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Abstract: Robotics is an interdisciplinary field and there exist several well-known approaches to 
represent the dynamics model of a robot arm. The robot arm is an open kinematic chain of links 
connected through rotational and translational joints. In the general case, it is very difficult to obtain 
explicit expressions for the forces and the torques in the equations where the driving torques of the 
actuators produce desired motion of the gripper. The robot arm control depends significantly on 
the accuracy of the dynamic model. In the existing literature, the complexity of the dynamic model 
is reduced by linearization techniques or techniques like machine learning for the identification of 
unmodelled dynamics. This paper proposes a novel approach for deriving the equations of motion 
and the actuator torques of a robot arm with an arbitrary number of joints. The proposed approach 
for obtaining the dynamic model in closed form employs graph theory and the orthogonality prin-
ciple, a powerful concept that serves as a generalization for the law of conservation of energy. The 
application of this approach is demonstrated using a 3D-printed planar robot arm with three de-
grees of freedom. Computer experiments for this robot are executed to validate the dynamic char-
acteristics of the mathematical model of motion obtained by the application of the proposed ap-
proach. The results from the experiments are visualized and discussed in detail. 

Keywords: robot arm; open kinematic chain; equations of motion; graph theory; orthogonality prin-
ciple; law of conservation of energy 
 

1. Introduction 
There exist several different approaches for modeling the motion of robot arms in the 

existing literature. Most frequently, the kinematic aspects of motion are expressed by De-
navit–Hartenberg parameters, Euler angles, or normalized quaternions [1]. It is usually 
difficult to integrate these models with Newton-Euler, Lagrange and Hamilton methods 
employed to represent the dynamic model [2,3]. This is especially true for robot arms with 
redundant degrees of freedom, where the redundancy allows improving the quality of 
motion by introducing optimization criteria. In the existing literature, these criteria are 
defined on the level of kinematics or dynamics. Time optimization, manipulability, or ob-
stacle avoidance are some of the typical criteria for optimal path planning at the kinemat-
ical level [4–6]. Singularity avoidance is another popular way to exploit redundant de-
grees of freedom in executing a given task [7-9]. Criteria related to energy saving repre-
sent a special interest if the level of dynamics is concerned [10,11]. 

The accuracy of motion control of a physical robot arm strongly depends on the com-
pleteness of the model of dynamics. The dynamic system model describes the relationship 
between the forces and torques applied to the robot arm on the one hand and the resulting 
robot arm motion in joint space or workspace coordinates on the other hand. The equa-
tions of motion serve to solve the forward and the inverse dynamic problems, respectively 
[12,13]. Given the motion in the joint space or workspace, these equations determine the 
driving torques of the actuators in the joints or the forces of the gripper. In the inverse 
problem, the motion in the joint space or workspace is computed knowing the driving 
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torques in the joints. In the existing literature, there are several approaches to obtain the 
dynamics equations of motion. 

The Lagrangian formulation is one of the most frequently used approaches to de-
scribe mechanical phenomena. Apparently, this approach does not allow to consider the 
reaction forces, while it is essential to know these forces at the stage of design in order to 
select, for instance, the optimal bearing in the joints. A related research paper [14] follows 
the same approach and emphasizes the computation of differential algebraic equations of 
the dynamics model, where the reaction forces are not considered. Although the electrical 
phenomena are out of the scope of this paper, for completeness, note that there are at-
tempts to complement the Lagrangian function with terms reflecting electrical character-
istics in terms of electro-mechanical analogies [15]. It appears, however, that this is impos-
sible in the analysis of case studies involving sliding contacts and volume currents. In such 
cases, the Lagrangian formulation is not applicable because there are no suitable electro-
mechanical analogs. 

The limitations in the application of the Lagrangian formulation can be resolved pro-
vided the dynamic system model is built on the conservation of energy law. Unlike the 
Lagrangian formulation, the law of conservation of energy allows extending the modeling 
process so that it includes objects pertinent to electrical and magnetic phenomena, as well 
as considering the energy flow between objects intrinsic to robot arm devices [16]. There-
fore, this paper employs the law of conservation of energy rather than the Lagrangian 
formulation to develop and obtain the dynamic model of a robot arm. 

The equations, describing the dynamic model, are nonlinear and one of the most 
widely used approaches is to simplify these equations in terms of numerical approxima-
tion [17]. Other computational techniques use Iterative learning control for dealing with 
unmodelled dynamics [18], or deep learning for the estimation of dynamics parameters 
[19]. These approaches are usually implemented in software tools for processing the kin-
ematic and dynamic characteristics of the robot arm design obtained with advanced CAD 
systems like SolidWorks. The 3D CAD model of the robot arm supports nowadays both 
its manufacturing process, as well as the analysis and simulation of its motion in a work-
space. For example, the parameters of the assembly model like mass, inertia moments, 
geometrical parameters of the links, can be imported in the integrated environment of 
MATLAB, Simscape and Simulink software products. Thus, the powerful functionalities 
of these products are utilized for computing and simulating the behavior of a robot arm 
dynamic model. Several research papers investigate the application of such CAD-based 
methodologies for developing the dynamic model of a robot. These papers consider, how-
ever, special cases of robot devices, where the results are restricted to deriving the equa-
tions of kinematics [20] or the built-in functionalities of the software packages don’t allow 
to consider in explicit form important parameters of the dynamic model, such as drive 
torques and forces [21]. Apparently, the CAD model can assist in extracting the basic char-
acteristics of kinematics and dynamics, however, the complex nonlinear relationships in-
herent to a robot arm cannot be obtained from a CAD model in a fully automatic way. At 
present, the dynamic system model can be obtained in closed-form only in some particular 
cases [22]. In the general case, however, the analytical representation of the complete 
equations of motion remains a challenge that the model proposed in this paper aims to 
resolve. 

The objective of this paper is to propose an approach for modeling, in closed form, 
the dynamics of robot arms with an open kinematic chain, having rotational or transla-
tional joints of the fifth class. The proposed model of the dynamics borrows ideas from 
the paper of Tellegen [23] where graphs, in combination with terms of “through” (current) 
and “across” (voltage) variables, are introduced to represent electrical networks in a prac-
ticable, convenient way. Further on, these ideas are elaborated in the research works of 
Blackwell [24] and Andrews [25]. Blackwell considers merely electro-mechanical systems 
with simple mechanical components. Andrews introduces the orthogonality principle for 
the first time but only in relation to models of dynamics dealing with mass points. Later 
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on, graph theory is introduced to design interconnected systems of multi-bodies in related 
research papers [26,27]. Thus, the orthogonality principle became applicable for industrial 
robots [28,29]. A detailed description of the proposed approach in such cases is presented 
here. Without loss of generality, the non-conservative friction effects are left out of scope 
in this study, although the law of conservation of energy allows taking them into account 
in the proposed dynamic model by means of the same approach. The study of these effects 
represents a subject for separate research work and for simplicity of presentation, these 
effects are not considered here. Finally, the paper demonstrates how to apply this ap-
proach in the case of a proprietary physical model of a robot arm. Results from computer 
experiments with the obtained explicit equations of motion in this real-life case study are 
provided to validate the correctness of the model of dynamics. 

The paper is structured in four sections. The following section describes the develop-
ment of the kinematics and dynamics model of a robot arm. The results from computer 
experiments are visualized and discussed in Section 3. Section 4 provides a discussion on 
the advantages and disadvantages of this approach in view of its application in the field 
of industrial robotics. This final section summarizes the main results of the paper. 

2. Materials and Methods 
This section provides a detailed description of the proposed uniform approach for 

developing a mathematical model of the robot arm dynamics. The graph theory allows 
the application of the orthogonality principle in deriving the dynamic’s equations of mo-
tion of the robot arm. For clarity, a procedure for applying the proposed approach in the 
general case is here provided. The implementation of the procedure is demonstrated in a 
real-life case study, where the actuator torques are computed from the obtained equations 
in executing a given robot arm motion. 

2.1. Kinematics 
In this paper, we consider a robot arm with an open kinematic chain with 𝑛 DoF. 

The links of the robot arm are 𝑛 + 1 rigid bodies (including the base) with translational 
or rotational joints of the fifth class. The vector of the generalized coordinates 𝐪 =(q , q , … . , q )  is used to describe the forward kinematics in the workspace W in terms 
of the linear and angular position of the gripper of the robot arm. In practice, the dimen-
sion of W is equal to the number of parameters required to define the work task executed 
by the robot arm. For clarity, assume the dimension of W is 𝑚. Special interest represents 
the case 𝑛 > 𝑚 when the robot arm has redundant DoF. 

Forward kinematics is expressed by means of Denavit–Hartenberg notation as fol-
lows (Figure 1). A coordinate system 𝑂 𝒙 𝒚 𝒙  with unit vectors 𝒆( ), 𝒆( ), 𝒆( ) is fixed in 
each link 𝑖, 𝑖 = 0, 1, 2, … , 𝑛, where the coordinate system 𝑂 𝒙 𝒚 𝒛  is attached to the base. 
The axis 𝒛  coincides with the axis of relative motion of link 𝑖 + 1 with respect to link 𝑖. 
For convenience, the axis 𝒛  is chosen to coincide with 𝒛  and 𝑂 ≡ 𝑂 . Similarly, the 
axis 𝒛  is appropriately chosen to represent the axis of relative motion of the gripper. The 
axis 𝒙  is orthogonal to both 𝒛  and 𝒛 ,whereby 𝒙  is oriented towards 𝒛 . The axis 𝒚  complements 𝑂 𝒙 𝒚 𝒛  to right-handed coordinate system. On each axis 𝒛  two points 𝐶 ,  and 𝐶 ,  are chosen, where the first of them is fixed in the link 𝑖 and the second in 
link 𝑖 − 1. 

Definition 1. The point 𝐶 ,  is referred to as contact point of link 𝑖 − 1 with joint 𝑖. 
For convenience, select point 𝐶 , ≡ 𝑂  and point 𝐶 ,  as the intersection point of 

axes 𝒙  and 𝒛 , 𝑖 = 1, 2, … 𝑛. Without loss of generality, assume 𝐶 ,  coincides with the 
origin 𝑂  of the base coordinate system. Let the distance between two adjacent coordinate 
systems be represented by vector 𝒅 = 𝐶 ,  𝐶 ,  along 𝒛 . Denote by 𝛼  and 𝑎  the 
angular displacement between axes 𝒛  and 𝒛  and the vector 𝒂 = 𝐶 ,  𝐶 , . meas-
ured along axis 𝒙 . The generalized coordinates q  represent the relative translation or 
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relative rotation along 𝒛  in case joint 𝑖  is translational or rotational joint 
correspondingly. For convenience, the motion of the robot arm links with respect to 𝑂 𝒙 𝒚 𝒛  is considered in the following sections in terms of coordinate systems 𝐶 𝒙 𝒚 𝒛 ,𝑖 = 1, 2, … , 𝑛 obtained by translating 𝑂 𝒙 𝒚 𝒛  in the mass centers 𝐶 , 𝑖 = 1, 2, … , 𝑛 by vec-
tor 𝒄 =  𝐶  𝐶 ,  (Figure 1). Then, the absolute linear position of link 𝑖 is given by the re-
spective vector 𝐑𝒊(𝐪) . Further on, the locations 𝝆  of the contact points 𝐶 , , 𝑖 =1, 2, … , 𝑛 in 𝐶 𝒙 𝒚 𝒛  are used to represent important constructs in the proposed dynam-
ics model. 

 
Figure 1. Coordinate systems and vectors in two adjacent connected bodies. 

2.2. Dynamics 
In this section, the robot arm model of dynamics is built making use of the orthogo-

nality principle [24,27]. This principle is strongly related to energy flow and energy po-
tential. The theory of graphs offers a convenient technique to manage effectively these 
basic characteristics of the energy conservation law. In the related literature [24,25], the 
energy flow and energy potential are expressed in terms of so-called “through” and 
“across” variables in accordance with the following definitions. 

Definition 2. Across variables are the variables representing the energy potential charac-
teristics. 

Definition 3. Through variables are the variables representing the energy flow character-
istics. 

The linear and angular velocities as well as the radius vectors 𝝆  𝑖 = 1, 2, … , 𝑛 of the 
contact points and the radius vectors 𝐑𝒊 in Figure 1 are examples of across variables. On 
the other side, forces and torques are typical representatives of through variables in the 
existing literature [24]. Pairs of across and through variables provide means to describe 
translational and rotational motion correspondingly. 

In this paper we employ a graph, referred to as energy graph, to model the energy 
flow and energy potential. 

Definition 4. Energy graph is the graph where each edge is associated with a pair of across 
and through variables and the vertices are the mass centers 𝐶  and the contact points 𝐶 , , 𝑖 = 1, 2, … , 𝑛. The root vertex of the energy graph is the origin 𝑂  of the base coor-
dinate system 𝑂 𝒙 𝒚 𝒛 . 
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The thus introduced energy graph is employed in the following subsections to out-
line a procedure for deriving the differential equation of dynamics. 

2.2.1. Energy Graph Associated with Robot Arm 
In the following sections, we consider the energy graph as the union of two nonin-

tersecting graphs G  and G . The edges in the energy graph with across variables related 
to linear displacement are part of G  and the edges with across variables dealing with 
angular displacement build-up G . For example, the absolute linear velocity 𝒗 and force 𝑭 applied in the mass center 𝐶 of a free rigid body as well as the absolute angular veloc-
ity 𝝎 and torque 𝑻 with respect to its mass center represent such pairs (Figure 2) in the 
energy graph. Accordingly, the first pair is an edge in G  and the second pair is an edge 
in G . Note that both edges connect the origin of the base coordinate system with the mass 
center. 

 
Figure 2. Graphs G  (left) and G  (right) of a free rigid body with mass center 𝐶. 

Consider now the energy graph in the general case of a robot arm with an open kin-
ematic chain. Both G  and G  have the same topological structure shown in Figure 3. 
Similarly to the case of a free rigid body G  and G  have edges that connect the origin of 𝑂 𝒙 𝒚 𝒛 . with the respective mass center  𝐶  of the bodies in the kinematic chain. These 
edges are shown in black color in Figure 3. 

 
Figure 3. The topological structure of sub-graphs G  and G . of a robot arm with 𝑛 DoF. 

The links of the robot arm are connected with joints and this requires considering the 
reactions in the joints by introducing in the topological structure vertices representing the 
contact points 𝐶 , , 𝑖 = 1, 2, … 𝑛 of the links in the respective joints. 

Therefore, we add edges in G  and G  with pairs of across and through variables 
related to the reactions in the joints. These edges are shown in red color in Figure 3. Ap-
parently, graphs G  and G  are oriented graphs with different pairs of across and 
through variables attached to their edges. Each graph G  and G  has 2𝑛 + 1 vertices 
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(corresponding to the number of links including the base coordinate system) and 5𝑛 − 1 
edges. Part of the vertices are the mass centers 𝐶 , 𝑖 = 1, 2, … , 𝑛 of robot links and the re-
maining are the contact points 𝐶 , . All the vertices are connected with the origin of the 
base coordinate system. 

Definition 5. A cycle in a graph is the set of edges connecting two different vertices of the 
graph. 

According to this definition the edges of G  and G  can be considered to belong to 
two separate sets, namely, branches and chords. 

Definition 6. An edge is referred to as a branch when this edge does not belong to a cycle. 

Definition 7. An edge is referred to as a chord when this edge connects two vertices be-
longing to a branch. 

Apparently, a chord introduces cycles in the topological structure of the energy 
graph. Therefore, the cycle orientation is equal to the orientation of the chord generating 
the cycle as shown with a dashed line in pink color in Figure 3. The edges denoted by 1, 2, … , 𝑛 in Figure 3 refer to pairs of across and through variables interpreting a resulting 
force (graph G ) or a resulting torque (graph G ) are considered as branches and these are 
denoted in black color in Figure 3. Through variables referring to external forces and tor-
ques are represented in terms of chords denoted by numbers framed in green color. Each 
of these numbers is related to the number used to denote the branch pointing to the mass 
center where the corresponding external force is applied to. In case the external forces 
applied to a mass center are represented by their resultant force then these numbers are 
the same. For example, the external forces applied in the mass centers are represented in 
Figure 3 by their resultant force. Therefore, the through variables of these resultant forces 
are indexed by the same numbers as the branches pointing to the respective mass center. 
For example, both the through variable (denoted inside a green frame) of the resultant 
force applied to the mass center 𝐶  and the branch number (denoted in black) is equal to 
2. Without loss of generality, the resultant forces include only the gravity forces applied 
to the mass centers 𝐶 , 𝑖 = 1, 2, … , 𝑛 are taken into consideration. In the general case, each 
external force applied to 𝐶  can be introduced by adding a separate through variable, 
where its number in the green box must be indexed in relation to the branch number 2𝑖, , 𝑖 = 1, 2, … , 𝑛. Note that these variables can be used to represent torques induced by 
external forces as well. Through variables referring to reactions like the resultant of the 
reaction forces applied in the joints are represented also by the chords with numbers dis-
played in red color in Figure 3. 

Consider closer graph G . The 𝑛 edges in G  that are numbered in green frames 
represent the variables related to external forces. For simplicity, here only the gravity force 
is considered. The branches start from vertex 𝑂  to 𝐶  and 𝐶 , , 𝑖 = 1, 2, … , 𝑛, while the 
remaining edges are chords. 

The following through variables are represented in the graph G  having the topo-
logical structure shown in Figure 3: 
• The D’Alembert forces  𝐅 , 𝑖 = 1, 2, … , 𝑛 , associated with the edges numbered in 

black and denoted by 2𝑖, 𝑖 = 1, 2, … , 𝑛. 
• The forces 𝐅 , 𝑖 = 1, 2, … , 𝑛, applied in the points 𝐶 ,  with the edges numbered 

in blue and denoted by 2𝑖-1. Note, that only 𝑭 ≠ 0 because the first body is linked 
with the base coordinate system. 

• The resultant of the external forces 𝐅 , 𝑖 = 1, 2, … , 𝑛, applied in the mass centers are 
represented by edges numbered 2𝑖, , 𝑖 = 1, 2, … , 𝑛 in green frame. 
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• The forces  𝐅 , 𝑖 =  2𝑛 + 1, … , 4𝑛 − 1 of interaction between the adjacent bodies are 
represented by edges numbered in red and denoted by 𝑖 =  2𝑛 + 1, … , 4𝑛 − 1. 
The across variables associated with the graph G  are: 

• The radius-vectors of the mass-centers 𝐶  and the points 𝐶 ,  starting from 𝑂  
• The local radius-vectors of 𝐶 ,  relative to the mass centers 𝐶  for the remaining 

edges. 
The edges with numbers from 1 to 2𝑛 are chosen as branches [25,26] and all the other 

edges are chords. The same enumeration style is used for the angular velocities related to 
the edges of the graph G . 

Graph G  has the same topological structure as G  where the through variables 
have the following interpretation. 
• The D’Alembert torques  𝐓 , 𝑖 = 1, 2, … , 𝑛, associated with the edges numbered in 

black and denoted by 2𝑖, 𝑖 = 1, 2, … , 𝑛. 
• The torques 𝐓 , 𝑖 = 1, 2, … , 𝑛, acting on the points 𝐶 ,  associated with the edges 

numbered in blue and denoted by 2𝑖−1. Note, that only 𝐓 ≠ 0 because the first 
body is linked with the base coordinate system. 

• The resultant of the external torques 𝐓( ), 𝑖 = 1, 2, … , 𝑛 applied in the joint axes s are 
represented by edges numbered in the green frame by 2𝑖, , 𝑖 = 1, 2, … , 𝑛. 

• The torques  𝐓 , 𝑖 =  2𝑛 + 1, … , 4𝑛 − 1 of interaction between the connected bodies 
are represented by edges numbered in red and denoted by  𝑖 =  2𝑛 + 1, … , 4𝑛 − 1. 
The across variables associated with graph G  are determined as follows. For each 

of the edges starting from 𝑂  the across variable is the absolute angular velocity of the 
link matching the vertex the respective edge is directed to. These across variables are de-
noted by 𝐗 . The vertices 𝐶 ,  in this graph correspond to contact points 𝐶 ,  belong-
ing to links with number 𝑖 − 1 in Figure 3. Thus, the “angular” velocity of such vertex is 
assumed to coincide with the angular velocity of the respective link. The across variables 
for chords starting from the mass centers 𝐶  describe relative angular velocities and those 
with even numbers are zeroes according to the assumption for the contact points 𝐶 , . 
These across variables are denoted by 𝐗 . 
2.2.2. Cut-Set and Circuit Equations 

The energy conservation law cannot be proved but is always under verification. One 
of its formulations states that the energy is not created or destroyed; it can only be trans-
formed from one kind to another. This way our system can accept energy, and transform 
it according to its functioning, and return back the remainder after that. In this paper, the 
system is interpreted by a graph whose edges are associated with pairs of across and 
through variables. The energy conservation law is known in the area of mechanics as the 
orthogonality principle. This principle can be formulated in terms borrowed from graph 
theory as “The sum over all the edges of the scalar products of the through and the across 
variables associated with each edge of the graph must be zero”. 

The oriented graph with the topological structure shown in Figure 3 has ν = 2𝑛 + 1 
vertices and 𝜎 = 5𝑛 − 1 edges. Then, the branches are ν − 1 = 2𝑛 and the chords are 𝜎 − (ν − 1) = 3𝑛 − 1. After the elimination of the across variables it follows that (1): 

β Y = 0𝜎
 (1)

holds true for every vertex 𝑖. Here the through variable Y  is associated with edge 𝑗 and 
• β = 0 if edge 𝑗 is not incident with vertex 𝑖, 
• β = 1, if edge 𝑗 starts from vertex 𝑖 
• β = −1, if edge 𝑗 enters vertex 𝑖. 
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This allows expressing the branch variables in terms of chords as shown in (2): [ 𝐔 , 𝑽𝒄] 𝐘𝑏𝐘c = 0 (2)

where 𝐔𝑏  is a unit matrix of order 𝜈 − 1, 𝐘 - column matrix with 𝜈 − 1 elements of 
branch-related through variables, 𝐘 - column matrix with 𝜎 − 𝜈 + 1elements of chord-re-
lated through variables, and 𝑽𝒄 is a matrix of order (𝜈 − 1) × (𝜎 − 𝜈 + 1) having ele-
ments 0, +1 and −1 defined in (3) as: 𝑽 = 𝐏𝐄  (3)

where 𝐏 is a matrix with (ν − 1)x(ν − 1)  elements described in (4) and ν − 1 is the 
number of the branches in the energy graph. 

𝐏 = (−1)   for 𝑝 , ,      𝑖 =  1, 2, … , ν − 1 (−1)   for 𝑝 , ,   𝑖 =  1, 2, … , ν − 20          otherwis𝑒                               (4)

and 𝐄 is defined in (5) as: 

𝐄 = �̂� , =  1, when 𝑖 is odd number 1 ≤  𝑖 ≤ 2𝜈 − 3 and  𝑗 = 1,2, … , 𝜈 − 1�̂� , =  0,       otherwise  (5)

In the same way, after elimination of the through variables it is obtained that for 
every cycle 𝑖 the following equation (6) holds true: 

β X = 0𝜎
 (6)

where the across variable X  is associated with the edge j  and: 

• 𝛽 = 0 if edge 𝑗 does not belong to the cycle 𝑖, 
• 𝛽 = 1, if edge 𝑗 has the same orientation as cycle 𝑖 
• 𝛽 = −1, if edge 𝑗 has the opposite orientation as cycle 𝑖. 

This allows to express chord variables by branch ones in (7) as follows: [ 𝑽𝒃,  𝐔𝒄 ] 𝐗𝐗𝐜 = 𝟎 (7)

where 𝐔𝑐 is a unit matrix of order 𝜎 − 𝜈 + 1, 𝐗 - column matrix with 𝜈 − 1 elements of 
branch-related across variables, 𝐗 - column matrix with 𝜎 − 𝜈 + 1 elements of chord-re-
lated across variables, 𝑽𝒃 is a matrix of order (𝜎 − 𝜈 + 1) × (𝜈 − 1) having elements 0, +1 and −1. The subscript 𝑐 denotes a chord edge representing through variables for a 
reaction displayed in Figure 3 in red color. Subscript 𝑏 denotes a branch edge represent-
ing through variables displayed in Figure 3 in black and blue color. From Equations (2) 
and (7) we obtain: 𝐘 =  −𝑽𝒄𝐘  (8)𝐗 =  −𝑽𝒃𝐗  (9)

Equations (8) and (9) have been formulated for the first time in [24] as postulates and 
they can be obtained from the orthogonality principle as well. 

Definition 8. Equations (8) and (9) are called cut-set and circuit equations, respectively. 

The cut-set equations are introduced to represent the forces and the torques applied 
to the links of the robot arm, while the circuit equations serve to interpret the cycles in the 
topological structure of the energy graph. The cut-set equations are used to express the 
through and the across variables associated with the branches with those associated with 
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the chords. Accordingly, the circuit equations allow expressing the across variables asso-
ciated with the chords in terms of those associated with branches. In this regard the fol-
lowing relations between matrices 𝑽𝒄 and 𝑽𝒃 hold true in (10). 𝑽𝒃 =  −𝑽𝒄𝐓 and  𝑽𝒄 =  −𝑽𝒃𝐓 (10)

Because  𝐔𝒃 and  𝐔𝒄 are unit matrixes, then (11) and (12) hold true [ 𝐔𝒃, 𝑽𝒄 ] 𝑽𝒃𝐓𝐔𝒄 = 𝟎, or the same  (11)

[ 𝑽𝒃,  𝐔𝒄 ] 𝐔𝑽𝒄𝐓 = 𝟎 (12)

Then the principle of orthogonality can be expressed in (13) as follows: 𝐘 𝐓 𝐗 = 𝐗 𝐓 𝐘 = 0 (13)

Taking into consideration that 𝐔  and 𝐔𝒄 are unit matrixes, then from (8) and (9) it 
follows that Equation (13) can be written in (14) by separating the branches and chords in 
the column matrices 𝐗 and 𝐘 as follows: 𝐗 𝐘 = 𝐗 , 𝐗 𝐘𝐘 = 𝐗 [𝐔 , −𝑽𝒃 ] −𝑽𝒄  𝐔 𝐘 = 𝟎 (14)

Equation (15) always holds true for any across and through variables: 𝐗 [𝐔 , −𝑽𝒃 ] −𝑽𝒄  𝐔 𝐘 = 𝐗 [𝟎] 𝐘 = 𝟎 (15)

if and only if (16) holds true: [𝐔 , −𝑽𝒃 ] −𝑽𝒄  𝐔 = 𝟎 (16)

Then, from (10) it follows that equation (16) appears to be another proof of the rela-
tions (8–9) between matrices 𝑽𝒄 and 𝑽𝒃. 

The matrices in (16) look like they are “orthogonal” because their “zero” product re-
sembles orthogonal vectors. From here comes the name of the orthogonality principle. 

2.2.3. Terminal and Connection Equations 
The cut-set equations introduced in the previous section deal separately with the 

through and across variables. To develop a complete mathematical model of the mechan-
ical system we need to establish terminal relations between the across and through varia-
bles in each sub-graph G  and G  separately as well as the relations connecting together 
corresponding variables from G  and G . 

Definition 9. The terminal equations are the equations expressing the relation between 
across and through variables in each of sub-graphs G  and G . 

The terminal equations have been introduced for the first time in a related research 
paper [27] referring to mass points, where rigid bodies have not been taken into consider-
ation. The terminal equations for graph G  follow the Newton law as shown in (17): 𝑴 𝐗 =  −𝐘   (17)

where 𝑴  is the following operator matrix  𝑴 = 𝑑𝑖𝑎𝑔 𝑚 𝑑𝑑𝑡 , 0, 𝑚 𝑑𝑑𝑡 , … ,0, 𝑚 𝑑𝑑𝑡  𝑚 , 𝑖 = 1, 2, … , 𝑛 denote the masses of the links of the robot arm, differentiation is 
with respect to time and the notation “𝑑𝑖𝑎𝑔” denotes a diagonal matrix. 

In greater detail, in terms of the absolute velocities 𝒗 , 𝑖 = 1, 2, … , 𝑛 we obtain 
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𝐌 = 𝑑𝑖𝑎𝑔 𝑚  𝑑𝒗𝑑𝑡 , 0, 𝑚 𝑑𝒗𝑑𝑡 , … ,0, 𝑚 𝑑𝒗𝑑𝑡  

The terminal equations for graph G  are (18): 𝑰 𝑿 =  −𝐘   (18)
where the operator matrix 𝑰  is defined as follows: 𝑰 = 𝑑𝑖𝑎𝑔 𝐈 +∘× 𝐈 ∘ ,0, 𝐈 +∘× 𝐈 ∘, … , 0, 𝐈 +∘× 𝐈 ∘   

Here,  𝐈 , 𝑖 = 1, 2, … , 𝑛, are the central inertia tensors, 𝝎 , 𝑖 = 1, 2, … , 𝑛 are the absolute 
angular velocities of bodies that are applied at the circle notation of the operator matrix 
together with  𝐈 . For clarity, we can write : 𝐈 = 𝑑𝑖𝑎𝑔 𝐈 𝑑𝜔𝑑𝑡 + 𝜔 × 𝐈 𝜔 , 0, 𝐈𝟐 𝑑𝜔𝑑𝑡 + 𝜔 × 𝐈 𝜔 , … ,0, 𝐈 𝑑𝜔𝑑𝑡 + 𝜔 × 𝐈 𝜔   
Definition 10: The connection equations express the connection between variables of the 
same name (across–across and through–through) for the two sub-graphs G  and G . 

The connection equations are (19–20): 𝐘 = 𝑑𝑖𝑎𝑔𝐗 × −𝐘  (19)𝐗 = 𝑑𝑖𝑎𝑔𝐗 × (−𝐏∗) 𝐗  (20)
where 𝐏 and 𝐄 are defined in (4–5) and matrix 𝐏∗ is obtained from the matrix −𝐏 by 
replacing all the elements in its even rows with zeros as follows (21). 𝐏∗ = 𝑝∗ , =  𝑝∗ , =  −1, when 𝑖 is odd number𝑝∗ , = 0,       otherwise  (21)

2.2.4. Procedure for Deriving the Differential Equations of Motion 
In this section, we consider the application of the orthogonality principle (10) in its 

equivalent form (22): [𝛿𝐗] 𝐘 = 0 (22)
Here 𝛿𝐗 denotes the variations of the across variables. The representation of (22) in terms 
of branch and chord variables yields the following expression (23): 𝛿𝐗 𝐘 + 𝛿𝐗 𝐘 + [𝛿𝐗 ] 𝐘 + [𝛿𝐗 ] 𝐘 = 0 (23)

In this equation 𝐗  represent the reactions between the adjacent bodies. Knowing 
these reactions, we can obtain the driving torques applied in the joints. Therefore, in the 
following transform equation (23) into an expression depending only on 𝐗 . First, we note 
that there are two types of chords in Figure 3. Unlike the chords representing reactions, 
the chords representing external forces and torques are denoted by chords with numbers 
in frames. Let the variables referring to such chords be denoted with subscripts in frames 
like 𝑐 . Thus, for G  Equation (8) can be rewritten in equivalent form(24): 𝐘 𝒃𝒑 = −𝐏𝐘 𝐜𝐩 − 𝐄𝐘 𝒄𝐩   (24)

or (25): 𝐘 𝒄𝒑 = −𝐏 𝟏𝐘 𝐛𝐩 − 𝐏 𝟏𝐄𝐘 𝒄𝐩   (25)

where 𝐏 is defined in (4) and 𝐄 in (5). 
This allows to express the branch-related variables in (24) via chord-related ones and 

vice versa in (25). Moreover, for G  Equation (8) can be rewritten in an equivalent form 
(24): 𝐘 + 𝐏𝐘 + 𝐄𝐘 ′ + 𝐏∗𝐘 ” = 𝟎 (24)
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Thus, branch-related variables are expressed separately in terms of chord-related 
variables as shown in (26) and vice versa in (27): 𝐘 = −𝐏𝐘 − 𝐄𝐘 ′ − 𝐏∗𝐘 ” (26)𝐘 = −𝐏 𝟏𝐘 − 𝐏 𝟏𝐄𝐘 ′ − 𝐏 𝟏𝐏∗𝐘 ” (27)

where 𝐘 ′ are through chord-related variables, denoting the derivatives of the external 
moments and 𝐘 ” are through chord-related variables, denoting derivatives of the mo-
ments generated by the gravitational force. Without loss of generality, we assume that the 
moments of the external forces are zero in this study. 

By now we have shown that the through variables 𝐘  and 𝐘 , respectively, in G  
and G  can be expressed in terms of the branch or chord-related variables. It remains to 
do the same to the across variables 𝐗  and 𝐗  in G  and G . Note, that Equation (9) for G  can be rewritten in the following equivalent form: 𝛿𝐗 = 𝐏 𝛿𝐗  𝐗 = 𝐏 𝐗  

or with respect to chord-related variables (28): 𝛿𝐗 = ( 𝐏 𝟏) 𝛿𝐗  𝐗 = (𝐏 𝟏) 𝐗  
(28)

Accordingly, equation (9) for G  may be expressed in the form (29) or (30): 𝐗 = 𝐏 𝐗  (29)𝐗 = (𝐏 ) 𝐗  (30)
The above-obtained expressions allow summarizing the following steps in a proce-

dure for transformation of Equation (23) into an expression depending only on the reac-
tions as follows (Figure 4). 

1. Substitute the derivatives of through chord-related variables 𝐘 𝒄𝒑 and 𝐘 𝒄𝒓 in (23) 
with their expressions in (25) and (27) correspondingly. 

2. Substitute the derivatives of through branch-related variables 𝐘 =[𝐘 , 𝐘 ]  in (23) using the terminal Equations (17) and (18). Note, that this replacement 
introduces terms with 𝐗 = [𝐗 , 𝐗 ]  in (23). 

3. Substitute all the across branch-related variables 𝛿𝐗𝒃 = [𝛿𝑿 , 𝛿𝑿 ]  and 𝑿 =[𝐗 , 𝐗 ]  in (23) using circuit Equations (28) and (30). Thus, only variables related to 
chords remain in (23). 

4. Substitute the variations of across chord-related variables 𝛿𝐗  in (23) with deriv-
atives of across branch-related variables using Equation (20). 

5. Substitute the derivatives of across branch-related variables 𝐗  with the deriva-
tives of the relative velocities 𝐗  between the adjacent bodies using equation (30). 

6. Replace the derivatives of the relative velocities between the adjacent bodies 𝐗  
by the derivatives of the generalized coordinates by means of the following exptression: 𝐗 = 𝐒𝐐 
where the notations 𝐐 and 𝐒 are introduced for convenience in (31) and (32): 𝐐 = 𝑑𝑖𝑎𝑔(𝑞 , 0, 𝑞 , … ,0, 𝑞 )   (31)𝐒 = 𝑑𝑖𝑎𝑔(𝐞( ), 0, 𝐞( ), … ,0, 𝐞( )) (32)

7. Cancel out the terms with reaction forces in matrix Equation (23) by multiplying it 
to the left by the matrix 𝐒. 

8. Group common terms in Equation (23) by the variations of the generalized coordi-
nates and, taking into account the arbitrariness of these variations, obtain the equations of 
motion of the system in the form 



Robotics 2021, 10, 128 12 of 21 
 

 

𝐀𝐪 = 𝐁 (33)
where the terms containing the second derivatives of the generalized coordinates are 
grouped on the left side of the equation and all the others on the right. 

 
Figure 4. Sequence of steps for deriving the differential equations of motion. 

Then, matrix 𝐀 on the left side of (33) takes the form: 𝐀 = (𝐒𝐏 )𝐈(𝐒𝐏 )𝐓 + 𝐒𝐏 𝐏∗  × 𝑑𝑖𝑎𝑔 𝐗  𝐏 𝒎(𝐏 )𝐓 𝐒𝐏 𝐏∗  ×  𝑑𝑖𝑎𝑔 𝐗   
where the following notations are introduced for the matrices containing the masses of 
the bodies and their central inertia tensors (34): 𝒎 = 𝑑𝑖𝑎𝑔(𝑚 , 0, 𝑚 , … ,0, 𝑚 ) ,  𝐈 = 𝑑𝑖𝑎𝑔(𝐈 , 0, 𝐈 , … ,0, 𝐈 )  (34)

Obviously, 𝐀 is a symmetric matrix. It is built of the masses of the bodies and their 
central inertia tensors, the unit vectors along the axes of the joints and the scalar matrices 𝐏  and 𝐏∗ whose elements are 0, −1, +1. 

The matrix 𝐁 is obtained in the form (35): 𝐁 = 𝐒 𝐁 + 𝐙 + 𝐏 𝐏∗ × 𝑑𝑖𝑎𝑔𝐗 𝐙 + 𝐒𝐘  (35)

where the terms of (35) are given in (36–41) 𝑩 = 𝐏 𝐏∗ × 𝑑𝑖𝑎𝑔𝐗 𝐁 + 𝐏 𝐄𝐘 + 𝐁  (36)𝐁 = 𝐏 𝐄𝐘 − 𝐏 𝑑𝑖𝑎𝑔 (𝐏 ) 𝐗 × 𝑑𝑖𝑎𝑔 𝐈(𝐏 ) 𝐗 (𝐏 ) × 𝐗  (37)𝑩 = 𝐏 𝒎𝐏 𝑑𝑖𝑎𝑔 𝑑𝑖𝑎𝑔𝐗 × (𝐏 𝐏∗) 𝐗 × (−𝐏 𝐏∗) 𝐗  (38)𝐙 = − 𝐏 𝐏∗ × 𝑑𝑖𝑎𝑔𝐗 𝐏 𝐦(𝐏 ) 𝐏 𝐏∗ × 𝑑𝑖𝑎𝑔𝐗 𝐕 (39)𝐙 = −𝐏 𝐈(𝐏 ) (𝐏 𝐏∗ × 𝐗 )𝐕 (40)𝐕 = 𝑑𝑖𝑎𝑔 (𝐏 𝐏∗) 𝐗 × 𝐗  (41)
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3. Results 
The applicability of the uniform approach described in the previous section is vali-

dated by executing computer experiments with the robot arm shown in Figure 5. The ro-
bot arm has been designed, constructed on a 3D printer and assembled by the authors of 
this paper. This section presents the kinematics and dynamics characteristics required to 
compute the torques in the actuators of the robot arm in order to execute a prescribed 
motion. A case study of a planar motion in the workspace is considered, where the gripper 
moves an object between two points in the workspace. 

3.1. Kinematics and Dynamics Characteristics of the Robot Arm 
The robot arm has an open kinematic chain with 5 DoF. It is assembled from five 

joints with parallel axes of type R∥R∥R∥R∥T allowing to execute planar motion as shown 
in Figure 5. 

 
Figure 5. Principal scheme of the robot arm. 

The geometric parameters of the kinematic scheme are provided in Table 1 in terms 
of Denavit–Hartenberg notations. 

Table 1. Robot configurations. 

i 𝜶𝒊 𝟏 [rad] 𝒂𝒊 𝟏 [m] 𝒅𝒊 [m] 𝒒𝒊 [rad] 
1 0 0 0.15 −𝜋/2 ≤ 𝑞 ≤ 𝜋/2 
2 0 0.15 0 −𝜋/2 ≤ 𝑞 ≤ 𝜋/2 
3 0 0.1 0 −𝜋/2 ≤ 𝑞 ≤ 𝜋/2 
4 0 0.1 0 −𝜋/2 ≤ 𝑞 ≤ 𝜋/2 
5 0 0 −0.05 ≤ 𝑑 ≤ −0.11 0 

The rotational joints of the robot are controlled by Smart Servo Motors HerkuleX 
DRS-0101. These actuators have the ability to return asynchronously information about 
their current position and velocity. This allows to execute smoothly and precisely the grip-
per movement. The hard constraints of movement in the joints are provided in Table 1. 

The robot dynamics characteristics are the following: m = 0.18 [kg]; m =0.13 [kg]; m = 0.17 [kg] ; I ,( , ) = 0.0481 [kg. m ], I ,( , ) = 0.0139 [kg. m ];  I ,( , )  =0.0229 [kg. m ], where the measurements for the masses are obtained from the 3D CAD 
model of the robot arm. Here m  and I( ) include the mass and inertial characteristics of 
links 4 and 5 (including the gripper) (Figure 6). The mass centers 𝐶 , 𝑖 = 1, 2, 3 are in the 
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middle of the robot arm links. This data is enough to build the model of dynamics of this 
robot arm in the following section using the proposed mathematical model and demon-
strate the application of the derived equations of motion in the execution of a typical work 
task. 

3.2. Case Study 
The mathematical model presented in Section 2.2 allows deriving the equations of 

motion in the general case of a robot arm with 𝑛 DoF. In this section, we demonstrate the 
application of the above-proposed procedure to obtain these equations in the case here 
considered robot arm. For simplicity in the presentation of the dynamic system model, in 
the following, we assume that joints 4 and 5 are fixed. This turns the robot arm into a 3 
DoF redundant robot arm in executing tasks in the 2D plane described in terms of the 
position of the gripper with respect to 𝑂 𝒙 𝒚 𝒛  (Figure 6). 

 
Figure 6. Simplified kinematic scheme of the robot arm. 

Further on, we derive and employ the equations of motion in computer experiments 
to execute a work task requiring moving the gripper between two points in the plane. 

3.2.1. Dynamical Equations 
The application of the here proposed model for building the dynamic model of a 

robot arm has been discussed in a related research paper [16], where a hand-held robot 
with 2 DoF in orthopedic surgery is considered. In this paper, we demonstrate the ap-
plicability of the procedure given in Section 2.2.4 for deriving the dynamics equations in 
closed form for the 3 DoF robot arm shown in Figure 6. The main advantage of this pro-
cedure is the introduction of a graph to describe the complexity of relations in the topo-
logical structure of the robot arm. Unlike other approaches for approximate representa-
tion of the dynamic model, this procedure aims to obtain explicitly the equations of mo-
tion. The association of pairs of through and across variables to the edges of the reference 
graphs allows using matrix computations to obtain the dynamic system model in closed 
form. 

The first step in applying the here proposed model is to create the topological struc-
ture of the robot arm. The kinematic scheme in Figure 6 provides all the data needed to 
build the topological structure of the robot arm as well as the graphs G  and G  associ-
ated with this structure. The reference graph shown in Figure 7 displays the mass centers 𝐶  and the contact points 𝐶 , , 𝑖 = 1, 2, ,3, where each one of them is connected with 
branches 𝑖 = 1, 2, … , 6 to the origin of the base coordinate system 𝑂 𝒙 𝒚 𝒛 . Next, the 
chords (denoted in red), representing the reaction forces applied to the contact points in 
the joints, are introduced. Finally, the resultant of the external forces (denoted in green), 
applied in the mass centers, are added to the reference graph. Further on, graphs G  and G  are obtained from this reference graph by associating the corresponding through and 
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across variables with its edges. For example, the pair of through and across variables at-
tached to chord 7 is obtained as follows. The reaction force between the first link and the 
base is the through variable, while the across variable of this pair is the local radius vector 𝝆  of 𝐶 ,  with respect to 𝐶  (Figure 1). Accordingly, the pair of through and across vari-
ables attached to chord 2, marked in green and used to denote the resultant force applied 
to the mass center 𝐶 , has the following interpretation. The through variable is the result-
ant of the external forces applied to 𝐶 , where, for simplicity, it is rendered only to the 
gravity force in this case study. The radius vector 𝑹  of 𝐶  with respect to the origin 𝑂  
(Figure 1) represents the across variable of this pair of variables. 

 
Figure 7. Topological structure of the 3 DoF robot arm. 

The next step in the modeling process is to represent the graph in Figure 7 in terms 
of a table expressing the relationships between vertexes and edges. These relationships 
between the vertexes and the edges of the reference graph and, respectively, of graphs G  
and G  are described in Table 2 as follows. The number of rows is equal to the number of 
vertices and the number of columns is equal to the number of edges, where the edge num-
ber is displayed with the respective color shown in Figure 7. The elements of this table 
indicate whether an edge enters a vertex, leaves a vertex or the edge is not connected to a 
vertex using values −1, 1 and 0, correspondingly. For instance, the edge with number 2 in 
Figure 7 is directed from 𝑂  to 𝐶 . Hence, the first element in row 1 and column 2 of Table 
2 is 1 (because edge 2 leaves from 𝑂 ) and the element in row 3 and column 2 is −1 (be-
cause edge 2 enters 𝐶 ). Thus, Table 2 allows restoring the reference graph as well as 
graphs 𝐺  and 𝐺 . 

Next, the thus constructed Table 2 is used to obtain directly sub-matrices −𝐔𝒃, 𝐏, 𝐄 and 𝐔𝒄 employed in the cut-set equations (24) in terms of edges and vertexes. 
These matrices are derived from Table 2 by ignoring the elements in its first row. The 
elements of matrix −𝐔𝒃 are the elements (shown in blue) in columns with numbers in 
the interval [1,6] below the first row in Table 2. Correspondingly, the elements of matrices 𝐏 and 𝐄 are the elements in columns with numbers in the interval [7,11] (shown in red) 
and the elements in the last three columns (shown in green), where all these elements are 
below the first row in Table 2. Finally, the dimension of the unit matrix  𝐔𝒄 is equal to the 
total number of columns after column 7 (inclusive) in Table 2. Here we note once again 
that 𝐏 is invertible. It allows applying the above described procedure and obtaining the 
equations of motion (33). 

It is noteworthy, that sub-matrices −𝐔𝒃, 𝐏, 𝐄 and 𝐔𝒄  can be determined the same 
way from Table 2 no matter the complexity of the topological structure of the robot arm. 
Besides, these matrices have a significant role in expressing the branch variables in terms 
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of chords (7) and applying the whole procedure for deriving the equations of motion in 
Section 2.2.4 (Figure 4). This illustrates another major advantage in using the graph-ori-
ented representation of the topological structure of the robot arm that may be rather com-
plicated in the general case. 

Table 2. Table showing incidence of edges and vertexes in graphs 𝐺  and 𝐺 . 

 Edges  

1 2 3 4 5 6 7 8 9 10 11 𝟐  𝟒  𝟔  

V
er

te
xe

s 

𝑂  1 1 1 1 1 1 0 0 0 0 0 1 1 1 𝐶 ,  −1 0 0 0 0 0 −1 0 0 0 0 0 0 0 𝐶 1 0 −1 0 0 0 0 1 1 0 0 0 −1 0 0 𝐶 ,  0 0 −1 0 0 0 0 −1 −1 0 0 0 0 0 𝐶  0 0 0 −1 0 0 0 0 1 1 0 0 −1 0 𝐶 ,  0 0 0 0 −1 0 0 0 −1 −1 0 0 0 0 𝐶  0 0 0 0 0 −1 0 0 0 0 1 0 0 −1 

The thus obtained matrices −𝐔𝒃, 𝐏, 𝐄 and 𝐔𝒄 can be used directly to execute the se-
quence of steps of the procedure described in Section 2.2.4 as a final step in deriving the 
equations of motion. More specifically, knowing matrices −𝐔𝒃, 𝐏, 𝐄 and 𝐔𝒄 allows com-
puting all the matrix calculations in steps 1- 8 of this procedure. As a result of the compu-
tations, the elements of matrices A and B in (33) are obtained and shown below. In apply-
ing the proposed procedure, we take into consideration that matrix A is symmetric and 
has the following elements: a = d (M + 3M ) + 2d d (2M + M )cq + 4d d M c(q + q ) + 4d d M cq              +d d M + 4d d M cq + d d M d (M + M ) + 3d M + 4d d M cq              +I ,( , ) + I ,( , ) + I ,( , )  a = d (M + 2M ) + 2d d (M + M )cq + 2d d M c(q + q ) + 4d d M cq + d M              +I ,( , ) + I ,( , ) a = 2d d M c(q + q ) + 2d d M cq + d M + I ,( , ) a = d (M + M ) + 4d d M cq + 3d M + I ,( , ) + I ,( , )   a = 2d d M cq + d M +I𝟐,(𝟑,𝟑) a = d M + I ,( , ) 

Here, M = ∑ m , for example M = ∑ m = m + m + m  or M = ∑ m =m  and I𝒊,(𝒋,𝒌) are the elements 𝑗, 𝑘 = 1, 2, 3 of the inertia tensor matrix 𝐈  for body num-
ber 𝑖. For simplicity, we assume the link mass centers are in the middle of the link length, 
so that d  is the length of vectors 𝐫  and 𝐫 , d  stands for 𝐫  and 𝐫 , d  stands for 𝐫 . 

For the matrix 𝐁 in the right side of equation (33) we obtain the following expres-
sion: 𝐁 = 𝐒𝐏 𝟏𝐏∗  × 𝑑𝑖𝑎𝑔 𝐗 𝐁𝟏   + 𝐒𝐘  

where 𝐁𝟏 =  𝐏 𝟏𝒎(𝐏 𝟏) 𝑑𝑖𝑎𝑔 𝑑𝑖𝑎𝑔𝐗 × (−𝐏 𝟏𝐏∗) 𝐗 × (𝐏 𝟏𝐏∗) 𝐗  
Thus, matrix 𝐁 has the elements: b = T + d d q sq (2m + 4m ) − d d (q + q ) sq (2m + 4m )       −d d (q + q + q ) s(q + q )2m − d d (q + q + q ) sq 2m        +d d (q + q ) sq 2m + d d q s(q + q )2m   b = T +  d d q sq (2m + 4m ) − d d (q + q + q ) sq 2m + 
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           d d (q + q ) sq 2m +  d d q s(q + q )2m   b = T + d d (q + q ) sq 2m + d d q s(q + q )2m  
Here T ,  T  and T  are the drive torques and sq , 𝑖 = 1,2,3 denotes sin q , 

while cq , 𝑖 = 1,2,3 denotes cos q . 

3.2.2. Computer Experiments 
The computer experiments are conducted with MATLAB [30] and consider a sce-

nario, where the gripper moves from point A (233, −172, 0) to point B (269, 155, 0) in the 
workspace. The equations of motion are used to compute the torques necessary to apply 
in the actuators in order to execute the work task. The desired movement from point A to 
point B is performed for 2 s by executing commands for applying the computed torques 
to the actuators in the joints. A trapezoidal motion profile for the variation of the velocities 
is employed to achieve smooth movement in the joints must smoothly increase. The de-
sired maximal velocities and accelerations for the generalized coordinates 𝑞 , 𝑞  and 𝑞  
are computed with respect to their physical hard constraints as follows:1.4137 [rad/s], −0.0698 [rad/s],1.8850 [rad/s]  and 4.1888 [rad/s  ] , 5.5851 [rad/s  ] and 5.5851 [rad/s  ]. The displacement in the generalized coordinates, their velocities, accel-
erations and the torques required to perform the movement are visualized in Figures 8 
and 9. The torques T , T  and T  reach their maximum values at time 𝑡 = 0.4 [s]. They 
are 0.4367 [Nm], 0.0490 [Nm] and 0.0846 [Nm], respectively. When the torques are at 
the maximum, the accelerations in the first and the third joint also reach their maximum 
values. 

 
(a) 
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(b) 

Figure 8. The calculated displacement(a) and the velocities of the generalized coordinates(b). 

 
(a) 
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(b) 

Figure 9. The accelerations of the generalized coordinates(a) and the driving torques (b). 

4. Discussion 
This paper presents a model of the dynamics of a robot arm with an open kinematic 

chain. The model makes use of the law of conservation of energy and the orthogonality 
principle to relate energy potential and energy flow characteristics attached to the edges 
of two non-intersecting graphs. These graphs have identical topological structures and 
serve to separate the representation of energy flow characteristics of displacement and 
rotation correspondingly. This approach allows to include in consideration all the external 
forces, torques and reactions applied to the links of a robot arm with arbitrary degrees of 
freedom. The graph notation employed to deal separately with displacement and rotation 
variables provides a uniform and intuitive approach to building the inherently complex 
model of dynamics. This paper proposes a procedure about how to apply this approach 
in the general case. Moreover, the implementation of the proposed procedure is demon-
strated with a realistic case study. The case study considers a physical model of a robot 
arm constructed with a 3D printer in our laboratory. The objective of the case study has 
been to compute the drive torques for the execution of a required motion of the gripper 
given details of the geometrical and inertial characteristics of the robot arm. These equa-
tions of motion are obtained in closed form following the here proposed procedure. The 
results from computer experiments are provided and demonstrate that the robot arm grip-
per executes smoothly the required motion. Finally, it is worth mentioning that, unlike 
models of dynamics founded on the Lagrangian formulation, the proposed procedure al-
lows to compute the reactions in the joints as well. Without loss of generality, in this case 
study, only rotational joints are taken into consideration. Dynamics in the case of the pres-
ence of translational joints can be modeled in a similar way. Finally, the scope of applica-
tion of the here presented model can be further extended. It can be applied for the descrip-
tion of dynamics in other specific areas where the energy interaction occurs. For example, 
the elastic characteristics of the robot arm can be included in this model as well. 
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