64

=⇒ =⇒O61 O71 O76 O62 O72 O76

After this step, the upper triangular arrangement of centers becomes:

O21(−1) O31(−2) O41(1) O51(−2) O61(2) O71(−1) O81(−1)
O32(−1) O42(−1) O52(−2) O62(2) O72(1) O82(−2)

O43(−2) O53(−1) O63(−2) O73(−2) O83(−2)
O54(−2) O64(−1) O74(0) O84(−2)

O65(−1) O75(−2) O85(−1)
O76(−1) O86(−2)

O87(−2)

The following step employs all the IRCs marked with the numbers −1, 0, 1, and 2 to
find additional IRCs; the relevant ones are:
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=⇒ =⇒O51 O61 O65 O63 O32 O62

=⇒ =⇒O51 O81 O85 O63 O53 O65

Marking the newly found IRCs with the number 3, the upper triangular arrangement
of centers becomes:

O21(−1) O31(−2) O41(1) O51(3) O61(2) O71(−1) O81(−1)
O32(−1) O42(−1) O52(3) O62(2) O72(1) O82(−2)

O43(−2) O53(−1) O63(3) O73(−2) O83(−2)
O54(−2) O64(−1) O74(0) O84(−2)

O65(−1) O75(−2) O85(−1)
O76(−1) O86(3)

O87(−2)

The final step is to find an overconstrained IRC. In this case, the IRC O31 can be found
using the following three IRC combinations:

=⇒ =⇒ =⇒O31 O21 O32 O31 O51 O53 O31 O61 O63

The position vectors of the secondary centers found in this process are:

r31 =
[

x31 y31 0
]T , r41 =

[
x41 y41 0

]T , r51 =
[

x51 y51 0
]T ,

r61 =
[

x61 y61 0
]T , r62 =

[
x62 y62 0

]T , r63 =
[

x63 y63 0
]T .

r72 =
[

x72 y72 0
]T .

The equations required to solve the problem are obtained applying the Aronhold–
Kennedy theorem and using systematically the Klein form, Equations (25) and (26). It
should be noted that these expressions are equated to the vector 0, generating four scalar
equations, of which only one is non-trivial. Due to space considerations, only the non-zero
component is shown.

Eq412 = 225 x41 − 195 y41 = 0, (117)

Eq417 = 235 λ∗ x41 − 190 λ∗ y41 − 68250 λ∗ + 465 x41 + 70 y41 − 112750 = 0, (118)

Eq721 = −50 x72 − 250 y72 (119)

Eq724 = 235 λ∗ x72 − 190 λ∗ y72 − 3075 λ∗ + 190 x72 + 15 y72 − 40425 = 0 (120)

Eq617 = 700 x61 − 120 y61 − 181000 = 0, (121)

Eq614 = x41 y61 − x61 y41 − 415 x41 + 415 x61 + 180 y41 − 180 y61 = 0, (122)

Eq624 = 190 x62 + 15 y62 − 40425 = 0, (123)

Eq627 = −x62 y72 + x72 y62 + 650 x62 − 650 x72 − 370 y62 + 370 y72 = 0, (124)

Eq632 = −x62 y63 + x63 y62 + 250 x62 − 250 x63 − 20 y62 + 20 y63 = 0, (125)

Eq635 = 85 x63 − 140 y63 + 47400 = 0, (126)

Eq516 = −x51 y61 + x61 y51 + 375 x51 − 375 x61 − 60 y51 + 60 y61 = 0, (127)

Eq518 = 350 x51 + 145 y51 + 35250 = 0, (128)

Eq312 = 250 x31 − 20 y31 = 0, (129)

Eq315 = −x31 y51 + x51 y31 + 290 x31 − 290 x51 + 80 y31 − 80 y51 = 0, (130)

Eq316 = −x31 y61 + x31 y63 + x61 y31 − x61 y63 − x63 y31 + x63 y61 = 0. (131)
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Equations (117)–(131) represent a system of 15 equations in 15 unknowns. The solution
requires that the coordinates yij are solved in terms of the coordinates xij from the linear
equations. Hence, the coordinates y41, y72, y61, y62, y63, y51, and y31 are solved from
Equations (117), (119), (121), (123), (126), (128) and (129), and one obtains:

y41 =
15
13

x41, y72 = − 1
5 x72, y61 =

35
6

x61 −
4525

3
(132)

y62 = −38
3

x62 + 2695, y51 = − 70
29 x51 − 7050

29 y63 =
17
28

x63 +
2370

7
(133)

y31 =
25
2

x31 (134)

Substituting the results of Equations (132)–(134) into the remaining non-linear equa-
tions, it follows that:

0 =
205
13

x41 λ∗ − 68250 λ∗ +
7095

13
x41 − 112750 (135)

0 = −1435
174

x51 x61 +
176450

87
x51 −

7775
29

x61 −
2201500

29
(136)

0 =
365
78

x61 x41 −
66910

39
x41 − 635 x61 + 271500 (137)

0 = −187
15

x62 x72 + 1971 x72 +
16010

3
x62 − 997150 (138)

0 = −1115
84

x62 x63 +
3460

21
x62 +

17200
7

x63 −
329900

7
(139)

0 = 273 λ∗ x72 − 3075 λ∗ + 187 x72 − 40425 (140)

0 =
865
58

x31 x51 +
44460

29
x31 −

2810
29

x51 +
564000

29
(141)

0 =
20
3

x31x61 +
38785

21
x31 −

333
28

x31x63 +
439
84

x61x63 −
2370

7
x61 −

4525
3

x63 (142)

From Equation (135), x41 is solved in terms of λ∗. The result given by

x41 =
650 (273 λ∗ + 451)

41 λ∗ + 1419
, (143)

is substituted into Equation (137). Furthermore, solving the resulting equation for x61,
one obtains:

0 =
921 λ∗ x61 − 335850 λ∗ + 539 x61 − 134750

41 λ∗ + 1419
x61 =

50 (6717 λ∗ + 2695)
921 λ∗ + 539

. (144)

The result for x61 is substituted into Equation (136), to obtain:

0 =
1046159 λ∗ x51 + 185552610 λ∗ + 21021 x51 + 89371590

921 λ∗ + 539
. (145)

Solving Equation (145) for x51, it follows that:

x51 = −30 (6185087 λ∗ + 2979053)
1046159 λ∗ + 21021

(146)

The value of x61, from Equation (143), is also substituted into Equation (137). The
result is given by:

0 =
35382 λ∗ x62 − 7437465 λ∗ − 24973 x62 + 4201260

381 λ∗ − 94
. (147)
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The resulting equation, (147), is solved for x62 in terms of λ∗; hence:

x62 =
735 (10119 λ∗ − 5716)

35382 λ∗ − 24973
. (148)

In the next step, x72 is solved from Equation (140), and the result is given by:

x72 =
75 (41 λ∗ + 539)

273 λ∗ + 187
. (149)

The value of x72 is substituted into Equation (138). Furthermore, solving the resulting
equation for x62, one obtains:

0 =
537 λ∗ x62 − 100755 λ∗ + 187 x62 − 40425

273 λ∗ + 187
x62 =

15 (6717 λ∗ + 2695)
537 λ∗ + 187

. (150)

Repeating the process by substituting the value of x62 into (139), and then solving for
x63, it follows that:

0 =
6689 λ∗ x63 + 3250784 λ∗ + 28787 x63 + 803616

537 λ∗ + 187
x63 = −32 (101587 λ∗ + 25113)

6689 λ∗ + 28787
. (151)

Before the final substitutions, the value of x51 is substituted into (141) to obtain:

0 = −77561551 λ∗ x31 − 2555026460 λ∗ + 86709469 x31 − 604574740
1046159 λ∗ + 21021

.

Then, solving for x31 a solution in terms of λ∗ is given by:

x31 = −140 (18250189 λ∗ + 4318391)
77561551 λ∗ + 86709469

. (152)

Similarly, the value of x61 is substituted into Equation (131) to obtain:

0 =
c1 λ∗2 x31 − c2 λ∗2 + c3 λ∗ x31 − c4 λ∗ + c5 x31 − c6

(921 λ∗ + 539) (6689 λ∗ + 28787)
, (153)

where

c1 = 61961537269 c2 = 1950521392700 c3 = 155729090462

c4 = 3519109121000 c5 = 59668631869 c6 = 1225931622300

Substituting the value of x31 obtained in Equation (152) into Equation (153), a final
cubic equation in λ∗ is obtained:

0 =
d1 λ∗3 − d2 λ∗2 − D3 λ∗ − d4

(77561551 λ∗ + 86709469) (921 λ∗ + 539) (6689 λ∗ + 28787)
. (154)

where

d1 = 175697568701976501 d2 = 168097719765363443

d3 = 3840510841167663817 d4 = 1755643310039629241

After clearing the denominator of (153), its solutions are given by:

λ∗a =
815507
151807

, λ∗b = −31449671
7974909

, λ∗c = − 68453
145127

(155)
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The results for λ∗ are substituted into Equation (116) to obtain the three possible
position vectors of the secondary center O74:

r74a =

 182271590
151807

254644050
151807

 r74b =


− 4539953870

7974909

− 4081085450
7974909

0

 r74c =


13116790

145127
44141250

145127

0

. (156)

From the results of Equation (156), it is possible to find the three possible locations of
the secondary centers O41 and O61:

r41a =


6719245

8837
7752975

8837

0

 r41b =


− 115159785

356071

− 132876675
356071

0

 r41c =


664270

4439
9964050
57707

0

, (157)

and

r61a =


155140

439
242825

439

0

 r61b =


898461460

2335859
5153313575

7007577

0

 r61c =


− 905

4

− 22625
8

0

. (158)

Finally, from the results in Equation (158), the three possible locations of the secondary
centers O51 are given by:

r51a =


− 472320

2453
543750
2453

0

 r51b =


− 616674480

3940403
530599050

3940403

0

 r51c =


141570
36137

9126750
36137

0

. (159)

Comparing the results for the position vector of IRC O51, obtained in Equations (115)
and (159), it follows that the unique coincident result is:

r51a =
[
− 616674480

3940403
530599050

3940403 0
]T (160)

Therefore, the screw associated with the secondary center O51 is given by:

5$1
O =

[
1; 530599050

3940403
616674480

3940403

]T

Finally, from the results of Equation (160), together with the primary centers, applying
the Aronhold–Kennedy theorem and using the Klein form, the remaining secondary centers
can be computed following the procedure followed to find the secondary centers O31 and
O42, Equations (27) and (28). Therefore, the position vectors for the secondary centers are:
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r31 =
[ 52863440

1223221
660793000
1223221 0

]T , r41 =
[
− 115159785

356071 − 132876675
356071 0

]T ,

r61 =
[ 898461460

2335859
5153313575

7007577 0
]T , r52 =

[
− 616674480

1100501
530599050

1100501 0
]T ,

r62 =
[ 2695384380

14580649
5153313575

14580649 0
]T , r72 =

[
− 34193630

1074917
6838726
1074917 0

]T ,

r82 =
[ 49639760

326137
31024850
326137 0

]T , r43 =
[
− 47950495

702931
184591195

702931 0
]T ,

r63 =
[ 1448067620

290239
977450545

290239 0
]T , r73 =

[ 5947782410
88544233

41777847550
88544233 0

]T ,

r83 =
[
− 43192400

4307933
1228511450

4307933 0
]T , r54 =

[
− 54239025

574438
185845815

574438 0
]T ,

r75 =
[
− 2027100510

10530437
1590188550
10530437 0

]T , r74 =
[
− 4539953870

7974909 − 4081085450
7974909 0

]T ,

r84 =
[ 65520025

264426
101851825

264426 0
]T , r86 =

[ 208933300
1088323

445919525
1088323 0

]T ,

r87 =
[
− 74039790

498077 −50 0
]T .

The location of all primary and secondary centers is shown in Figure 7. Therein,
it can be illustrated that, i$k, i$j, and j$k, the three centers associated with three relative
movements between three arbitrary links, lie on a straight line, as indicated by the Aronhold–
Kennedy theorem. Figure 8 shows the subgraphs of the secondary instantaneous centers
involved in the process.

O

1

28

7

4

3

5

6

O81

O21

O71

O85

O53 O32

O42

O64

O65

O76

O52

O31

O73

O54

O52

O43

O83

O86

O62

O84

O61

O82

O72

O51
O75

O87

O41

O74

O63

X

Y

Figure 7. All rotation centers of an eight-bar “double-butterfly” planar linkage.
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O51 O61

O52 O62

O74 O72

O41

O31

O61

O62

O51

O63

Figure 8. Subgraphs of secondary rotation centers required to solve the “double-butterfly” indetermi-
nate planar linkage.

5. Proof of the Method

This short section presents constructive proof of the method. It should be noted that
the number of IRCs is finite, and it is given by:

N =
n (n− 1)

2
,

where N is the number of IRCs, and n is the number of links in the linkage. Since both
linkages have eight links, the number of IRCs is also, in both cases, twenty-eight.

• The single-butterfly linkage has nine primary centers. Two additional centers can be
obtained by a straightforward application of the Aronhold–Kennedy theorem, O31,
and O42. During the two-step process, the location of the following IRCs, O62, O64,
O72, O73, O82, O83, and O84, are found. Hence, after the process, the users will know
the location of 18 out of 28 centers.

• The double-butterfly has 10 primary centers. During the two-step process, the location
of the following IRCs, O31, O41, O51, O52, O61, O62, O63, O72, and O74, are found.
Hence, after the process, the users will know the location of 19 out of 28 centers.

Any person with some familiarity with the graphical techniques of the Aronhold–
Kennedy theorem would recognize that, most likely, the location of the remaining IRC
can be determined by the simple application of the Aronhold–Kennedy theorem. Even
if this is not the case, the process can be repeated by choosing another secondary center.
The location of all IRCs will be finished after a finite, usually small—no more than two-
or three-steps—process. (In the examples shown in this contribution, it was possible to
determine all the IRCs. There was no need to repeat the process.)

6. Conclusions

This paper introduced a novel and simpler method to obtain the secondary instanta-
neous centers of rotation of indeterminate planar linkages. The method only requires the
solution and comparison of two quadratic equations or a quadratic equation and a cubic
equation. They are simpler than the previous works reported in the literature. In addition,
the method does not require the construction of the complete graph of the secondary IRCs,
as indicated by Kung and Wang [14]. Motivated by the reviewers’ comments, the authors
will embark in the search of a method applicable to indeterminate linkages containing
gear pairs and up to 10 links. Finally, the results were verified by carrying out the velocity
analyses of the linkages involved and by simulation using Adams©. The verification is
not included here due to space considerations. However all the details are included in the
M.Sc. thesis of the first author [24].
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Appendix A. Secondary Rotation Axis as a Linear Combination of Two Primary
Rotation Centers

This appendix shows the process of expressing a secondary rotation center as a linear
combination of two primary centers.

Proposition A1. Let Ojk be a secondary center that, according to the Aronhold–Kennedy theorem,
is collinear with the primary centers Oij and Oik. Then, their position vectors are related by:

rjk/O = λ rik/O + (1− λ) rij/O. (A1)

where λ ∈ R.

Proof. Assume that Ojk is a secondary center that, according to the Aronhold–Kennedy
theorem, is collinear with the primary centers Oij and Oik. Then, the two possible configu-
rations of the three centers are:

O     i j O  j k O  i k

Figure A1. A first configuration of the three centers.

O     i j O  i k O  j k

Figure A2. A second configuration of the three centers.

In both cases, the following relationship holds true:

rjk/O − rij/O = λ(rik/O − rij/O) (A2)

In the first configuration, Figure A1, 0 < λ < 1, whereas in the second configuration,
Figure A2, λ > 1. In any case, it follows that:

rjk/O = λ rik/O + (1− λ) rij/O

It can be observed that the position vector of the secondary rotation center can be
written as a linear combination of the primary centers. Therefore, the location of the
secondary rotation center can be expressed in terms of a unique variable λ, since rik/O
and rij/O are known. This result finishes the proof. A procedure implemented in Maple©
computes all the instantaneous secondary centers that fulfill this condition.

http://repositorio.ugto.mx/handle/20.500.12059/2643
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