
robotics

Article

Robot Anticipation Learning System for Ball Catching †

Diogo Carneiro, Filipe Silva and Petia Georgieva *

����������
�������

Citation: Carneiro, D.; Silva, F.;

Georgieva, P. Robot Anticipation

Learning System for Ball Catching.

Robotics 2021, 10, 113. https://

doi.org/10.3390/robotics10040113

Academic Editors: Ciro Natale and

Marco Costanzo

Received: 31 July 2021

Accepted: 6 October 2021

Published: 15 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Electronics, Telecommunications and Informatics, Institute of Electronics and Informatics
Engineering of Aveiro (IEETA), University of Aveiro, 3810-193 Aveiro, Portugal; diogo.carneiro@ua.pt (D.C.);
fmsilva@ua.pt (F.S.)
* Correspondence: petia@ua.pt
† This paper is an extended version of our paper published in Carneiro, D.; Silva, F.; Georgieva, P. The role of

early anticipations for human-robot ball catching. In Proceedings of the 2018 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC), Torres Vedras, Portugal, 25–27 April 2018.

Abstract: Catching flying objects is a challenging task in human–robot interaction. Traditional
techniques predict the intersection position and time using the information obtained during the
free-flying ball motion. A common pain point in these systems is the short ball flight time and
uncertainties in the ball’s trajectory estimation. In this paper, we present the Robot Anticipation
Learning System (RALS) that accounts for the information obtained from observation of the thrower’s
hand motion before the ball is released. RALS takes extra time for the robot to start moving in the
direction of the target before the opponent finishes throwing. To the best of our knowledge, this is
the first robot control system for ball-catching with anticipation skills. Our results show that the
information fused from both throwing and flying motions improves the ball-catching rate by up
to 20% compared to the baseline approach, with the predictions relying only on the information
acquired during the flight phase.

Keywords: human–robot interaction; ball catching; trajectory prediction; anticipation learning;
neural network

1. Introduction

The interception of moving objects is central to several benchmark robotic tasks such
as ball-in-the-cup [1–3], batting [4–6], ball-catching [7–11], juggling [12–14] and playing
table tennis [15–18]. This research focuses on demonstrating the combined performance of
visual tracking systems and motion control algorithms in highly dynamic environments. In
particular, catching a flying ball is a challenging task due to the demanding spatial–temporal
constraints, which require coordination between visual, planning and control systems to get
the hand to the right place at the right time [19]. While humans learn to accomplish this task
with relative ease, this is still not the case for robotic systems, particularly in short-distance
scenarios. The robot’s actions to catch a flying ball are hampered by delays and noise
in both sensors and actuators [20]. The sensory noise contributes to uncertainties in the
ball’s trajectory prediction and creates difficulties in the control of the robot’s endpoint.
Furthermore, frequent re-prediction of the target-catching location is required, as new
observations become available. From the perspective of control, this progressive refinement
of the desired catching point requires the online re-planning of robot motion, with object
flight times that may last for around one second.

Traditional robot control systems for catching objects are built on visual information
for the object in flight. Given the short flight time, only robot systems equipped with
fast visual detection and tracking, sophisticated control architectures and computational
power can perform the task successfully. To address this issue, this paper presents the
Robot Anticipation Learning System (RALS) to predict feasible catching points in advance,
using observations of the thrower’s motion before the ball is released. These anticipation

Robotics 2021, 10, 113. https://doi.org/10.3390/robotics10040113 https://www.mdpi.com/journal/robotics

https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://orcid.org/0000-0001-6191-0727
https://orcid.org/0000-0002-6424-6590
https://doi.org/10.3390/robotics10040113
https://doi.org/10.3390/robotics10040113
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/robotics10040113
https://www.mdpi.com/journal/robotics
https://www.mdpi.com/article/10.3390/robotics10040113?type=check_update&version=1

Robotics 2021, 10, 113 2 of 20

skills gain extra time for the robot hand to start moving in the targeted direction before the
opponent finishes throwing.

This paper is an extension of the work that was originally presented in [21], where
the role of early anticipation in human–robot ball catching was introduced. Here, we
explain the RALS methodological framework in detail and we provide more comprehensive
tests. Several computer simulations are conducted to demonstrate the effectiveness of the
proposed solution in a scenario where the human subject throws a ball and the robot catches
it. The experiments demonstrated that the proposed anticipation mechanism significantly
improved the ball-catching rate compared to the baseline approach, where the predictions
rely only on information acquired during the ball’s flight phase.

In summary, the contributions of this paper are three-fold:

• RALS is developed, the first robot control system for catching flying objects with
anticipation skills, using visual information from the thrower’s hand motion.

• A learning mechanism is implemented to map the noisy vision information into a
prediction of the ball’s position and velocity at the moment of release.

• RALS was implemented and successfully evaluated for different levels of sensor noise
and limits of the robot joint velocities.

The rest of the paper is organized as follows. Section 2 reviews related works and
main concepts. The experimental setup is presented in Section 3. Section 4 presents the
design of the RALS system. The ball-catching results with and without the anticipation
mechanism are discussed in Section 5. Finally, conclusions are drawn in Section 6.

2. Related Work

The numerous approaches to solve the ball-catching problem differ in the complexity
of the robot model, the way they predict the object’s trajectory, and the adopted online tra-
jectory generation method. Earlier works often show robots with few degrees-of-freedom
(DOF) and simple motion generation algorithms. In the pioneering works of Slotine [22,23],
a 4-DOF WAM arm (Barret Technology) and an active vision system with output informa-
tion at 60 Hz were used. In these works, the catching point corresponds to the closest point
of the ball’s trajectory to the base of the robot, while the end-effector assumes a perpendic-
ular orientation with respect to the ball’s trajectory. The trajectory used to catch the ball
is planned in Cartesian-space, using a 3rd-order polynomial function, which requires an
inverse kinematics algorithm running in the control loop. The best performance results
had a 70–80% success rate for similar launches.

Nishiwaki et al. [24] addressed both the falling-ball task and the ball-catching task
using a humanoid robot, Saika, using an active vision system consisting of two-CCD
cameras. In this work, the end-effector reached the catching point through an inverse
kinematics model using a three-layered neural network model. The vertical trajectory
of the ball was approximated by a quadratic function through a weighted least squares
method, giving more importance to the most recent observations. Frese et al. [25] used a
7-DOF DLR-LWR-II arm equipped with a basket and an off-the-shelf stereo vision system
that acquires and processes images at 50 Hz (a combination of two cameras). The catching
point selection considered two criteria. First, a choice of location that is near to the robot’s
end-effector. Second, a catching point that is far away from the robot, to avoid physical
constraints such as joint limits. The catching configuration was calculated to ensure
a perpendicular orientation of the basket with respect to the ball’s trajectory. In their
experiments, the robot succeeded in 2/3 of its attempts to catch the ball. Most of the
failures occurred due to the system’s (camera and lens) limited horizontal field of view,
resulting in delays in the visual system.

Studies in the following years frequently used more complex robots and advanced
techniques for motion planning; human imitation has attracted significant interest. Riley
and Atkeson [26] explored this idea to create human-like behaviours, encoded by move-
ment primitives based on nonlinear dynamics. These Programmable Pattern Generators
were adapted to catching a ball with a 30-DOF humanoid robot equipped with a baseball

Robotics 2021, 10, 113 3 of 20

glove, although the end-effector’s orientation was not considered. The trajectory estimation
of the flying ball used a stereo vision system at 60Hz. The catching point was derived from
the intersection of the estimated trajectory with a horizontal plane placed at a given height.
Park et al. [27] proposed an evolutionary algorithm for the ball-catching task based on a
motion database, created off-line through imitation learning. The database was initially
filled with kinematic data extracted from human motions. Then, a data-driven evolution-
ary optimization was employed to provide human-like reaching with minimal torques
in real-time. The proposed framework was validated in a humanoid robot with a 6-DOF
arm, equipped with a vision system installed on the head. Kim et al. [28] conducted their
ball-catching experiments in the iCub humanoid robot by learning from human demon-
strations acquired using a glove and the X-Sens motion capture suit. The work’s focus is
on the synchronization of the robot’s movements with that of a flying ball. The proposed
approach controls the timing of robot motions encoded with both Gaussian Mixture Models
(GMMs) and Dynamic Movement Primitives (DMPs).

Additional challenges have been addressed in more recent works, such as the inclusion
of more complex robots. For example, most of the works discussed above give little
importance to the hand control and the grasping strategy. In [29], Bauml et al. addressed
the joint control of a DLR-LWR-III arm with 7-DOFs and a 12-DOF DLR-Hand-II hand.
The motion control is formulated as a nonlinear optimization problem subject to constraints
in terms of workspace, maximum joint velocities, and limits on joint angles. Later, the same
authors extended their research to allow for up to two balls to be caught simultaneously
using the mobile humanoid robot Rollin Justin [7]. In addition to the degrees-of-freedom
of the arms, torso and the mobile platform itself, a 2-DOF pan-tilt unit ensured the ball was
in the field of view of the stereo vision system.

Mobile manipulator systems are of interest due to their extended workspace and
dexterity in a scenario where accurate high-speed motions are required. Dong et al. [30]
proposed a framework based on a hierarchical optimization scheme for real-time trajectory
generation. The higher-level kinematic planner is formulated as a nonlinear optimization
problem, solved through sequential quadratic programming, while the low-level kinematic
planner is solved by quadratic programming. The joint control is driven by an inverse
dynamics learning method, which accounts for a state-of-the-art success rate of 85.3%.
The balls are thrown by a human subject at around 4 m, resulting in a flight time of about
1 s. The experimental setup includes a 6-DOF manipulator (a UR10 arm from Universal
Robotics) rigidly mounted on a 3-DOF omnidirectional mobile platform and the gold
standard VICON system for ball estimation and trajectory prediction at 100 Hz.

Another recent topic of research is the possibility of catching arbitrary objects with
uneven shapes. In most studies, the object in flight is a ball and the flight trajectory is
approximated by a parabola, while the effect of air drag and other forces are ignored.
However, uneven flying objects require their dynamical modelling to obtain robust pre-
dictions about translational and rotational behaviour. The catching of arbitrary objects
with a complex flying behaviour was addressed by Kim et al. [8]. A learning framework is
proposed to teach a robot to catch flying objects through an observation of demonstrations
encoded by dynamical systems. In this way, the robotic system learns a model of the
arm’s movements, as well as the dynamics of the flying object, while offline, based on
prior information such as mass, shape, or inertia. The prediction system is combined
with a probabilistic model to obtain the distribution of optimal catching configurations.
The advanced system can coordinate the motion of the arm, hand and fingers to catch a
hammer, a tennis racket, a bottle or a cardboard box. Simulations were provided with the
iCub humanoid robot, and experiments with the 7-DOF Kuka LWR 4+ arm. Following the
same framework, Salehian et al. [9] proposed a strategy in which the robot’s hand follows
the object’s trajectory for a short period of time, to allow for more time to close the fingers.
The control law is expressed as a linear system, whose parameters are approximated by
Gaussian mixture models (GMMs). In contrast, Yu et al. [31] proposed a neural accelera-
tion estimator to tackle the task of motion prediction for in-flight uneven objects without

Robotics 2021, 10, 113 4 of 20

any prior information. The experimental results show that htis was effective in terms of
prediction accuracy and generalization performance for uneven objects in public datasets
and real-world experiments with a UR5 robot.

The majority of the previous works concentrate on the classical problem of visual
estimation of the ball’s trajectory (model-based approach) to anticipate the catching point.
However, some others [32–35] continuously used visual information in the feedback control
loop (visual serving approaches). This focuses on the relationship between the pose of the
object in-flight, the robot’s pose and the projection of visual features in the image plane.
Sato et al. [35] proposed an eye-in-hand configuration for visual servoing control of high-
speed ball catching using a robot arm with 7-DOFs. The system comprises a multi-fingered
hand in which 8 small cameras are attached and two external fixed high-speed cameras
(500 frames per second). On the one hand, the external cameras deal with predicting
the 3D trajectory of the flying ball and the desired catching point. On the other hand,
the multi-vision hand provides the visual information needed to correct the hand’s position
and orientation using a visual serving control.

Among the most recent works are the contributions by Schill and Buss [10] and Ar-
dakani et al. [36]. The former addresses the existing challenge of the reliable task execution
of robots catching objects in-flight, such that experimental success in ballistic catching be-
comes predictable and robust. The authors adapted a hybrid systems framework approach,
focusing on the Zeno behaviour of bouncing balls to enable the robotic catching of spherical
objects. A dynamical system parametrization enables dynamically feasible offline motions
using hybrid bouncing ball formalisms. The success prediction and dynamic feasibility
are solved through optimization-based motion planning. The authors provide solutions
to the different phases of joint robot–robot throwing and catching. The experimental
setup consists of two 2-DOF robots, symmetrically mounted on a vertical plane. They
consider a joint robot–robot scenario, which does not require visual feedback, in which
each robot can perform the throwing and the catching task. The robustness, with respect
to uncertainties in the impact model and object’s state accuracy, is quantified. The latter
proposes the use of model predictive control (MPC) to solve the problem of point-to-point
trajectory generation in a ball-catching scenario, while respecting physical limitations and
real-time requirements.

The most evident finding in the literature of robot ball-catching is the lack of works
emphasizing the advantages of earlier anticipations based on observations of the thrower’s
movement. The existence of great flexibility in the use of visual information by humans was
reported in [37]. For this purpose, the participant’s access to earlier information regarding
both the thrower’s action and the ball’s trajectory was manipulated. By recording the whole-
body postural control, the performance of each participant was evaluated, considering
three conditions: only the thrower’s action is available, only the information about the
flying ball is available, and all visual information is available. Their study revealed that
movements were initiated earlier when visual information was available, prior to ball
flight, resulting in improved performance. Along the same line, the recognition of human
actions and intentions is recognised as essential for human–robot interaction [38]. This
concept of earlier anticipation was explored in the context of human–robot table tennis [18].
In the context of human–robot ball-catching, this idea was first addressed by the authors
in [21] and will be revisited in this article, which provides an extended analysis of the novel
approach in the form of a simulation-based testbed.

3. Experimental Setup
3.1. Simulation Scenario

This section describes the main blocks involved in the simulation of the human–robot
ball-catching task, as well as the various assumptions imposed in this study (see Figure 1).
First, a scenario is assumed in which a human performs underarm ball throwing, and the
robot (at about 4 m) tries to catch the balls entering its reachable space. Second, the projectile
motion is approximated by a curved parabolic path, assuming that the only force acting on

Robotics 2021, 10, 113 5 of 20

the flying object is gravity (i.e., air resistance is neglected). Regarding, the robot catcher,
this study considers a 3-DOF articulated manipulator (RRR), mounted upside down so
that, in the home position, it is fully extended down. The world coordinate frame is fixed
to the ground, with the x-axis oriented towards the human thrower, while the z-axis of
both coordinate frames, Sw and S0, are vertically aligned with each other. The robot’s base,
as well as the origin of the base frame S0, are located at a height of 1.70 m above the ground.

The robot’s link lengths, from the base to the end-effector, are the following: l1 = 0.1 m
(base-shoulder), l2 = 0.3 m (shoulder-elbow) and l3 = 0.3 m (elbow-wrist). The robot’s
reachable workspace is further reduced due to the physical limits imposed on the joints
according to the following inequalities: |q1| < 150◦ (vertical joint), |q2| < 105◦ (shoulder
joint) and 0 < q3 < 135◦ (elbow joint). The flying ball and the robot’s end-effector are
modelled as point source objects, while the problems of hand orientation and grasping
are not addressed. In this work, the desired catching point is determined from all valid
solutions inside the reachable workspace, as the trajectory point of the flying ball that is
closest to the end-effector. This target point is constantly updated as new observations
become available. At the beginning of each trial, the arm adopts an initial configuration
where the elbow angle is at a right angle, aligned with the x-direction.

Focusing on control, the progressive refinement of the desired catching point requires
the online re-planning of the robot’s kinematic chain so that the end-effector reaches the
right place in time. This work adopts the so-called kinematics control in the motion control
problem. This is based on an online inverse kinematic transformation that computes the ref-
erence joint velocities corresponding to an assigned end-effector velocity direction, derived
as the difference between the catching point and the end-effector’s position. The solution
to the inverse kinematics problem is based on the inversion of the manipulator’s analytical
Jacobian matrix and the use of feedback corrections as a result of re-estimating the ball’s
trajectory. The online closed-loop algorithm is implemented in discrete-time form, with a
time interval of 10 ms. The objective is to find, at instant tk, a joint velocity vector q̇k that
allows the end-effector to move as quickly as possible towards the desired catching point
under the velocity constraints on the actuators. For that purpose, a scaling factor is applied
to the joint velocity vector, such that the maximum possible values are always used, while
the end-effector remains in the desired direction.

Figure 1. Overview of the simulated human–robot ball catching task decomposed into three main
blocks, namely, human thrower, ballistic motion, and robot catcher. The main assumptions underlying
the study are also highlighted.

3.2. Human Demonstrations of Underarm Throwing

The generation of throwing trajectories was supported by an analysis of human
demonstrations acquired from two subjects playing catch at a distance of about 4 m

Robotics 2021, 10, 113 6 of 20

from each other. Motion capture was performed in a human motion analysis laboratory,
equipped with a VICON optoelectronic system with eight infrared cameras. A standard
upper-body marker set was attached to both subjects and two additional markers were
attached to the ball. The 3D coordinates of each marker were collected at 100 Hz and stored
for offline analyses with customized software written in Matlab (Mathworks, MA, USA).

Figure 2 illustrates the projection of the 3D thrower’s hand data in a 2D vertical
plane aligned with the projectile motion with the axes x horizontal and y vertically up.
The start marker (circles ‘o’) indicates the start of the retraction phase, in which the hand
is pushed back while the arm stretches. The release marker (asterisks ’?’) was obtained
by observing the distance between the coordinates of the ball and the hand. The analysis
indicates the existence of regularity in the shape of the generated trajectories, as well as
a small variability in the duration of the movement’s execution time. Therefore, a single
demonstration that ignores the retraction phase was extracted from the real data as the
basis of implementation of the throwing generator.

0 0.25 0.5

Horizontal displacement (m)

0.6

0.8

1

1.2

1.4

1.6

V
e

rt
ic

a
l
d

is
p

la
c
e

m
e

n
t

(m
)

start

release

Figure 2. Spatial coordinates of the thrower’s hand for multiple launches represented in the same
reference frame. The circles ’o’ are the start of the movement and the asterisks ’?’ are the moment at
which the ball is released.

3.3. Data Generation in Preparatory and Ballistic Phases

In this study, catching the ball involves observing the thrower’s action, as well as
observing the free motion as it approaches the robot. This subsection describes the data-
generation process required to both train the feedforward neural network (core of RALS)
and simulate the complete throwing–catching task. The simulation includes the ground
truth data of the ball’s behaviour and raw data representing the effects of noisy measure-
ments. The complete motion of the ball is divided into a preparatory phase, followed by
a ballistic phase. The preparatory phase lasts from the beginning of the throw until the
moment the ball is released. This is followed by the ballistic phase, in which the ball’s
motion is completely determined by the laws of physics, whatever the trajectory during
the initial phase. From the mechanical perspective, the path of the ball during flight takes
place in a vertical plane, parallel to the gravity vector. The generation of the ball trajectory
takes place over the entire simulation period, according to a given sequence.

The first step is to express the ballistic motion as a function of the following input
parameters: (i) the initial position vector of the ball Pi represented by the coordinates
(xi, yi, zi) in the world reference frame; (ii) the final position vector of the ball Pf when
it intercepts the ground plane is represented by the coordinates (x f , y f , z f) in the world

Robotics 2021, 10, 113 7 of 20

reference frame; (iii) the time t f elapsed from the initial position Pi until the ball reaches
the target final position Pf . These parameters assume random values with uniform dis-
tribution, within the following ranges: xi ∈ [3.5; 3.75], yi ∈ [−0.1; 0.1] and zi ∈ [0.8; 1.4];
x f ∈ [−3.0; 0.0], y f ∈ [−1.0; 1.0] and z f = 0; and t f ∈ [0.5; 1.5]. Restrictions on the highest
point of the object above the ground and on the possible range of the time-of-flight (i.e.,
from the launch to the catch) are also included. In this study, the maximum height is
limited to 3 m and the time-of-flight (ToF) ranges from 0.5 to 1.2 s. A common problem
in the above parametrization algorithm is that some of the generated trajectories may be
invalid. Therefore, feasibility verification is considered, such that any trajectory outside the
reachable workspace, or any trajectory that is unable to satisfy the imposed constraints,
is discarded. The second step requires a throwing trajectory that verifies the previously
established conditions in terms of the horizontal and vertical components of the ball’s
position and velocity at release. For that purpose, a polynomial interpolation was used
on the selected demonstration data. The algorithm provides trajectory smoothing along
with the necessary requirements. Gaussian noise is added to the generated trajectories to
represent the measurement noise that corrupts the observed samples.

3.4. Release Parameters versus Catching Point

The projectile motion is revisited by including specific aspects of a ball-catching task,
such as the robot’s reachable space and the target-catching point. More concretely, this sub-
section establishes analytical relationships between the physical parameters of the projectile
motion and the desired catching point, assuming negligible air resistance. For reasons of
simplicity, the analysis is performed by assuming a two-dimensional projectile motion
modelled by parabolic equations. In this context, the independent horizontal and vertical
displacements, as function of time t, can be written as:

x = x0 + v0xt

y = y0 + vy0t− 1
2

gt2
(1)

where (x0, y0) and (v0x, v0y) are, respectively, the initial position and initial velocity of the
object, and g is the gravitational constant (g = 9.81 m/s2). The maximum height that the
projectile reaches above the ground is obtained from the velocity equation in the vertical
direction for vy = 0, that is:

0 = |~v0|sinθ − gth = v0y − gth (2)

where ~v0 is the initial velocity vector and th is the time taken to reach the maximum height,
given by th =

v0y
g . From the vertical displacement in (1), we obtain,

hmax = y0 +
v2

0y

g
− 1

2
g

v2
0y

g2 = y0 +
v2

0y

2g
(3)

Assuming a restriction on the highest point of the projectile hmax, Equation (3) provides
a superior limit to the initial velocity in the y-direction, as follows:

vmax
0y =

√
2g(hmax − y0) (4)

Equation (1) can also be used to determine the set of trajectories that intercept a given
target point (xt, yt). By eliminating t, we obtain the following equality:

(yt − y0)v2
0x − (xt − x0)v0yv0x +

1
2

g(xt − x0)
2 = 0 (5)

Robotics 2021, 10, 113 8 of 20

By specifying the initial velocity in the y-direction, we can obtain the required velocities
in the x-direction by solving a quadratic equation. It should be noted that, although there
may be two solutions, only one is valid, since we consider that the interception with the
target point occurs during the descending phase of the ballistic motion. At the same time,
a discriminant (b2 − 4ac) of less than zero indicates that there is no solution, providing a
lower limit on the initial velocity in the y-direction, as follows:

vmin
0y =

√
2g(yt − y0) (6)

Figure 3 illustrates an example of multiple ballistic trajectories that intercept the same
target point. The black curve is the single one where the target point coincides with the
catching point, i.e., the closest point to the end-effector. At the same time, the evaluation
of the ToF for each ballistic trajectory follows a similar procedure by solving a quadratic
equation. The equation used to evaluate the ToF with respect to the initial velocity in the
y-direction, producing the same velocity limit as expressed in (6), is the following:

1
2

gt2 − v0yt− (yt − y0) = 0 (7)

0 0.5 1 1.5 2 2.5 3 3.5 4

Horizontal displacement (m)

0

0.5

1

1.5

2

2.5

V
e
rt

ic
a
l
d
is

p
la

c
e
m

e
n
t
(m

)

target

position

end-effector

initial

position

Figure 3. Example of multiple ballistic trajectories of a projectile launched at the initial position
(x0, y0) = (0, 1.1) meters with different initial velocities (v0x, v0y), while intercepting the same target
point (xt, yt) = (3.5, 1.5) meters inside the robot’s workspace. The robotic arm is shown in blue along
with the workspace in dashed lines.

At the end of this study, we provide an intuitive insight to the relationship between
the initial velocities of the ball at the moment it is launched (t = 0) and the feasibility
of the generated movement (see Figure 4). An invalid movement results from various
circumstances, namely, it is outside the robot’s workspace, and exceeds the limits imposed
on the maximum height of the ball hmax or on the ToF. Movements that intercept the
reachable workspace and comply with these limits are considered valid.

Robotics 2021, 10, 113 9 of 20

Figure 4. From a total of 10,000 launches, generated with initial velocities that are uniformly dis-
tributed in the range 0 < vox < 20 m/s and 0 < voy < 10 m/s), 33.3% are out of the reachable space
(red), 5.4% are inside the reachable space (green), and 38.9% are inside the reachable space. However,
these are invalid since the maximum height (hmax) is greater than 3 m. A total of 22.4% are inside the
reachable space, but are invalid, since the time-of-flight (ToFmin) is less than 0.4 s.

4. The Anticipation Learning System
4.1. Anticipation Model

As mentioned previously, the robot ball-catching task is divided into two sequential
motion phases, reflecting the ball trajectory before and after it has been released, as follows:

• Phase A (throwing phase)—refers to the sequence of movements from the hand of the
thrower, before the ball is released:

• Phase B (ballistic phase)—refers to the ball’s motion after release.

In other works, the prediction of the catching point and the robot’s motion-planning
and execution are performed in phase B. During this phase, the trajectory of the free-flying
ball is modeled as a parabola, and the interception point is predicted from the estimated
curve, which triggers a relevant robot movement. However, to obtain a reliable estimation
of the ball trajectory, the robot needs to wait until sufficient visual information is acquired.
This may result in insufficient time to move to the catching point, particularly in short-
distance scenarios and in cases with limitations on joint velocity. We pose the following
general anticipation question: Can we make use of the vision information during phase A
to improve the robot’s planning and ultimately increase the ball-catching success rate?

To test this hypothesis, we define the ball state in phase A as the following sequence:
S(A)

t = {S(A)
pos,t, S(A)

vel,t}t=0,...,T , where S(A)
pos,t ∈ IR3 and S(A)

vel,t ∈ IR3 denote the ball spatial
positions and velocities at the sampling moment t. T is the time of ball release, i.e., the
transition moment from phase A to phase B. Since, in state A, the ball is in the hand of the
throwing opponent, a natural assumption here is that the ball state and the thrower’s hand
motion are the same variables. Now, the general anticipation question is reformulated into
the following specific task: Predict the ball state (position and velocity) at the moment
it is released (i.e., S(A)

T), from sequential observations of the thrower’s hand motion (a
multidimensional sequence of the first L samples, L < T of the ball state S(A)),

S(A)
T = f (S(A)

pos,0, S(A)
pos,1, . . . S(A)

pos,L−1, S(A)
vel,0, S(A)

vel,1, S(A)
vel,L−1) (8)

If the initial conditions of the flying ball are reliably predicted, its trajectory can be
estimated as a parabolic motion and the robot arm can move in the estimated direction
earlier (in phase A). Given the nonlinear nature of the mapping function and the inherent
variability of the task execution, a Neural Network (NN) seems to be the natural choice
to fit the regression function (Equation (8)). NNs are known to have good generalization
properties and a well-established training framework; therefore, we did not explore other

Robotics 2021, 10, 113 10 of 20

regressors. However, alternative options may be also considered. Two prediction scenarios
were studied, as follows:

• Joint Position-Velocity prediction—Prediction of the ball’s position and velocity at the

start of the ballistic phase (S̄(A)
T) with one NN model. This corresponds to a regression

between a (6L)-dimensional input (L samples of spatial position and velocity) and a
six-dimensional output (spatial position and velocity at the transition time T),

S(A)
t=0,...L−1 = {S(A)

pos,0,...L−1, S(A)
vel,0,...L−1} ∈ IR6L (9)

S̄(A)
T = {S(A)

pos,T , S(A)
vel,T} ∈ IR6 (10)

• Separated Position and Velocity prediction—Separate prediction of the ball initial

position (S̄(A)
pos,T ∈ IR3) and initial velocity (S̄(A)

vel,T ∈ IR3) at the moment of release,

S̄(A)
pos,T = fpos(S

(A)
pos,t, S(A)

vel,t, t = 0, ...L− 1) (11)

S̄(A)
vel,T = fvel(S

(A)
pos,t, S(A)

vel,t, t = 0, ...L− 1) (12)

The underlying idea of the proposed anticipation model is to gain extra time for the
robot arm to start moving in the targeted direction before the opponent finishes throwing.
In phase B, the robot continues to adjust its catching position based on dynamically collected
information of the flying ball. However, if the anticipation phase is successful, the robot is
better prepared for the incoming ball. Its arm is expected to be closer to a feasible catching
point, therefore improving the interception success rate.

4.2. Anticipation Model Training

A standard (shallow) NN architecture, with one hidden layer (HL) and the logistic
type of HL neurons, was trained. The output layer has six linear units that reflect the
specific regression task of the network. A dataset of 3000 ball catching episodes (trials) was
generated based on a human demonstration (see Section 3.3), and divided into 1500 trials
for training, 1000 for cross-validation and 500 for testing. The maximum number of
training iterations was set to 5000; however, the over-fitting risk was handled by stopping
the training early, after 250 iterations of increasing validation error. The final structure
of the models was optimized after tuning the most sensitive hyper-parameters, the input
memory L and the number of hidden layer units. L determines how many samples of
visual information on the thrower’s hand motion are required before a reliable prediction
of the ball’s release state can be provided. During the experiments, 36 samples (IR6 vectors)
from phase A were collected to represent the ball state sequence S(A). The last sample is
the ball release state.

4.2.1. Model 1 (Joint Position-Velocity Prediction)

The Mean Squared Error (MSE) between the target release ball state (S̄(A)
T), known

from m demonstration trajectories, and the state (S(A)
T) predicted by the model was the loss

function of Model 1, to be minimized with the scaled conjugate gradient method:

MSE =
1
m

m

∑
i=1

(S̄(A)
T − S(A)

T)2 (13)

As shown in Figure 5, the MSE decreases when the memory L increases, i.e., the
more visual information is collected, more accurate the predictions. However, predictions
need to be made early enough to effectively provide the robot with extra time to start
moving in the estimated direction. L = 20 was chosen as a trade-off between prediction
accuracy and the extra time needed for task execution. The NN input is then S(A)

1,..,20 =

{S(A)
pos,1,...,20, S(A)

vel,1,...,20} ∈ IR120.

Robotics 2021, 10, 113 11 of 20

5 10 15 20 25 30 35

Samples

0.035

0.04

0.045

0.05

0.055

0.06

0.065

P
e
rf

o
rm

a
n
c
e
 (

M
S

E
)

training

validation

test

Figure 5. Model 1 hyper-parameters’ optimisation: MSE vs. Neural Network (NN) input memory
(samples L).

The training, validation and test curves shown in Figure 5 are close, which indicates a
lack of over-fitting. The number of HL units was chosen after a grid search in the range
[2, 20] and the results are shown in Figure 6. Five HL neurons were taken as a trade-off
between the error rate and the model complexity. To obtain a better insight into the effect
of the sensor noise on the predicted variables, we designed the following experiment.
Starting from an ideal (reference) throwing trajectory, we generated a number of noisy
trajectories by adding uniform random noise (40 dB SNR). We then applied the trained
NN model to predict the ball position and velocity at the release state from these noisy
observations. The predicted values are shown in Figures 7 and 8. We could observe is that
the velocity is significantly more affected by the noise (particularly in X and Z directions)
than the position. To address this issue, we decided to split the prediction of the position
and velocity into two distinct models.

2 4 6 8 10 12 14 16 18 20

Neurons

0.044

0.046

0.048

0.05

0.052

0.054

0.056

0.058

0.06

P
e
rf

o
rm

a
n
c
e
 (

M
S

E
)

validation

test

Figure 6. Model 1 hyper-parameters’ optimisation: MSE vs. Hidden Layer (HL) neurons.

Robotics 2021, 10, 113 12 of 20

0 100 200 300 400 500 600 700

Trial indices

0

2

4

M
o
d
e
l
p
re

d
ic

ti
o
n

 x
p
 (m)

 y
p
 (m)

 z
p
 (m)

Figure 7. Prediction of the ball’s position (xp, yp, zp) at the release state after corrupting the observa-
tion samples with noise (40 dB SNR).

0 50 100 150 200 250 300

Trial indices

0

5

10

M
o
d
e
l
p
re

d
ic

ti
o
n

 v
xp

 (m/s)

 v
yp

 (m/s)

 v
zp

 (m/s)

Figure 8. Prediction of the ball’s velocity (vxp, vyp, vzp) at the release state after corrupting the
observation samples with noise (40 dB SNR).

4.2.2. Model 2 (Separated Position and Velocity Prediction)

In this scenario, the prediction models were trained separately, with the following
MSE loss functions to be minimised:

MSEv =
1
m

m

∑
i=1

[(S̄(A)
v,T − S(A)

v,T)2]v, v = {pos, vel} (14)

Here, we choose to keep the same number of HL neurons as used in Model 1 (i.e.,
five neurons) and evaluate only the effect of the network memory. From the results in
Figures 9 and 10, it is interesting to observe that the MSEs of both position and velocity
are significantly lower than the overall prediction error in Model 1 (see Figure 5) for the
entire range of HL neurons. At the same time, the MSE position gradually decreases, while
more samples are accumulated, which is not the case with the velocity MSE. Therefore,
L = 20 was chosen as a good trade-off between the waiting time before making predictions
and the prediction accuracy. These results clearly suggest that using separate models to
estimate the position and velocity leads to an increased capacity to filter noise coming
from different distributions. In the next sections, Model 2 is implemented as the learning
component of RALS to study the role of early anticipation. Algorithm 1 summarizes the
steps involved in its implementation for human–robot ball catching.

Robotics 2021, 10, 113 13 of 20

Algorithm 1: RALS-based Ball Catching Process.

PROCEDURE: Anticipation Model Training (offline)
S̄(A)

pos,T , S̄(A)
vel,T ⇐ train separate NN models to predict the ball position and velocity

at release state after observing the first L-samples of the thrower’s motion.
END PROCEDURE
PROCEDURE: Simulation (online)
for i = 1 : 1 : endSimulation do

PHASE A (throwing phase)
if (ball in hand & L-samples) then

S̄(A)
pos,T , S̄(A)

vel,T ⇐ NN models generate the initial conditions of the flying ball;
Compute the ball’s trajectory with a parabolic motion; Compute potential
catching point; move the robot arm in the target direction.

end if

PHASE B (ballistic phase)
if (ball flying & S-samples) then

Switching time for recursive estimation of the ball’s trajectory through least
square optimization; Move the robot arm in direction to the estimated
catching point.

end if
if (ball is catchable) then

rd ⇐ determine the catching point as the closest one to the current end-effector
position; q̇⇐move the arm using a Jacobian-based IK algorithm and read
current joint angles;
if Distance(Ball,EndEffector) < 2 cm then

Ball caught—exit the simulation loop;
end if

else
Move the end-effector towards the last catchable point or stay in the
current state;

end if
END FOR
END PROCEDURE

5 10 15 20 25 30 35

Samples

0.5

1

1.5

2

2.5

3

3.5

P
e

rf
o

rm
a

n
c
e

 (
M

S
E

)

10
-4

training

validation

test

Figure 9. Model 2 hyper-parameters’ optimization (position prediction model): MSE vs. Neural
Network (NN) input memory.

Robotics 2021, 10, 113 14 of 20

5 10 15 20 25 30 35

Samples

0.02

0.025

0.03

0.035

0.04

0.045

P
e

rf
o

rm
a

n
c
e

 (
M

S
E

)

training

validation

test

Figure 10. Model 2 hyper-parameters’ optimization (velocity prediction model): MSE vs. Neural
Network (NN) input memory.

5. Results

This section aims to evaluate the proposed RALS framework in different test scenarios,
such as variations in the switching time between the perception phase and the robot’s
control, in the signal-to-noise ratio (SNR) applied to the ball trajectory (i.e., sensory mea-
surements) and the maximum velocities available at the robot’s joints. For the purpose of
evaluation, a set of 1000 valid launches is selected from the generated trajectories, i.e., those
in which the ball intercepts the robot’s reachable workspace and those that satisfy the
imposed constraints on the maximum height the ball can achieve, in a range between 0.4
and 1.2 s for the time-of-flight. A successful catch occurs whenever the distance between
the ball’s centroid and the end-effector position is less than 2 cm. The control actions
are stopped as soon as the end-effector is sufficiently close to the target, i.e., below the
threshold limit of 2 mm. A failed attempt can be explained by an inaccurate estimation of
the ball’s state (bad prediction failure) or the robot’s inability to reach the desired catching
point in time (no-time failure). The experiments were carried out by considering that the
arm is aligned with the x-axis of the reference coordinate system, adopting an optimal
initial configuration in terms of the manipulability index [39].

5.1. Switching Time between Perception and Action

In the throwing phase, the robotic arm immediately starts moving towards the pre-
dicted catching point, guided by RALS. Once the ball is released (ballistic phase), the robot
has to decide when to switch from RALS prediction to the classical (baseline) prediction
of the ball trajectory through least square optimization. Regarding the classical method
for ball-catching without anticipation skills, the switching time refers to the waiting time
before the robot arm starts moving in the targeted direction. In both cases, the switching
time is expressed as the number of observations (samples S) of the ball in-flight.

Figure 11 shows the catching success rate as a function of the switching time for ball-
catching with a neural network (RALS) and without a neural network (classical). For these
experiments, the sensory signals were corrupted, with 40dB SNR noise, and the maximum
robot joint angular velocities are: (a) 90 deg/s, (b) 135 deg/s and (c) 180 deg/s. The first
observation is that the RALS-based strategy (blue line) outperforms the baseline in all
scenarios. Naturally, the success rate improvements are more significant for lower-speed
robots. Second, the highest success rate occurs when the switching time is in the first
10–20 samples of the flying ball. Presumably, the later the robot arm starts moving, less
likely it is to catch the ball. However, the RALS-based strategy shows that the success rate
is almost constant for a considerably larger number of samples. This means that there is no
advantage in re-planning the robot’s movement too early, since the success rate is at an
almost constant level until the 20th-sample. In the same line of thought, Figure 12 depicts

Robotics 2021, 10, 113 15 of 20

the catching failure due to the lack of time taken to reach the ball, denoted as the no-time
failure rate, for the same maximum joint velocities.

0 5 10 15 20 25 30 35 40 45 50 55

Number of samples

0

10

20

30

40

50

60

70

80

90

100

S
u

c
e

s
s
 r

a
te

 (
%

)

classical

RALS

(a)

0 5 10 15 20 25 30 35 40 45 50 55

Number of samples

0

10

20

30

40

50

60

70

80

90

100

S
u
c
e
s
s
 r

a
te

 (
%

)

classical

RALS

(b)

0 5 10 15 20 25 30 35 40 45 50 55

Number of samples

0

10

20

30

40

50

60

70

80

90

100

S
u
c
e
s
s
 r

a
te

 (
%

)

classical

RALS

(c)

Figure 11. Success rate as a function of the switching time (in samples) with and without RALS. The maximum joint
velocities are: (a) 90 deg/s, (b) 135 deg/s and (c) 180 deg/s.

Robotics 2021, 10, 113 16 of 20

0 5 10 15 20 25 30 35 40 45 50 55

Number of samples

0

10

20

30

40

50

60

70

80

90

100

N
o
-t

im
e
 f
a
ilu

re
 r

a
te

 (
%

)

classical

RALS

(a)

0 5 10 15 20 25 30 35 40 45 50 55

Number of samples

0

10

20

30

40

50

60

70

80

90

100

N
o

-t
im

e
 f

a
ilu

re
 r

a
te

 (
%

)

classical

RALS

(b)

0 5 10 15 20 25 30 35 40 45 50 55

Number of samples

0

10

20

30

40

50

60

70

80

90

100

N
o

-t
im

e
 f

a
ilu

re
 r

a
te

 (
%

)

classical

RALS

(c)

Figure 12. No-time failure rate as a function of the switching time (in samples) with and without RALS. The maximum joint
velocities are: (a) 90 deg/s, (b) 135 deg/s and (c) 180 deg/s.

5.2. Signal-to-Noise Variation

Figure 13 compares the success rate as a function of the SNR level on the sensory
data for a switching time of S = 20 samples and two different maximum joint velocities:
(a) 90 deg/s and (b) 135 deg/s. The same level of noise was applied to both the throwing
and ballistic phases. Although low SNR and low robot joint velocities affect clearly both
methods, RALS outperforms the baseline method with an average success rate leverage of
20%. Neural networks are known for their good data representation capacity and filtering
properties. Therefore, it is not surprising that, in the range of 36–50 dB, for the most typical
case of 135 deg/s, the success rate remains above 90%. The baseline method is more
sensitive to noise, achieving a success rate close to 80% only for high SNR levels. Figure 14
complements the previous results, showing the evolution of the bad prediction failure rate
with the SNR under the same conditions.

Robotics 2021, 10, 113 17 of 20

30 32 34 36 38 40 42 44 46 48 50

SNR (dB)

0

10

20

30

40

50

60

70

80

90

100

S
u
c
c
e
s
s
 r

a
te

 (
%

)

classical

RALS

(a)

30 32 34 36 38 40 42 44 46 48 50

SNR (dB)

0

10

20

30

40

50

60

70

80

90

100

B
a

d
 p

re
d

ic
ti
o

n
 f

a
ilu

re
 r

a
te

 (
%

)

classical

RALS

(b)

Figure 13. Success rate as a function of the SNR in the observed samples for maximum joint velocities of: (a) 90 deg/s and
(b) 135 deg/s.

30 32 34 36 38 40 42 44 46 48 50

SNR (dB)

0

10

20

30

40

50

60

70

80

90

100

B
a
d
 p

re
d
ic

ti
o
n
 f
a
ilu

re
 r

a
te

 (
%

)

classical

RALS

(a)

30 32 34 36 38 40 42 44 46 48 50

SNR (dB)

0

10

20

30

40

50

60

70

80

90

100

B
a

d
 p

re
d

ic
ti
o

n
 f

a
ilu

re
 r

a
te

 (
%

)

classical

RALS

(b)

Figure 14. Bad prediction failure rate as a function of the SNR in the observed samples for maximum joint velocities of:
(a) 90 deg/s and (b) 135 deg/s.

5.3. Maximum Joint Velocity Variation

As seen previously, the maximum angular velocities of the robot’s joints have a major
influence on the catching performance. Figure 15a shows the success rate as a function
of the maximum velocity, assuming the same bound for all joints. The simulation was
set up with a switching time of 20 samples and an SNR of 40 dB. The advantage of using
RALS-based early predictions is clearly noted, with success rate improvements of about
10–12% over almost the entire range. The bar chart in Figure 15b allows for a more detailed
comparison between the two methods under analysis. Each experience is classified as:
(i) “Only-RALS” if the anticipation method caught the ball, but the classical method could
not, (ii) “Only-classical” if the RALS method could not catch the ball, but the classical
method succeeded, and (iii) “Successful in both” if both methods catch the ball. The RALS
improves the success rate by about 12% over almost the entire range.

Robotics 2021, 10, 113 18 of 20

40 60 80 100 120 140 160 180

Maximum joint velocity (deg/s)

0

10

20

30

40

50

60

70

80

90

100

S
u

c
c
e

s
s
 r

a
te

 (
%

)

classical

RALS

(a)

108 117 126 135 144 153 162

Maximum joint velocity (deg/s)

100

200

300

400

500

600

700

800

900

N
u

m
b

e
r

o
f

th
ro

w
s

70

185

544

58

169

616

50

166

676

39

157

729

31

145

781

22

140

821

19

120

846Only classical

Only RALS

Both succeeded

(b)

Figure 15. (a) Success rate as a function of the maximum joint velocities with and without RALS. (b) Number of successes
unique to each method and those where both succeeded in catching the ball.

6. Conclusions

In this paper, we presented Robot Anticipation Learning System (RALS) that predicts
the ball state (position and velocity) at the moment it is released, from observations of the
thrower’s motion before the ball is released (the so-called anticipation, preparatory phase).
Based on the prediction, the ball-catching point is estimated much earlier and the robot
starts to approach this point. RALS improved the robot ball-catching rate by up to 20%
compared to the baseline approach, where the predictions rely only on information received
during the free-flying ball motion. To the best of our knowledge, this is the first autonomous
robot control system for ball-catching that enhances the motion-planning policy with
information from the stage when the ball is still in the hand of the throwing opponent.

Author Contributions: Conceptualization, D.C., F.S. and P.G.; investigation, D.C.; writing—original
draft preparation, F.S. and P.G.; writing—review and editing, F.S. and P.G.; supervision, F.S. and P.G.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: This work was supported by the Foundation for Science and Technology (FCT)
in the context of the project UIDB/00127/2020.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nemec, B.; Ude, A. Reinforcement learning of ball-in-a-cup playing robot. In Proceedings of the 2011 IEEE International

Conference on Robotics and Biomimetics, ROBIO 2011, Karon Beach, Thailand, 7–11 December 2011. [CrossRef]
2. Kober, J.; Peters, J. Policy search for motor primitives in robotics. Mach. Learn. 2011, 84, 171–203. [CrossRef]
3. Bujarbaruah, M.; Zheng, T.; Shetty, A.; Sehr, M.; Borrelli, F. Learning to Play Cup-and-Ball with Noisy Camera Observations. In

Proceedings of the 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE), Hong Kong, China,
20–21 August 2020. [CrossRef]

4. Senoo, T.; Namiki, A.; Ishikawa, M. Hybrid Trajectory Generation of an Articulated Manipulator for High-speed Batting. J. Robot.
Soc. Jpn. 2006, 24, 515–522. [CrossRef]

5. Muelling, K.; Kroemer, O.; Lampert, C.H.; Schölkopf, B. Movement Templates for Learning of Hitting and Batting. In Learning
Motor Skills; Springer Tracts in Advanced Robotics; Springer: Cham, Switzerland, 2014. [CrossRef]

http://doi.org/10.1109/ROBIO.2011.6181710
http://dx.doi.org/10.1007/s10994-010-5223-6
http://dx.doi.org/10.1109/CASE48305.2020.9216806
http://dx.doi.org/10.7210/jrsj.24.515
http://dx.doi.org/10.1007/978-3-319-03194-1_3

Robotics 2021, 10, 113 19 of 20

6. Jia, Y.B.; Gardner, M.; Mu, X. Batting an in-flight object to the target. Int. J. Robot. Res. 2019, 38, 451–485. [CrossRef]
7. Bäuml, B.; Birbach, O.; Wimböck, T.; Frese, U.; Dietrich, A.; Hirzinger, G. Catching flying balls with a mobile humanoid: System

overview and design considerations. In Proceedings of the 11th IEEE-RAS International Conference on Humanoid Robots, Bled,
Slovenia, 26–28 October 2011. pp. 513–520.

8. Kim, S.; Shukla, A.; Billard, A. Catching objects in flight. IEEE Trans. Robot. 2014, 30, 1049–1065. [CrossRef]
9. Salehian, S.S.M.; Khoramshahi, M.; Billard, A. A dynamical system approach for softly catching a flying object: Theory and

experiment. IEEE Trans. Robot. 2016, 32, 462–471. [CrossRef]
10. Schill, M.M.; Buss, M. Robust Ballistic Catching: A Hybrid System Stabilization Problem. IEEE Trans. Robot. 2018, 34, 1502–1517.

[CrossRef]
11. Kao, S.T.; Ho, M.T. Ball-catching system using image processing and an omni-directional wheeled mobile robot. Sensors 2021, 21,

3208. [CrossRef] [PubMed]
12. Rizzi, A.A.; Koditschek, D.E. Progress in spatial robot juggling. In Proceedings of the IEEE International Conference on Robotics

and Automation, Nice, France, 12–14 May 1992. [CrossRef]
13. Reist, P.; Drandrea, R. Design and analysis of a blind juggling Robot. IEEE Trans. Robot. 2012, 28, 1228–1243. [CrossRef]
14. Poggensee, K.L.; Li, A.H.; Sotsaikich, D.; Zhang, B.; Kotaru, P.; Mueller, M.; Sreenath, K. Ball Juggling on the Bipedal Robot Cassie.

In Proceedings of the European Control Conference 2020 (ECC 2020), St. Petersburg, Russia, 12–15 May 2020. [CrossRef]
15. Andersson, R.L. Aggressive Trajectory Generator for a Robot Ping-Pong Player. IEEE Control Syst. Mag. 1989, 9, 15–21. [CrossRef]
16. Mülling, K.; Kober, J.; Peters, J. A biomimetic approach to robot table tennis. Adapt. Behav. 2011, 19, 359–376. [CrossRef]
17. Li, H.; Wu, H.; Lou, L.; Kühnlenz, K.; Ravn, O. Ping-pong robotics with high-speed vision system. In Proceedings of the 2012

12th International Conference on Control Automation Robotics & Vision (ICARCV), Guangzhou, China, 5–7 December 2012.
[CrossRef]

18. Wang, Z.; Boularias, A.; Mülling, K.; Schölkopf, B.; Peters, J. Anticipatory action selection for human–robot table tennis. Artif.
Intell. 2014, 247, 399–414. [CrossRef]

19. Peper, L.; Bootsma, R.J.; Mestre, D.R.; Bakker, F.C. Catching balls: How to get the hand to the right place at the right time. J. Exp.
Psychol. Hum. Percept. Perform. 1994, 20, 591. [CrossRef] [PubMed]

20. Cesqui, B.; Russo, M.; Lacquaniti, F.; d’Avella, A. Grasping in one-handed catching in relation to performance. PLoS ONE 2016,
11, e0158606. [CrossRef] [PubMed]

21. Carneiro, D.; Silva, F.; Georgieva, P. The role of early anticipations for human-robot ball catching. In Proceedings of the 2018 IEEE
International Conference on Autonomous Robot Systems and Competitions (ICARSC), Torres Vedras, Portugal, 25–27 April 2018;
pp. 10–16.

22. Hove, B.; Slotine, J.J.E. Experiments in robotic catching. In Proceedings of the 1991 American Control Conference, Boston, MA,
USA, 26–28 June 1991; pp. 380–386.

23. Hong, W.; Slotine, J.J.E. Experiments in hand-eye coordination using active vision. In Experimental Robotics IV; Springer:
Berlin/Heidelberg, Germany, 1997; pp. 130–139.

24. Nishiwaki, K.; Ionno, A.; Nagashima, K.; Inaba, M.; Inoue, H. The humanoid saika that catches a thrown ball. In Proceedings of the
6th IEEE International Workshop on Robot and Human Communication, RO-MAN’97 SENDAI, Sendai, Japan, 29 September–1
October 1997; pp. 94–99.

25. Frese, U.; Bauml, B.; Haidacher, S.; Schreiber, G.; Schäfer, I.; Hahnle, M.; Hirzinger, G. Off-the-shelf vision for a robotic ball
catcher. In Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal
Role of Robotics in the the Next Millennium (Cat. No. 01CH37180), Maui, HI, USA, 29 October–3 November 2001; Volume 3,
pp. 1623–1629.

26. Riley, M.; Atkeson, C.G. Robot catching: Towards engaging human-humanoid interaction. Auton. Robot. 2002, 12, 119–128.
[CrossRef]

27. Park, G.R.; Kim, K.; Kim, C.; Jeong, M.H.; You, B.J.; Ra, S. Human-like catching motion of humanoid using evolutionary algorithm
(ea)-based imitation learning. In Proceedings of the RO-MAN 2009—The 18th IEEE International Symposium on Robot and
Human Interactive Communication, Toyama, Japan, 27 September–2 October 2009; pp. 809–815.

28. Kim, S.; Gribovskaya, E.; Billard, A. Learning motion dynamics to catch a moving object. In Proceedings of the 2010 10th
IEEE-RAS International Conference on Humanoid Robots, Nashville, TN, USA, 6–8 December 2010; pp. 106–111.

29. Bäuml, B.; Wimböck, T.; Hirzinger, G. Kinematically optimal catching a flying ball with a hand-arm-system. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 2592–2599.

30. Dong, K.; Pereida, K.; Shkurti, F.; Schoellig, A.P. Catch the Ball: Accurate high-speed motions for mobile manipulators via inverse
dynamics learning. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Las Vegas, NV, USA, 24 October 2020–24 January 2021. [CrossRef]

31. Yu, H.; Guo, D.; Yin, H.; Chen, A.; Xu, K.; Wang, Y.; Xiong, R. Neural Motion Prediction for In-flight Uneven Object Catching.
arXiv 2021, arXiv:2103.08368v1.

32. Allen, P.K.; Timcenko, A.; Yoshimi, B.; Michelman, P. Automated Tracking and Grasping of a Moving Object with a Robotic
Hand-Eye System. IEEE Trans. Robot. Autom. 1993, 9, 152–165. [CrossRef]

33. Deguchi, K.; Sakurai, H.; Ushida, S. A goal oriented just-in-time visual servoing for ball catching robot arm. In Proceedings of the
2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, Nice, France, 22–26 September 2008. [CrossRef]

http://dx.doi.org/10.1177/0278364918817116
http://dx.doi.org/10.1109/TRO.2014.2316022
http://dx.doi.org/10.1109/TRO.2016.2536749
http://dx.doi.org/10.1109/TRO.2018.2868857
http://dx.doi.org/10.3390/s21093208
http://www.ncbi.nlm.nih.gov/pubmed/34063130
http://dx.doi.org/10.1109/robot.1992.220275
http://dx.doi.org/10.1109/TRO.2012.2205493
http://dx.doi.org/10.23919/ecc51009.2020.9143967
http://dx.doi.org/10.1109/37.16766
http://dx.doi.org/10.1177/1059712311419378
http://dx.doi.org/10.1109/ICARCV.2012.6485142
http://dx.doi.org/10.1016/j.artint.2014.11.007
http://dx.doi.org/10.1037/0096-1523.20.3.591
http://www.ncbi.nlm.nih.gov/pubmed/8027714
http://dx.doi.org/10.1371/journal.pone.0158606
http://www.ncbi.nlm.nih.gov/pubmed/27392041
http://dx.doi.org/10.1023/A:1013223328496
http://dx.doi.org/10.1109/IROS45743.2020.9341134
http://dx.doi.org/10.1109/70.238279
http://dx.doi.org/10.1109/IROS.2008.4650615

Robotics 2021, 10, 113 20 of 20

34. Cigliano, P.; Lippiello, V.; Ruggiero, F.; Siciliano, B. Robotic Ball Catching with an Eye-in-Hand Single-Camera System. IEEE
Trans. Control Syst. Technol. 2015, 23, 1657–1671. [CrossRef]

35. Sato, M.; Takahashi, A.; Namiki, A. High-speed catching by multi-vision robot hand. In Proceedings of the 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24 January 2021.
[CrossRef]

36. Ardakani, M.M.G.; Olofsson, B.; Robertsson, A.; Johansson, R. Real-time trajectory generation using model predictive control. In
Proceedings of the 2015 IEEE International Conference on Automation Science and Engineering (CASE), Gothenburg, Sweden,
24–28 August 2015; doi:10.1109/CoASE.2015.7294220. [CrossRef]

37. Stone, J.A.; Maynard, I.; North, J.S.; Panchuk, D.; Davids, K. Emergent perception–action couplings regulate postural adjustments
during performance of externally-timed dynamic interceptive actions. Psychol. Res. 2015, 79, 829–843. [CrossRef] [PubMed]

38. Sigurdsson, G.A.; Russakovsky, O.; Gupta, A. What Actions are Needed for Understanding Human Actions in Videos? arXiv
2017, arXiv:1708.02696.

39. Yoshikawa, T. Foundations of Robotics: Analysis and Control; MIT Press: Cambridge, MA, USA, 1990.

http://dx.doi.org/10.1109/TCST.2014.2380175
http://dx.doi.org/10.1109/IROS45743.2020.9340968
http://dx.doi.org/10.1109/CoASE.2015.7294220
http://dx.doi.org/10.1007/s00426-014-0613-1
http://www.ncbi.nlm.nih.gov/pubmed/25260389

	Introduction
	Related Work
	Experimental Setup
	Simulation Scenario
	Human Demonstrations of Underarm Throwing
	Data Generation in Preparatory and Ballistic Phases
	Release Parameters versus Catching Point

	The Anticipation Learning System
	Anticipation Model
	Anticipation Model Training
	Model 1 (Joint Position-Velocity Prediction)
	Model 2 (Separated Position and Velocity Prediction)

	Results
	Switching Time between Perception and Action
	Signal-to-Noise Variation
	Maximum Joint Velocity Variation

	Conclusions
	References

