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Abstract: Grocery shoppers must negotiate cluttered, crowded, and complex store layouts contain-
ing a vast variety of products to make their intended purchases. This complexity may prevent even 
experienced shoppers from finding their grocery items, consuming a lot of their time and resulting 
in monetary loss for the store. To address these issues, we present a generic grocery robot architec-
ture for the autonomous search and localization of products in crowded dynamic unknown grocery 
store environments using a unique context Simultaneous Localization and Mapping (contextSLAM) 
method. The contextSLAM method uniquely creates contextually rich maps through the online fu-
sion of optical character recognition and occupancy grid information to locate products and aid in 
robot localization in an environment. The novelty of our robot architecture is in its ability to intelli-
gently use geometric and contextual information within the context map to direct robot exploration 
in order to localize products in unknown environments in the presence of dynamic people. Exten-
sive experiments were conducted with a mobile robot to validate the overall architecture and con-
textSLAM, including in a real grocery store. The results of the experiments showed that our archi-
tecture was capable of searching for and localizing all products in various grocery lists in different 
unknown environments. 

Keywords: service robots; grocery robot architecture; crowded unknown environments; context 
identification; context mapping 
 

1. Introduction 
Finding products in grocery stores is a challenging task requiring an understanding 

of a store’s layout, finding these products based on this understanding and negotiating 
crowded aisles. In general, customers have difficulty remembering the locations of prod-
ucts in aisles due to a lack of location cues and mnemonic aids [1]. Moreover, the layout 
of a store changes regularly due to several factors to improve sales such as: (1) seasons, 
and holidays; (2) periodic changes due to shopper behavior [2]; (3) product promotions, 
and (4) the daily introduction of new products [3]. The estimated 21,000 products [4] in-
troduced yearly have a significant impact on store layouts due to the rearrangement of 
other products [5]. Therefore, shopping can be stressful for customers in such environ-
ments [6]. Even regular customers leave without buying all their desired items [7]. The 
inefficiency of the shopping experience reduces customer satisfaction [8] and the inability 
to make intended purchases represents significant lost revenue for stores [9]. 

It has been found that customer satisfaction is directly related to perceived employee 
knowledge [10]. Employee availability and lack of employee knowledge are exacerbated 
by turnover rates of grocery employees; a major contributor to the general decline in gro-
cery store satisfaction [11]. 

Systems using multiple ceiling mounted cameras require modifying and incorporat-
ing sensors in the entire store to aid with product localization and server fees for data 
processing, which can be costly and invades customer privacy [12]. Existing smartphone 
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apps rely on planograms of a store, that are manually created by staff, which is time-con-
suming and can contain product location errors. Compliance with planograms has been 
found to be less than 60% [13]. Furthermore, these apps are not widely accessible to all 
demographics including seniors (only 20% of seniors have access to a smartphone [14]). 
Our system aims to provide an autonomous robot for finding products on shelves within 
a grocery store without altering the environment and with minimal change to the shop-
ping experience. Our robot has onboard sensing and computation capabilities and can be 
placed in any new environment to work immediately without prior knowledge, unlike 
existing camera systems that need to be installed and calibrated in each environment. Us-
ing robots to automate one-on-one customer assistance would aid in reducing customer 
stress thereby improving their shopping experience [6]. 

Service robots have been used to automate numerous tasks in human-centered envi-
ronments such as searching for people using a preexisting map and their activity schedule 
to provide assistance [15], helping with cleaning/delivery [16,17], and surveillance [18]. 
With respect to grocery stores, robots have several advantages as they: (1) allow employ-
ees to perform complex tasks that cannot be easily automated (e.g., stocking shelves, re-
arranging products to improve revenue), and (2) lower operating costs by reducing em-
ployee turnover and salary requirements (e.g., the cost to replace an employee is between 
75–150% of the position’s salary [19]). They have already been used in retail stores to im-
prove overall customer experience. This includes showing product locations, and carrying 
products for customers [20,21]. Studies have shown that service robots in grocery stores 
have high satisfaction and intent to use rates. For example, in [21], 92% of customers 
would use a robot again as a shopping companion. However, such robots require full 
prior knowledge of their environment and cannot behave autonomously without human 
input to generate/obtain a representation of the environment [20–22]. Their reliance on 
expert human knowledge of the environment prevents these robots from autonomously 
adapting to regular changes to a store layout or product locations, and prevents their use 
in multiple stores. Given that there are approximately 38,000 grocery stores in the U.S. 
alone [23], regular manual mapping due to layout changes would represent a significant 
time cost for stores (e.g., it can take at least 75 min to manually map a grocery-like envi-
ronment with 29 aisles with a robot moving at 0.5 m/s [21]). 

To autonomously handle new layout changes, a robot must generate/update a map 
and identify vital landmarks in the environment, while simultaneously localizing itself in 
the map. This is known as the Simultaneous Localization and Mapping (SLAM) problem 
[24,25]. Current trends in SLAM focus on data association techniques to fuse sensor read-
ings, dealing with uncertainty, or decreasing time complexity [26–30]. In a grocery store 
environment, SLAM strategies need to take advantage of the texture rich features that are 
available to aid in finding products in crowded aisles containing many products and dy-
namic people. The performance of SLAM methods relies heavily on the ability to associate 
previously seen unique features between consecutive sensing frames to build the environ-
ment map and define the robot’s path within this map [30,31]. As such, the choice of fea-
tures and their repeatability impact the method’s performance. Furthermore, annotating 
the map with contextual information is vital to the decision making process for mobile 
robots and enhances a robot’s ability to interact with the environment [32]. For example, 
planning an optimal path to products of interest in a crowded store. 

This paper presents the development of a generic grocery robot architecture for the 
autonomous search and localization of products in unknown dynamic (with unpredicta-
ble people) grocery stores. A unique context Simultaneous Localization and Mapping 
(contextSLAM) framework is developed that combines an Optical Character Recognition 
(OCR) system with laser range measurements using a Rao-Blackwellized particle filter to 
simultaneously generate an annotated map and localize a robot to address the grocery 
store product search problem. contextSLAM differs from existing methods in that: (1) it is 
the first to simultaneously combine contextual landmarks and occupancy grid infor-
mation for online generation of an annotated map and robot localization, (2) it can 
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uniquely update the context map to accommodate regularly changing grocery store lay-
outs, and (3) it accounts for non-unique feature instances and rejects dynamic objects/peo-
ple, while using landmarks pervasive in human environments such as text. The frame-
work uses contextual information to aid robots with exploration and localization in dy-
namic environments, without the need to introduce artificial landmarks or sensors into 
the scene. Contextual information includes symbols on signs, objects, and posters that 
provide information for the localization of the robot and products of interest. It is the first 
work inspired by human exploration that considers common environmental cues to not 
only reason about the content of the environment, but also to aid in finding the item loca-
tions of interest. The advantage of considering scene text is that it is readily available in 
retail environments and thus can be incorporated as a robust source of localization infor-
mation for robots.  

2. Related Work 
Herein, literature on: (1) retail robots, and (2) use of contextual evidence for mapping 

and robot localization is discussed. 

2.1. Retail Robots 
Robots have been designed to aid in a variety of tasks in stores including: (1) inven-

tory management, or (2) assisting customers. 

2.1.1. Inventory Management 
Several systems have been designed for the automation of inventory management 

[22,33]. For example, in [22], a robot was used to create a semantic map of a retail environ-
ment. An operator manually moved the robot through the environment as GMapping 
generated a 2D occupancy grid map. Then a dynamic programming algorithm segmented 
the map into categories (e.g., oats, cans, etc.) based on the products observed while the 
robot autonomously scanned shelves to create a semantic map of product locations. 

In [33], a robot was designed for autonomous oos detection, spacing, inventory com-
pliance, and facing checks of products. An operator manually moved the robot through 
the environment to construct a 2D occupancy grid using GMapping. The robot then nav-
igated identified aisles while taking depth and 2D images to detect shelves and the spac-
ing between products.  

2.1.2. Customer Service 
Robots have been proposed for customer service tasks, such as finding products [34], 

and escorting people through a store [20,21]. In [20], a robot guided a user to desired prod-
ucts using an annotated map of product locations while a second carried their products. 
Localization and path planning were achieved using onboard laser scanners and external 
cameras in the store. In [21], a robot provided product location guidance, shopping com-
panionship, and price checks. A teleoperated robot collected laser and sonar data for Map-
Match SLAM [35] to generate a map. The map was labelled using data from the store’s 
internal map via a manual transform.  

Our previous workshop paper [34] introduced an autonomous robot to guide users 
to desired products in a static unknown environment. While exploring the environment, 
a map was created using GMapping and annotated with text detected in the environment. 
Human-robot interaction experiments in a lab environment showed that participants 
found the robot helpful, motivating our current research. 

While some of the aforementioned robots were able to provide customer assistance, 
the majority require a priori knowledge of the store layout or product locations [21,22,33], 
or external sensors in the environment [20]. Therefore, existing architectures cannot be 
directly applied to our problem, as there is no available/limited prior information to ex-
ploit in the search process as we consider scenarios where: (1) the robot is deployed for 
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the first time in a new store(s), or (2) a store layout has changed. We address these limita-
tions using a novel autonomous robot architecture for grocery stores that allows a robot 
to explore unknown crowded dynamic environments to find products of interest without 
any prior knowledge of product locations or layout of an environment. This work extends 
our preliminary research by developing a robust online approach using: (1) context detec-
tion via deep learning-based OCR, and (2) a fused mapping approach merging context 
and laser range data via our novel context Simultaneous Localization and Mapping (con-
textSLAM) method. 

2.2. Mapping and Localization Using Contextual Information 
Contextual features in the environment have been used for a variety of purposes, 

including: (1) localization [36–38], (2) map annotation [21,22,39–43], (3) SLAM using text 
[44,45], and (4) Semantic SLAM [32,46–49]. 

2.2.1. Localization  
In general, the types of contextual features used for localization have included unique 

fiducial markers [36,38], or visual or range features [37]. In [36], a method used laser range 
and unique April tag based visual context measurements in a graph SLAM framework. 
Robot localization was then performed using only the April tags. In [37], a SLAM method 
used a reinforcement learning policy to switch between localizing with an occupancy grid 
or landmark map. The method maintained separate particle weights for both maps. The 
policy selected which map to use based on a handcrafted state representation. In [38], a 
method used color-based segmentation to extract regions of text from unique name plates 
in the environment to associate the strings to nodes in a topological map.  

2.2.2. Map Annotation 
Context, and feature-annotated maps have been used for SLAM purposes such as in 

[21,22,39–43]. In [39], a method for combining and correcting occupancy grids using fea-
ture measurements was presented. The features (e.g., object locations) were used for lo-
calization and to partition the environment into triangular regions, with local occupancy 
grids defined relative to these features. In [40], a modified tinySLAM method was pre-
sented. The tinySLAM method fused laser data, odometry, and RFID tags detected in the 
environment to create an occupancy grid.  

Both [42,43] proposed methods to generate annotated occupancy grids of environ-
ments. In [43], an OCR system annotated a pre-existing occupancy grid with the text on 
door signs. Alternatively, in [42] an existing map of features was transformed to fit into 
an occupancy grid as it was generated using robot observations during navigation. 

2.2.3. SLAM using Text Features 
In [44], OCR was used in SLAM by fusing measurements to the centroids of unique 

text instances with visual inertial odometry via incremental Smoothing and Mapping. In 
[45], SLAM was performed using the planar features of text instances in the environment 
by minimizing the projected photometric error of detected text boxes via bundle adjust-
ment. 

2.2.4. Semantic SLAM 
More recently, SLAM methods have been detecting and classifying objects in the en-

vironment to semantically segment and label maps [32,46–49]. In [32], Mask-RCNN was 
used for the image segmentation task and combined with an RTAB-Map SLAM algorithm 
to generate semantic point clouds of the environment. In [46], a method that combined 
semantic segmentation information from PSPNet with 3D Point cloud data from ORB-
SLAM was proposed to create a 3D semantic map and in [47], a SLAM method combining 
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planar surfaces of semantically detected objects and visual inertial odometry was pro-
posed. 

In both [48,49], dynamic objects were considered. Namely, in [48],a SLAM approach 
used surfel-based mapping and semantic labels to filter out dynamic obstacles from 3D 
point cloud readings. The semantic segmentation resulted in point-wise labels for each 
point in the point cloud. In [49], optical flow was combined with MASK-RCNN SLAM to 
filter dynamic feature points. The Mask-RCNN network was used to detect and mask po-
tentially moving objects. 

The methods described above have shown that contextual information can be used 
for various robotic tasks. However, none of the methods can be used to solve our grocery 
store search problem. In particular, some methods require an existing map of the environ-
ment [21,22,42,43] or training on an existing map [37] prior to the creation of a context 
map. Others represent their occupancy grid based on the locations of distinct features [39]. 
If features are occluded, error accumulation occurs, resulting in an inconsistent map. Fur-
thermore, some methods require the environment to be modified with artificial landmarks 
(i.e., April or RFID tags) [36,40], or require unique landmarks [38,44]. Lastly, it is infeasible 
to create an object detector for all items within a grocery store environment, as the number 
of classes required for a generic classifier may be on the order of 105 [50,51]. As a result, 
semantic SLAM methods, which inherently use object classifiers, are limited in the num-
ber of products that they can accurately identify, which limits the robot’s ability to search 
for and navigate to a variety of different products [32,46–49]. Using text, on the other hand, 
results in a more accurate classification of products since all products in the environment 
have a text label, either on the shelf or the packaging themselves. In [45], text features were 
used for SLAM, however, only the planar surfaces of the detected text were utilized and 
the method did not annotate the map with the contextual information of the text strings 
found [45]. Therefore, these approaches cannot be used for our grocery search problem 
as: (1) real grocery environments contain repeated features (e.g., same text on signage, 
shelves, posters, etc.), and (2) introducing artificial landmarks requires each environment 
to be modified prior to the robot being used in the store. 

In this paper, we propose a new online approach, contextSLAM, that simultaneously 
utilizes both the occupancy grid and observed non-unique context in the environment 
obtained via OCR to localize the robot and generate a contextually rich map. Our ap-
proach allows for online intelligent robot exploration of the environment by using the 
context map during navigation. Furthermore, we make use of scene text that is pervasive 
within a grocery store environment without the limitation that the contextual information 
be unique. 

3. Grocery Robot System Architecture 
The proposed grocery product search problem requires a mobile robot to search for 

and locate various products in an unknown environment which may contain other inde-
pendent agents (e.g., people). The store contains a set of products ℙgr. The task begins 
when a user provides a subset of products to locate, 𝒬 ⊆ ℙgr. A product is considered to 
be located when the robot detects it on a shelf. 

The grocery environment contains an open area where the robot’s home location is. 
Aisles exist perpendicular to the edges of this open area and are formed by shelving units 
containing products on both sides. Aisles have openings at both ends and have a travers-
able width, 𝑤௔, and minimum length 𝑙min. Aisle signs are placed visibly within the aisle 
and display contextual information. Static text landmarks (e.g., on aisle signs) are present 
throughout the environment. Unique fiducial markers are placed beside products of in-
terest on shelves, as the product identification problem is beyond the scope of this paper.  
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3.1. Architecture Overview 
For a robot to autonomously search a grocery store for user desired products, we 

have developed the grocery robot architecture in Figure 1. A search is initiated by a user 
providing a search query. This triggers the Explore state within the Action Deliberation 
module that uses the Frontier Detection module to implement frontier-based exploration. 
Navigation goals are sent to the Navigation System which provides motion commands to 
the Low-Level Controller. Frontiers are determined using the map generated by the Context 
Mapping module. This map is a fusion of data from the Context Identification and Obstacle 
Detection modules and Odometry. Parallel to exploration, the Aisle Detection module finds 
aisles in the environment. When there is evidence of the presence of a product in the 
search query in an aisle, the Action Deliberation module transitions to the Aisle Found state 
and the Navigation System localizes the robot in front of the aisle. The Aisle Search state 
allows the robot to navigate a crowded aisle. The Product Detection module is used to de-
tect products within images from the onboard Camera. When a product in the search query 
is found the user is notified. The search continues until all products are found, no frontiers 
remain, or the maximum number of search attempts has been reached. The following sub-
sections detail the main modules of the architecture. 

 
Figure 1. Grocery robot architecture. 

3.2. Context Identification 
The Context Identification module uses 2D images of the environment to identify con-

textual information to be used to find the locations of products in 𝒬. It utilizes OCR to 
identify text that is pervasive within grocery stores (e.g., on aisle signs). 

The product function, 𝑃ሺ𝒮ሻ, is used to determine whether a set of text indicates the 
presence of a product, where: 𝑃ሺ𝒮ሻ ൌ ሼ𝑝gr|𝑝gr ∈ ℙౝ౨, Prሺ𝑝gr|𝒮ሻ ൐ 𝜙೘೔೙ሽ, (1) 

and 𝜙೘೔೙ is a probability threshold. 𝒮 is a set of strings and Prሺ𝑝gr|𝒮ሻ is the probability 
that a product 𝑝gr is present given a set of strings 𝒮. Aisle signs have the property that 
the context detected on the signs 𝑠௔  is guaranteed to generate a non-empty set, i.e., |𝑃ሺሼ𝑠ೌሽሻ| ൐ 0, based on this assumption we set the threshold 𝜙೘೔೙ to 1 for our experiments 
in Section 5. In general, the threshold is a user-defined value and is set based on the de-
sired precision and recall of the probabilistic model representing the association of scene 
text to the presence of products. 

Our grocery OCR system combines convolution neural network detectors and trains 
them to find text in images of the environment. It begins with a RetinaNet single stage 
text object detector [52] with a ResNeXt-50 [53] backbone, which predicts which regions 
in an image contain text. Region proposals (formed by a quadrilateral) are placed into 
standard size containers using a homography transform. Text strings in the regions are 
identified with a character region neural network [54] and filtered using a dictionary. De-
tections are formed by a tuple containing the text strings, 𝑠, and the relative 3D world 
coordinate, 𝑝ೣ೤೥ , of each region’s center. The 2D images are obtained from an RGB-D 



Robotics 2021, 10, 110 7 of 21 
 

 

Camera, such that each pixel is associated with a depth measurement. The world coordi-
nate is found by sampling a concurrently captured point cloud region as the text. The 
observation set, 𝑜 = ሼሺ𝑠೔,𝑝ೣ೤೥,೔ሻሽ, is provided to the Context Mapping module. 

3.3. Obstacle Detection 
Grocery shoppers make unpredictable stops and change directions to complete their 

shopping goals. Dynamic people can introduce false obstacles within maps of the envi-
ronment, which can lead to map misalignments and localization errors [55]. These map 
errors can prevent planners from finding valid navigation plans through an environment 
to goal locations. To detect people we adapted the leg detection method in [56] and incor-
porated a per laser beam score with respect to each beam intersecting a leg. Beams that 
are observing dynamic obstacles are clustered based on distance with a minimum of three 
members in a cluster, Figure 2. A random forest assigns a confidence to each cluster indi-
cating the likelihood of containing a leg. A higher confidence is given to cluster members 
closer to the cluster center than the edges. The weighted scan is provided to the Context 
Mapping module to prevent the addition of dynamic obstacles to the map. 

 
Figure 2. Laser scans (red dotted lines) are clustered based on distance and assigned a confidence 
weight (yellow ellipsoids). Black rectangles are static objects. 

3.4. Context Mapping 
The Context Mapping module uses the novel contextSLAM approach we have devel-

oped for the online creation of an annotated occupancy grid map of the environment. 
ContextSLAM incorporates sparse, non-unique, landmarks represented as environment 
text and laser scan information provided by the Obstacle Detection module within a Rao-
Blackwellized particle filter (RBPF). The landmarks are used concurrently with the anno-
tated context map to localize the robot in the environment. We expand the Rao-Blackwel-
lized factorization in [57] to incorporate context observations 𝑜భ:೟  = ሾ𝑜భ, … , 𝑜೟ሿ. This is 
achieved by introducing a new probabilistic model, and particle weights and robot pose 
estimation representations. The joint distribution of the context, context map 𝕄, robot 
state trajectory 𝑥భ:೟ = ሾ𝑥భ, … , 𝑥೟ሿ, 2D laser scan measurements 𝑧భ:೟ ൌ ሾ𝑧భ, … , 𝑧೟ሿ, and odom-
etry 𝑦భ:೟షభ ൌ ሾ𝑦భ, … ,𝑦೟షభሿ is: Prሺ𝑥భ:೟,𝕄|𝑜భ:೟, 𝑧భ:೟,𝑦భ:೟షభሻ ൌ Prሺ𝕄|𝑥భ:೟, 𝑜భ:೟, 𝑧భ:೟ሻPrሺ𝑥ଵ:௧|𝑜భ:೟, 𝑧భ:೟,𝑦భ:೟షభሻ , (2) 

where Prሺ𝕄|𝑥భ:೟, 𝑜భ:೟, 𝑧భ:೟ሻ represents the probability of the current context map given the 
robot trajectory, measurements and odometry. Prሺ𝑥భ:೟|𝑜భ:೟, 𝑧భ:೟,𝑦భ:೟షభሻ represents the prob-
ability of the trajectory given the measurements, odometry, and context. We obtain these 
probabilities using a particle filter. 
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Particle weights within the particle filter, 𝑊௧ሺ௜ሻ, indexed by 𝑖, are calculated based on 
the following relationship: 𝑊೟ሺ௜ሻ = Prሺ𝑥భ:೟ሺ௜ሻ|𝑜భ:೟, 𝑧భ:೟,𝑦భ:೟షభሻ 𝜋ሺ𝑥భ:೟ሺ௜ሻ|𝑜భ:೟, 𝑧భ:೟,𝑦భ:೟షభሻൗ , (3) 

where Prሺ𝑥భ:೟ሺ௜ሻ|𝑜భ:೟, 𝑧భ:೟,𝑦భ:೟షభሻ  is the posterior over the potential trajectories, and 𝜋൫𝑥భ:೟ሺ௜ሻห𝑜భ:೟, 𝑧భ:೟,𝑦భ:೟షభ൯ is the proposal distribution. We obtain a recursive formulation for 
the weights by constraining the distributions of the current trajectory to be a product of 
the previous likelihoods: 

𝑊೟ሺ௜ሻ = Prሺ𝑥೟ሺ௜ሻ|𝑥భ:೟షభሺ௜ሻ , 𝑜భ:೟, 𝑧భ:೟,𝑦భ:೟షభሻPrሺ𝑥భ:೟షభሺ௜ሻ |𝑜భ:೟షభ, 𝑧భ:೟షభ,𝑦భ:೟షమሻ𝜋ሺ𝑥೟ሺ௜ሻ|𝑥భ:೟షభሺ௜ሻ , 𝑜భ:೟, 𝑧భ:೟,𝑦భ:೟షభሻ𝜋ሺ𝑥భ:೟షభሺ௜ሻ |𝑜భ:೟షభ, 𝑧భ:೟షభ,𝑦భ:೟షమሻ  
=  Prሺ𝑥೟ሺ௜ሻ|𝑥భ:೟షభሺ௜ሻ , 𝑜భ:೟, 𝑧భ:೟,𝑦భ:೟షభሻ𝜋ሺ𝑥೟ሺ௜ሻ|𝑥భ:೟షభሺ௜ሻ , 𝑜భ:೟, 𝑧భ:೟,𝑦భ:೟షభሻ 𝑊೟షభሺ௜ሻ. (4)

Furthermore, we can incorporate the previous context, 𝑜ଵ:௧ିଵ, and laser scan meas-
urements, 𝑧ଵ:௧ିଵ, into the previous map estimate, 𝕄೟షభሺ௜ሻ . Given this decomposition, the 
one time-step of the proposal distribution incorporating the context and laser scan meas-
urements is defined as: 𝜋ሺ𝑥௧ሺ௜ሻ|𝑥భ:೟షభሺ௜ሻ , 𝑜భ:೟, 𝑧భ:೟,𝑦భ:೟షభሻ = Prሺ𝑥೟ሺ௜ሻ|𝕄೟షభሺ௜ሻ , 𝑥೟షభሺ௜ሻ , 𝑜೟, 𝑧೟,𝑦೟షభሻ.  

Using Bayes’ rule, the proposal distribution is: Prሺ𝑥೟ሺ௜ሻ|𝕄೟షభሺ௜ሻ , 𝑥೟షభሺ௜ሻ , 𝑜௧ , 𝑧௧ ,𝑦೟షభሻ = ୔୰ሺ𝑧೟, 𝑜௧|𝕄೟షభሺ௜ሻ , 𝑥೟ሺ௜ሻሻ ୔୰ሺ𝑥೟ሺ௜ሻ|𝑥೟షభሺ௜ሻ ,𝑦೟షభሻ׬୔୰ሺ𝑧೟, 𝑜௧|𝕄೟షభሺ௜ሻ , 𝑥′ሻ୔୰ሺ𝑥′|𝑥೟షభሺ௜ሻ ,𝑦೟షభሻௗ௫ᇱ. (5) 

By substituting the proposal distribution Equation (5) into Equation (4), and applying 
Bayes’ Rule to the posterior distribution, we then obtain the following weight update: 

𝑊೟ሺ௜ሻ = 𝜂 Prሺ𝑧೟, 𝑜೟|𝕄೟షభሺ௜ሻ , 𝑥೟ሺ௜ሻሻPrሺ𝑥೟ሺ௜ሻ|𝑥೟షభሺ௜ሻ ,𝑦೟షభሻPrሺ𝑧೟, 𝑜೟|𝕄೟షభሺ௜ሻ , 𝑥೟ሺ௜ሻሻPrሺ𝑥೟ሺ௜ሻ|𝑥೟షభሺ௜ሻ ,𝑦೟షభሻ׬Prሺ𝑧೟, 𝑜௧|𝕄೟షభሺ௜ሻ , 𝑥ᇱሻPrሺ𝑥ᇱ|𝑥೟షభሺ௜ሻ ,𝑦೟షభሻ 𝑑𝑥ᇱ 𝑊೟షభሺ௜ሻ 
= 𝑊೟షభሺ௜ሻ𝜂 ∙ න𝑃𝑟൫𝑧௧ , 𝑜௧ห𝕄೟షభሺ௜ሻ , 𝑥ᇱ൯ 𝑃𝑟ሺ𝑥ᇱ|𝑥೟షభሺ௜ሻ ,𝑦೟ሻ 𝑑𝑥ᇱ ∝ 𝑊೟షభሺ௜ሻ ∙ න𝑃𝑟൫𝑧௧ , 𝑜௧ห𝕄೟షభሺ௜ሻ , 𝑥ᇱ൯ 𝑃𝑟ሺ𝑥ᇱ|𝑥೟షభሺ௜ሻ ,𝑦೟ሻ 𝑑𝑥ᇱ , 

(6)

where η = 1/ Prሺ𝑧೟, 𝑜೟|𝑧భ:೟షభ, 𝑜భ:೟షభ,𝑦భ:೟షభሻ is constant for all weights and is a normalization 
factor resulting from Bayes’ Rule. We use a Gaussian approximation of the proposal dis-
tribution in Equation (6): 𝑊೟ሺ௜ሻ = 𝑊೟షభሺ௜ሻ න 𝑃𝑟൫𝑧೟, 𝑜೟ห𝕄೟షభሺ௜ሻ , 𝑥ᇲ൯ 𝑃𝑟൫𝑥ᇲห𝑥೟షభሺ௜ሻ ,𝑦೟൯ 𝑑𝑥ᇲ ≅ 𝑊೟షభሺ௜ሻ𝛴ೕసభ௡ೞ 𝑃𝑟൫𝑧೟, 𝑜೟ห𝕄೟షభሺ௜ሻ , 𝑥ೞ,ೕ൯ 𝑃𝑟൫𝑥ೞ,ೕห𝑥೟షభሺ௜ሻ ,𝑦೟൯, (7)

where 𝑛௦  is the number of sampled poses. States 𝑥ೞ,ೕ  are sampled from 𝑥ೞ,ೕ ~ ሼ𝑥ೞ,ೕ|‖𝑥ೞ,ೕ − 𝑥೟∗ሺ௜ሻ‖ < 𝛿ሽ, where 𝛿  is a sampling radius [58]. To obtain the current most 
likely pose, x౪∗ሺ୧ሻ, given a laser scan and context, we use: 𝑥೟∗ሺ௜ሻ = argmaxೣ Prሺ𝑥|𝕄𝑡−1ሺ𝑖ሻ , 𝑥𝑡+ሺ𝑖ሻ, 𝑧𝑡, 𝑜𝑡ሻ , (8) 

where 𝑥೟ାሺ௜ሻ = 𝑥೟షభሺ௜ሻ ⊕ 𝑦೟షభ is the predicted next state based on the odometry and motion 
model. To avoid particle saturation, we use the adaptive resampling method in [57].  

As the 2D laser scans, 𝑧௧, detect the horizontal plane of obstacles for mapping, the 
beams used in 𝑧௧ are independent of the Context Identification module that localizes con-
text, 𝑜௧, which are above this horizontal plane. Thus, 𝑧೟ and 𝑜೟ are conditionally inde-
pendent given the map such that:  Prሺ𝑧೟, 𝑜೟|𝕄೟షభሺ௜ሻ , 𝑥೟ሺ௜ሻሻ = Prሺ𝑧௧|𝕄೚೎೎೟షభሺ௜ሻ , 𝑥೟) Prሺ𝑜௧|𝒦೟షభሺ௜) , 𝑥೟), (9) 
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where 𝕄occ is an occupancy grid and 𝒦 is a set of Extended Kalman Filters (EKFs) that 
track each detected string and the probability density of its location in the environment. As a result, we arrive at our final form for the weight update: 𝑊೟ሺ௜) =  𝑊೟షభሺ௜)Σೕసభ௡ೞ Pr൫𝑧೟ห𝕄೚೎೎೟షభሺ௜) , 𝑥ೞ,ೕ൯Prሺ𝑜೟|𝒦೟షభሺ௜) , 𝑥ೞ,ೕ) Prሺ𝑥ೞ,ೕ|𝑥೟షభሺ௜) ,𝑦೟). (10) 

The set of tuples ሺ𝜅ೖ, 𝑠ೖ) ∈ 𝒦, in the map 𝕄, contain an EKF, 𝜅ೖ, and a string, 𝑠ೖ for 
each context landmark detected in the environment. When contextSLAM receives a con-
text detection, ሺ𝑠೔,𝑝ೣ೤೥,೔) ∈ 𝑜, we find the set of EKFs, 𝒦ೞ೔, with matching strings. We then 
find the EKF within 𝒦ೞ೔ that minimizes the Mahalanobis distance 𝑑௠ሺ𝜅ೖ,𝑝ೣ೤೥,೔) between 
the context location and the EKF: ൫𝜅min,𝑝ೣ೤೥,min൯ = argmin൫఑೔,௣ೣ೤೥,೔൯∈𝒦ೞ೔ 𝑑೘ ൫𝜅௜ ,𝑝ೣ೤೥,೔൯, (11) 

where the estimated covariance associated with each EKF, 𝜅೔, is used when computing 𝑑௠. If the minimum distance is below a threshold, then the EKF 𝜅min is updated using 𝑝ೣ೤೥,ౣ౟౤. Otherwise a new EKF is created using the measurement and appended to 𝒦. 
Thresholding allows for non-unique context instances within the environment.  

When updating an EKF, the predictions for the expected location and covariances of 
the string are simply the last estimates, since context observations are not expected to 
move in the map frame from one time step to another: 𝑜ො௜,௧|௧ିଵ =  𝑜ො௜,௧ିଵ, (12)Σ෠௜,௧|௧ିଵ =  Σ෠௜,௧ିଵ. (13)

The measurement model for each context,𝑖, is computed from the a priori estimate, 𝑜ො௜,௧|௧ିଵ , and the current measured pose, 𝑥௫௬ఏ, such that: 

ℎ൫𝑜ො௜,௧|௧ିଵ , 𝑥௫௬ఏ൯ =  ⎣⎢⎢
⎡ ቤቚ𝑜ො௜,௧|௧ିଵ ௫௬ − 𝑥௫௬ቚቤଶ𝑎𝑡𝑎𝑛 ቀ𝑜ො௜,௧|௧ିଵ ௫ − 𝑥௫, 𝑜ො௜,௧|௧ିଵ ௬ − 𝑥௬ቁ −   𝑥ఏ ⎦⎥⎥

⎤. (14) 

Then, the context’s 3D world coordinate, 𝑝ೣ೤೥,೔, is projected into polar coordinates, ൣ𝑟௜,௧ ,𝜃௜,௧൧், where 𝑟௜,௧ and 𝜃௜,௧ are the distance and heading of detected context, 𝑖, in the 
robot’s frame. The projected point is then used to compute the residual error 𝑦௧ =ൣ𝑟௜,௧ ,𝜃௜,௧൧் − ℎ൫𝑜ො௜,௧|௧ିଵ , 𝑥௫௬ఏ൯. The residual error is then used with the standard EKF correc-
tion update: 𝑦௜,௧ = ൤ 𝑟௜,௧𝜃௜,௧ ൨ − ℎ൫𝑜ො௜,௧|௧ିଵ , 𝑥௫௬ఏ൯, (15) 𝑄௜.௧ = 𝐽௜,௧Σ෠௜,௧|௧ିଵ 𝐽௜,௧் + 𝑅௜,௧ , (16) 𝐾௜.௧ =  Σ෠௜,௧|௧ିଵ 𝐽௜,௧் ∗ 𝑄௜,௧ିଵ, (17) 𝑜ො௜.௧|௧ =  𝑜ො௜,௧|௧ିଵ + 𝐾௜,௧𝑦௜,௧ , (18) Σ෠௜,௧|௧ = ൫𝐼 − 𝐾௜,௧𝐽௜,௧൯Σ෠௜,௧|௧ିଵ + 𝐾௜,௧𝑅௜,௧𝐾௜,௧் , (19) 

where 𝑅௧ is the noise associated with range measurement ሾ𝑟,𝜃ሿ், 𝐽௧ is the Jacobian of ℎ൫𝑜ො௧|௧ିଵ , 𝑥௫௬ఏ൯ with respect to 𝑜ො௧|௧ିଵ , and 𝐼 is the identity matrix.  
ContextSLAM provides the most confident particle and its corresponding context 

map to the other modules. An overview of the contextSLAM Algorithm is presented in 
Algorithm 1. 
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Algorithm 1: contextSLAM: RBPF method extension to include context. 
Require: Φ୲ିଵሺ୧) , the sample set of the previous time step;  z୲, the current laser scan from Obstacle Detection; o୲, the current context observation from Context Identification; and y୲ିଵ, the current odometry ob-
servation. 
Ensure: Φ୲ = {} #The new sample set 
for ϕ𝐭ି𝟏ሺ𝐢) ∈ Φ୲ିଵ do 

(x౪షభሺ୧) , W౪షభሺ୧),𝕄౪షభሺ୧) )= ϕ୲ିଵሺ୧)  (𝕄౥ౙౙ౪షభ(୧) ,𝒦౪షభ(୧)) = 𝕄౪షభ(୧)  #Expand context map into grid and context EKFs. x౪ା(୧) = x౪షభ(୧) ⊕ y౪షభ#Motion model x౪∗(୧) = argmax୶ Pr(x|𝕄౪షభ(୧) , x౪ା(୧), z౪, o౪) #Max probability state of x౪(୧). 
If x୲∗(୧) = failure then x୲(୧)~ Pr(x୲(୧)|x୲ିଵ(୧) , y୲ିଵ) W౪(୧) = W౪షభ(୧)Pr(z୲|𝕄౥ౙౙ౪షభ(୧) , xୱ,୨) Pr(o౪|𝒦౪షభ(୧), x౩,ౠ) #Next particle weights. 
Else 

for j = 1, … , n౩ do #Sample around the node x౩,ౠ ∼ {x౩,ౠ|||x౩,ౠ − x౪∗(୧)|| < δ} 
end for μ౪(୧) = (0,0,0)⊺ #Compute Gaussian proposal Σ = 0 nಔ(୧) = 0 
for all x౩,ౠ ∈ {x౩,భ, … , x౩,౤౩} do μ౪(୧) ← μ౪(୧) + x౩,ౠPr(z౪|𝕄౥ౙౙ౪షభ(୧) , x౩,ౠ) Pr(o౪|𝒦౪షభ(୧), x౩,ౠ)Pr(x౩,ౠ|x౪షభ(୧) , y౪)   nಔ(୧) ← nಔ(୧) + Pr(z౪|M౥ౙౙ౪షభ(୧) , x౩,ౠ)Pr(o౪|𝒦౪షభ(୧), x౩,ౠ)Pr(x౩,ౠ|x౪షభ(୧) , y౪) 
end for μ୲(୧) ← μ୲(୧)/nஜ(୧) 
for all xୱ,୨ ∈ {x౩,భ, … , x౩,౤౩} do Σ౪(୧) ← Σ౪(୧) + (x౩,ౠ − μ౪(୧))(x౩,ౠ − μ౪(୧))஋ ⋅ Pr(z౪|M౥ౙౙ౪ష𝟙(୧) , xୱ,୨)Pr(o୲|𝒦౪షభ(୧), xୱ,୨)Pr(x౩,ౠ|x౪షభ(୧) , y୲) 
end for Σ౪(୧) ← Σ౪(୧)/nಔ(୧) x౪୧ ∼ 𝒩 ቀμ౪(୧),Σ౪(୧)ቁ #Sample new pose W౪(୧) = W౪షభ(୧)nಔ(୧) #Update particle weights 

end if 𝕄౥ౙౙ౪(୧) = integrateScan(𝕄౥ౙౙ౪షభ(୧) , x୲(୧), z୲) #Update occupancy grid 𝒦౪(୧) = integrateText(𝒦౪షభ(୧), x౪(୧), z౪) #Update maps with context Φ౪(୧) = Φ౪(୧) ∪ {(x౪(୧), W౪(୧), (𝕄౥ౙౙ౪(୧) ,𝒦౪(୧)))} #Update sample set 
end for Neff = 1/Σ౟సభ|஍౪| (W౪(୧) Σౠసభ|஍౪|W౪(୨)ൗ )ଶ 
If N౛౜౜ < T then Φ౪ = resample(Φ౪) 
end if 

3.5. Aisle Detection 
The Aisle Detection module identifies potential aisles within the context map gener-

ated by the Context Mapping module. We examine the contours detected in the context 
map to find a set of candidate aisles, 𝒜, that satisfy the geometric constraints related to 
the minimum/maximum aisle dimensions, and wall parallelism. The set of context EKFs 
associated with aisle 𝑎௞ are: 𝒜𝒞𝓀 = {𝑠೘|(κ೘, 𝑠೘) ∈ 𝒦,𝑑೎(𝑎, κౣ,ಔ) < 𝑤ೌ,min/2}, (20) 
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where 𝑑೎(𝑎ೖ,𝜅೘,ഋ) is the minimum distance between an aisle and the point 𝜅೘,ഋ which 
is the mean of 𝜅೘. Aisle product and aisle geometry information is provided to the Action 
Deliberation module to aid in searching for products. 

3.6. Action Deliberation 
The Action Deliberation module controls the robot’s actions based on the information 

provided by the other modules. It uses a finite state machine that contains three main 
states, Figure 3. It is initiated by user input, leading to the Begin Exploration state transition. 
A copy of the search query, 𝒬cp= 𝒬, tracks the set of unfound products. The main states 
are presented below: 

 
Figure 3. The finite state machine used for robot Action Deliberation. 

3.6.1. Explore 
The robot explores an unknown environment by navigating to frontiers provided by 

Frontier Detection. Frontiers are detected by examining the context map provided by Con-
text Mapping module using frontier exploration [58], which provides a set of points repre-
senting a boundary between explored and unexplored space in the context map. The point 
with the minimum estimated travel time is provided to the Navigation module. The Navi-
gation module uses the ROS Move Base package [59], where costmaps are used to plan 
navigation paths around dynamic obstacles which are executed by the Low-Level Control-
ler. In the Explore state, if an aisle paired with context is found, the robot transitions to the 
Aisle Found state. 

3.6.2. Aisle Found 
In the Aisle Found state the robot has found an aisle that may contain a product of 

interest. An aisle is of interest if a product of interest has a Levenshtein distance less than 
2 with any context found within the aisle. It navigates to the entrance of that aisle and 
transitions into the Search Aisle state. 

3.6.3. Search Aisle  
In the Search Aisle state the robot searches the aisle, navigating from the entrance to 

the opposite end using the Navigation module to locate the products of interest associated 
with the current aisle 𝒫gr = P(𝒜𝒞). 𝒫gr and the map are updated as new observations be-
come available, and replanning takes place. The Product Detection module detects the 
products with onboard cameras. We use April tags [60] due to their robustness in cluttered 
environments for this module, as the product identification problem is beyond the scope 
of this paper. Several papers have only focused on this specific recognition problem [61–
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63]. Furthermore, the use of April tags is also a common approach in exploration problems 
when the focus is not on object/product recognition [36,64,65]. When a product, 𝑝gr, is 
found the set of products is updated 𝒬cp ← 𝒬cp\pgr , 𝒫gr ← 𝒫gr\pgr . The robot continues 
searching the aisle until |𝒫gr|= 0 or it has searched an aisle 𝑛 times. If there are more 
products on the list, i.e., |𝒬cp| > 0, the robot exits the Search Aisle state and enters the Ex-
plore state. If |𝒬cp| = 0, it enters the Finish Search state. 

3.6.4. Finish Search  
In the Finish Search state the robot has finished searching for products and returns to 

its home location. As the primary robot task is product search, the environment does not 
have to be fully explored when the search is complete. 

4. Blueberry Robot Implementation 
The grocery robot architecture is integrated into our Blueberry platform (Figure 4). 

The head has an RGB and depth camera for context identification and localization. The 
torso contains RGB cameras for product detection. The lidar generates a 3D point cloud 
which is converted into a 2D laser scan used for mapping and obstacle detection.  

 
Figure 4. Blueberry Robot with labeled robot components. 

5. Experiments 
We conducted extensive experiments to determine: (1) the accuracy of contextSLAM 

in comparison to an existing popular SLAM approach, and (2) the success rate of the ar-
chitecture searching unknown real environments for products. 

5.1. Map Performance 
The performance of contextSLAM is validated by the accuracy of the robot’s entire 

trajectory using its generated map. This accuracy is defined by the root mean square error 
(RMSE): 

RMSE = (Σೖసభ௧ (𝑥ೖ − 𝑥ොೖ)ଶ/𝑡)బ.ఱ. (21) 

We measure the accuracy of the estimated robot’s entire trajectory 𝑥భ:೟  with respect 
to the ground truth trajectory, 𝑥ොభ:೟. Experiments were performed using the Stage Simula-
tor on four 19.6 × 29.5 m2 environments consisting of: (1) mixed: aisles, dead-ends, and 
closed paths, Figure 5a; (2) dead-ends: aisles having dead-ends, Figure 5b; (3) loops: many 
closed paths, Figure 5c; and (4) circles: circular spaces with closed paths and dead-ends, 
Figure 5d. The ground truth trajectory was obtained from the ground truth state at each 
timestep as reported by Stage. 
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To simulate crowded retail conditions, we incorporated: (1) scene text, and (2) dy-
namic obstacles. Unique text were placed in 30 random locations in each environment and 
were published directly to the Context Mapping module. Context observations were tuples 
containing a randomly generated text string and the associated 2D world coordinate. 

 

(a) (b) (c) (d) 

Figure 5. Simulated Environments: (a) mixed; (b) dead-end; (c) loops; (d) circles. 

To simulate limited visibility of the cameras, a context observation was considered 
visible when it was within 3 m and 1.0 rad of the robot’s heading. When the robot navi-
gated the environment, and the true location of a context was within its 2D sensory range, 
the Context Mapping module would receive an array of all visible context observations, 
where the provided 2D world coordinate would have a simulated measurement error 
modelled by a Gaussian distribution. In each environment, 45 dynamic obstacles were 
moving in circular motion paths. Each obstacle’s path radius was uniformly sampled be-
tween (0,1] m with velocity (0,1] m/s. 

We manually navigated the robot within each environment four times, with unique 
paths. Each path was tested 13 times with different measurement errors and each trial was 
repeated 3 times (39 trials in total). The measurement error was represented by a Gaussian 
distribution with (0,σr

ଶ ∈ Ξ) and (0,σಐଶ ∈ Ξ) for the range and angular measurements, 
such that Ξ = {0.005,0.015,0.025,0.035,0.045}. In each trial a map is generated using con-
textSLAM and robot location estimates are obtained. For comparison purposes, we also 
conduct the same experiments using the popular GMapping SLAM approach. The RMSE 
of the predicted trajectory using estimates from both methods is presented in the boxplot 
in Figure 6 and a visualization of the predicted trajectories is presented in Figure 7. 

 
Figure 6. RMSE boxplot of predicted trajectories of contextSLAM and GMapping. 
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Figure 7. Predicted trajectories of contextSLAM (blue) and GMapping (black) in the four environ-
ments with respect to the ground truth (red). 

5.1.1. Trajectory Prediction Results 
The results show that our contextSLAM method had a lower RMSE of 1.14 m, com-

pared to a RMSE of 1.98m for GMapping. Furthermore, the Wilcoxon Sign Rank non-par-
ametric test showed that the RMSE is statistically significantly smaller for our con-
textSLAM approach (𝑍 = 3150.0,𝑝 < 0.001). In Figure 7, we see that there is a significant 
improvement on trajectory predictions, particularly in environments that are lacking in 
corners, such as aisles having dead-ends and circular spaces. 

5.1.2. Map Generation Results 
Figure 8 shows examples of maps generated by contextSLAM (Figure 8a) and GMap-

ping (Figure 8b), with 0.015 m radial and 0.025 rad angular context detection error. The 
maps demonstrate that contextSLAM maps had fewer false walls when compared to 
GMapping. The presence of false walls shows that GMapping failed to recognize and ac-
curately localize in previously seen areas. For example, in the dead-end environment, an 
extra corridor was mapped. The use of salient text features in the environment allowed 
contextSLAM to build the environment map more effectively in areas that otherwise 
lacked corner features such as the circle environment. As a result, the use of contextual 
features shows a significant improvement towards loop closures by providing additional 
salient landmarks to localize against. 

 
(a) contextSLAM 

 
(b) GMapping 

Figure 8. Maps generated by (a) ContextSLAM and (b) GMapping at 0.015 m radial and 0.025 rad 
angular context detection error. 
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5.2. Using the Grocery Robot Architecture to Find Products 
We evaluated the overall performance of the grocery robot architecture using Blue-

berry in two environments: (1) a grocery store-like environment, and (2) a real grocery 
store. The experiments test the feasibility and robustness of the architecture and its appli-
cation to real-world environments with significant amounts of contextual information and 
product variety in both a controlled and real store setting. A series of trials were per-
formed where the robot was provided a list of three to four items to find that were dis-
tributed within aisles in the environment. The robot started in its home location and ex-
plored the unknown environment with a maximum speed of 0.4 m/s to find all the items 
and returned home again. We consider the worst-case scenarios where the robot is de-
ployed within a previously unseen store (no map information is available) or after layout 
changes have occurred (requiring the generation of a new map). The experiments were 
approved by the University of Toronto Ethics Committee (protocol number 37011) and all 
participants gave their informed consent prior to participating in the experiments. 

5.2.1. Store-Like Environment  
The 7 × 10 m2 environment consisted of an open area with the robot’s home location 

and three parallel aisles containing the products on the list (Figure 9a). The open area 
represented the front of a store and was 2 × 4 m2. Each aisle was 1.8 × 9 m2. Hanging over 
the middle of each aisle was a two-sided aisle sign containing six product categories in 
that aisle (Figure 9b). The signs were 0.9 × 0.6 m2 and 2.7 m above the ground.  

  
(a) (b) 

Figure 9. Store-like environment: (a) top down view; (b) store-like aisle. 

Product search queries were generated using all combinations of 3–4 products con-
sisting of: tea, cereal, pasta and household products. Two trials were performed for each 
query, for a total of 20 trials. Half were conducted with just the robot in the environment 
and the other half with up to three dynamic people in the environment with their own 
goals. 

Store-Like Environment Results and Discussions 
Table 1 presents the number of attempts taken by Blueberry to find each product on 

the list and the physical search time to navigate the scene to find all the products for each 
trial. The number of attempts defines the number of times the robot traveled down an 
aisle to find the specified product location. In trials 1–8, three products were requested for 
the search, and in trials 9 and 10, all four products were requested. In Table 1, the non-
requested products are represented by N/A. Blueberry was able to find all the requested 
products in every trial. In the experiments without people, the mean time to find a product 
was 79.5s (𝜎 = 10.17), with a mean of 1.06 searches (𝜎 = 0.24). In the experiments with 
dynamic people the mean time to find a product was 120.5s (𝜎 = 60.5), with a mean of 1.34 
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searches (𝜎 = 0.64). The combined average computation time for running the context iden-
tification, mapping and planning methods together was only 60 ms. 

Table 1. Architecture performance and total search time in store-like environment. 

No People—Number of Attempts to Find a Product 
         Product 
Trial 1 2 3 4 5 6 7 8 9 10 

Tea 1 1 N/A N/A 1 1 1 1 1 1 
Cereal 1 1 1 1 N/A N/A 1 1 1 1 
Pasta 2 1 1 1 2 1 N/A N/A 1 1 

Household N/A N/A 1 1 1 1 1 1 1 1 
Total Time (s) 230 170 240 285 250 205 230 270 270 235 

With Dynamic People—Number of Attempts to Find a Product 
Tea 1 1 N/A N/A 1 1 1 1 1 1 

Cereal 1 1 1 2 N/A N/A 2 2 1 1 
Pasta 1 1 3 3 1 2 N/A N/A 1 1 

Household N/A N/A 1 1 3 2 1 1 1 1 
Total Time (s) 225 200 835 519 390 346 282 320 360 303 

There were six trials with dynamic people that required two or three searches for 
individual products. The trials that required three aisle searches were 3–5. In trials 3 and 
4, there were instances of two people standing close together in the aisle (Figure 9b). The 
leg detector could not distinguish their legs and detected them as static objects, and, thus, 
they were included in the map. The robot then selected an alternative path, for example 
when searching for pasta in trial 3, it went through aisle 1 to navigate around them and 
reach its goal pose in aisle 2. Once the robot obtained new measurements of the aisle, the 
map was updated, and Blueberry followed a direct path through the aisle. In trial 5, the 
robot could not find a safe path around a large number of people blocking the aisle. It 
replanned, and on its 3rd search it was able to find a safe path through the aisle around 
the people. In general, since our person detection technique detects dynamic clusters as 
legs, wearing different clothing with varying colors or patterns did not impact its perfor-
mance. 

Sample context maps generated by contextSLAM are shown in Figure 10 for trial 9. 
The green lines represent aisle locations, numbered in the order of detection. The number 
is displayed if the aisle was associated with any context. Clusters of black text in the mid-
dle of the aisles are detected text on aisle signs. Context that has been matched with an 
aisle is shown in red. 

   
(a) (b) (c) 

Figure 10. Grocery-like environment: (a) Layout, (b,c) Context maps made in trial 9 with no people 
and dynamic people, respectively. 



Robotics 2021, 10, 110 17 of 21 
 

 

5.2.2. Grocery Store Environment  
Similar experiments were performed in a real grocery store (Figure 11a), which had 

significantly more clutter and context due to posters and packaging. 

  
(a) (b) 

Figure 11. Real grocery store: (a) top down view; (b) crowded store aisle. 

The experiment was conducted in an 8 × 14 m2 section of the store which contained 
an approximately 5 × 7 m2 open area and three aisles. The aisles in the search area were 
approximately 2.5 × 12 m2. Two-sided signs were over the middle of each aisle (Figure 
11b) and used different fonts than in experiment 1. Each sign contained 3–5 product cate-
gories. Search queries were generated using combinations of three or four products. A 
total of 10 trials were conducted, five with just the robot, and five with two dynamic peo-
ple randomly walking and looking at items in the aisles. The robot always started in the 
open area in front of the aisles (Figure 12a). A video of Blueberry searching for products 
using our grocery robot architecture in this environment is presented here on our lab’s 
YouTube channel: https://youtu.be/9RYUxPVIhkM. 

   
(a) (b) (c) 

Figure 12. Real-store environment: (a) Layout, (b,c) Context maps made in trial 9 with no people 
and dynamic people, respectively. 

Grocery Store Environment Results and Discussion 
Table 2 shows the number of search attempts needed to find each product and the 

time to find all products for each trial. The robot found all requested products in each trial. 
Trials without people, had a mean of 1.06 searches (𝜎 = 0.24). Trials with people had a 
mean of 1.44 searches (𝜎 = 0.50).  
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Table 2. In store experiments—attempts to find a product and total search time. 

 No People Dynamic People  
         Product 

Trial 
1 2 3 4 5 1 2 3 4 5 

Crackers 1 N/A 1 1 1 2 N/A 2 1 1 
Cereal 1 1 N/A 1 1 2 1 N/A 2 2 

Granola 1 2 1 N/A 1 1 2 2 N/A 1 
Honey N/A 1 1 1 1 N/A 1 1 1 1 

Total Time (s) 400 364 405 290 424 396 390 240 395 420 

It is interesting to note that in some cases, the robot completed the trials with dynamic 
people in less time. For example, in trial 3 without people Blueberry searched the full en-
vironment to find all the desired products. The frontier exploration approach resulted in 
the robot taking a longer path by searching all aisles. However, in the dynamic people 
condition, all the products were found without having to search one of the aisles. In this 
case Blueberry chose to navigate the adjacent aisle, thus resulting in a shorter trial time. 

The context maps generated in trial 5 are shown in Figure 12. The maps highlight the 
significant increase in text, observed in the grocery store compared to the store-like envi-
ronment. Even with increased detections, the robot was able to efficiently find the prod-
ucts by associating text with their respective aisles, allowing for the successful completion 
of each of the queries. 

6. Conclusions 
In this paper we present a novel grocery robot architecture for searching for products 

in unknown cluttered grocery environments. The architecture uniquely combines an OCR 
system with a new context Simultaneous Localization and Mapping framework (con-
textSLAM). The contextSLAM method builds a map of the environment using context in 
the store such as aisle signs for which the robot can use to find products of interest. Ex-
periments showed that a robot using the architecture can find multiple products in differ-
ent environments with unpredictable dynamic people. Future work will include the in-
vestigation and integration of a product detection system such as SKU or few-shot object 
detection methods, and human-robot interaction studies with shoppers in a grocery store. 
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