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Abstract: Hybrid mobile robots with two motion modes of a wheeled vehicle and truss structure
with the ability to climb poles have significant flexibility. The motion planning of this kind of robot
on a pole has been widely studied, but few studies have focused on the transition of the robot
from the ground to the pole. In this study, a locomotion strategy of wheeled-legged pole-climbing
robots (the WL_PCR) is proposed to solve the problem of ground-to-pole transition. By analyzing
the force of static and dynamic process in the ground-to-pole transition, the condition of torque
provided by the gripper and moving joint is proposed. The mathematical expression of Centre of
Mass (CoM) of the wheeled-legged pole-climbing robots is utilized, and the conditions for the robot
to smoothly transition from the ground to the vertical pole are proposed. Finally, the feasibility of this
method is proved by the simulation and experimentation of a locomotion strategy on wheeled-legged
pole-climbing robots.

Keywords: ground-walking robot; pole-climbing robot; locomotion control; load analysis

1. Introduction

Climbing robots have significant potential applications in industry, which can be used
to inspect and maintain large structures, such as dams [1], bridges [2], hulls [3], and large
industrial boilers [4]. Therefore, great efforts have been made to develop robots that can
climb in truss structures [5,6]. On the other hand, due to their high speed and high energy
efficiency, wheeled vehicles have existed and developed for hundreds of years. How to
integrate the best performance of two completely different mobile systems into a hybrid
platform is a hot topic in robot research, which provides more possibilities for improving
the robot’s ability to adapt to the environment [7–9]. In order to solve this problem, this
paper studies the mechanism of wheeled-legged robots and how the motion planning
of hybrid motion contributes to the motion control scheme for the hybrid locomotion of
wheeled-legged robots.

The hybrid motion system with wheels improves the flexibility and environmental
adaptability of the system and provides more gait. The Centaur robot is equipped with
wheel steering and articulated legs to adjust its supporting gait in response to unknown
disturbances [7]. The design method of hybrid legged/wheeled mobile robots is demon-
strated, and the walking, rolling, gliding and skating motions were generated by the novel
trajectory optimization formulation [8]. A Transleg was installed with four transformable
leg-wheel mechanisms, similar to the compliant spine mechanism, which can realize the
turning movement in legged-wheeled mode and the jumping gait in legged mode [9]. By
adding the wheel structure to improve the mechanism of the PCR [10], the research on gait
control can improve the flexibility and environmental adaptability of the PCR [10].

From the perspective of structural design, pole-climbing robots can be divided into
three types: soft climbing robots, legged climbing robots, and wheeled climbing robots.
The inspiration of the soft climbing robot is inspired by bionics. The soft climbing robot is
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based on dielectric-elastomer artificial muscles and electroadhesive feet. The movement is
realized by controlling the voltage applied to the actuator and foot to synchronize the body
deformation and foot adhesion. This movement mechanism imitates the crawling caused
by the movement of caterpillars. Therefore, auxiliary wheel execution cannot be added to
this structure [11].

The Climbot is a bio-inspired biped climbing robot composed of five joint modules and
two grippers in a series [6]. The cable climbing robot adopts a bilateral-wheeled mechanical
structure to perform dynamic obstacle surmounting, which is composed of driving wheels
and driven wheels. The task of climbing the cable is completed by the analysis of the track
and torque of the wheel. This structure allows the wheels to complete the climbing cable,
and limits their movement on the ground, so it does not have the function of the wheel in
the normal sense [12].

For a multi-degree-of-freedom connecting rod robot, the trajectory of the robot needs
to be optimized. There are two main directions for solving the problem of optimal con-
trol: direct and indirect approaches. The direct approach reduces the optimal control
problem to a nonlinear programming problem [13] that provides the transition from the
optimization problem in the infinite-dimensional space to the optimization problem in the
finite-dimensional space; thus, it is more convenient and can be readily solved within a
wider convergence region. The indirect approach based on the Pontryagin’s maximum
principle (PMP) [14] solves optimal control by formulating it as a boundary value problem
where it is necessary to find the initial conditions for a system of differential equations for
conjugate variables. The PMP was originally proposed to maximize the terminal speed of
a rocket in space orbit, and it was also used to find the optimal control signal of the robot.
In robot control optimization, the optimization of PMP was represented by Lagrangian
and Hamiltonian mechanics [15–17]. The free-floating planar manipulator of a flexible
spacecraft simulator was built, and the optimal control of the model was carried out by
using the Hamilton principle [15].

The PMP principle and dynamic programming (DP) method can be used to plan the
optimal motion mode of robots [16]. The principle of PMP can also plan the vehicle path
and realize it in the dynamic process [17]. The PMP principle, combined with Newton
mechanics, can find the best combination of static balance and trajectory planning in
the process of robot motion [18]. Its optimal solution has high accuracy, but it is very
sensitive to the description of additional conditions that must be met for control, and it also
guarantees the maximum value of the Hamiltonian method. For problems with complex
phase constraints, the Hamiltonian method is usually difficult to set in practice.

However, these works generally focus on the nominal trajectory performance without
considering possible uncertainties. In practice, on the right-hand sides of the models, there
are objectively some uncertainties of various nature. As a rule, they are not taken into
account, but the presence of such uncertainties can lead to the loss of optimality of the
obtained control [19].

There are also some methods to consider the influence of uncertainty when designing
the reference orbit in advance [20–22]. For example, in the process of motion control, the
uncertain performance of parameters was used to establish the optimal control scheme [20].
Desensitization optimal control [22] modifies the nominal optimal trajectory to reduce
its sensitivity to uncertain parameters. This involves constructing an appropriate sen-
sitivity cost that, when penalized, provides solutions that are relatively insensitive to
parametric uncertainties.

Model Predictive Control (MPC) scheme is an optimal model-based control strategy
that has been quite popular in the process industry in the last decades, while in recent
years, there has been a major shift for its adoption in the area of robotics [23].

Due to the complexity of kinematics models with joint structures, the numerical
method is an effective method for solving kinematics models. The sequential quadratic
programming (SQP) method is one of the most successful methods to solve the problem
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of nonlinear constraint minimization [24]. The SQP algorithm is used to solve the inverse
kinematics problem of humanoid robots with a redundancy [25].

In this study, we designed and developed a wheeled-legged pole-climbing robot
named the WL_PCR. The WL_PCR consists of a two-legged structure and a four-wheeled
structure that achieves the locomotion of the climbing pole and ground travel. The main
contributions of the study are as follows.

We designed and developed the WL_PCR.
We had developed a movement strategy for the ground-to-pole transition, which has

not done with the other pole-climbing robot.
We used the sequential quadratic programming algorithm to do the force analysis

of static and dynamic process, and a flip locomotion control scheme to determine its
motion conditions.

We explored the possibilities of motion strategies through simulation analysis. We
proved the performance of the WL_PCR through experiments.

The rest of this article is organized as follows. In the second section, the design of the
WL_PCR is introduced. The third section analyzes the ground-to-pole transition, including
the static force analysis, the force analysis of dynamic process and the flip locomotion. The
experimental results are presented and discussed in Section 4. Finally, the conclusions are
summarized in Section 5.

2. System Design
2.1. The WL_PCR Design

The WL_PCR is an improved pole-climbing robot [10,26] developed in our laboratory.
It was developed for the hybrid motion of pole-climbing and ground-walking. The primary
characteristic of the WL_PCR is the design of its leg structure and wheel structure, which
enables ground travel, climbing poles and the transition from the ground to climbing a
pole. The leg structure of the WL_PCR is designed to climb pole-like objects, as presented
in Figure 1. The leg structure is composed of four bar linkages (a0, a1, a2, a3, a4), four joints
(j0, j1, j2, j3), two supports (h1, h2) and two grippers (g1, g2). h1 and h2 are designed to
support and reduce the torque requirements of the servomotor when it is climbing, as
shown in Figure 2a. All variables used in this paper are defined in Table A1 in Appendix A.
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The wheel structure of the WL_PCR is designed to travel on the ground, as shown
in Figure 2b.

For small mobile robots like the WL_PCR, it is required to simplify the complexity of
the mechanism due to the inertial effect and limited structural stress [27]. Therefore, we
determined the most simple and feasible mechanism under careful consideration to reduce
the complexity of the WL_PCR’s structure to the greatest extent. Only four wheels (w1, w2,
w3, w4) and four fixed poles (k1, k2, k3, k4) are added to the PCR [10] structure. w1, w2, w3
and w4 are driven by a DC motor. The model of the motor is JGA25-370, and its parameters
are shown in Table 1. j0, j1, j2, j3 and g1, g2 are driven by a servomotor. The model of the
servomotor is DS5160, and its parameters are shown in Table 2.

Table 1. DC motor parameters.

Motor Brand Bi Hui

Rated voltage 6 V
Rated current 0.42 A
Rated power 2 W

Speed 4900 m/min
Torque 40 g·cm

Motor weight 68 g

Table 2. Servomotor parameters.

Motor Brand Dsservo

Rated voltage 7.4 V
Maximum current 5 A
Controllable angle 270◦

Torque 60 kg·cm
Motor weight 158 g

2.2. The WL_PCR Design

The dimensions of each component of the WL_PCR are summarized in Table 3. Ac-
cording to the relative motion between structures during the three stages of transition, the
structure of the WL_PCR is divided into three parts: Part I, Part II and Part III, as shown in
Figure 1. The weight of each part is shown in Table 4. In the process of the ground-to-pole
transition, each part moves relatively, and the interior of each part remains relatively static.
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Table 3. Dimensions of robot components.

Components Dimensions (cm)

a0 6.3
a1 6.8
a2 12.4
a3 6.8
a4 6.3
h1 4.8
h2 4.8
g1 25.7
g2 25.7
k1 10.0
k2 10.0
k3 10.0
k4 10.0

Table 4. Dimensions of robot components.

Part Weight (kg)

Part I 0.737
Part II 1.206
Part III 0.737

In order to simplify the analysis of the WL_PCR, we assume that the mass distri-
bution of the WL_PCR is uniform, and the center of mass of each part is located at its
geometric center.

3. Ground-to-Pole Transition Analysis
3.1. Problem Definition

The WL_PCR can perform four gaits: traveling on the ground, climbing on a pole,
transiting from the ground to the pole, and transiting from the pole to the ground. The
latter two processes are inverse to each other. This paper only studies the transiting from
the ground to the pole. Traveling on the ground is executed by driving w1, w2, w3, w4 and
the way it is executed is discussed in many papers [28,29]. Climbing on a pole is achieved
by two grippers, g1 and g2, which alternately clamp the pole as described in [26]. Our
focus is the special gait of transiting from the ground to the pole.

Transiting from the ground to the pole can be divided into three stages. Stage 1: The
WL_PCR uses one gripper g1, to clamp the pole, rotates j0 to make Part II and Part III lose
the support of the ground and keeps itself stable on the pole. Stage 2: j0 continues to be
rotated, causing Part II and Part III to uniformly rotate in the direction of the pole. Until
the other gripper g2 grasps the pole, j0 stops rotating. Stage 3: The WL_PCR uses g2 to
clamp the pole, and turns itself over to prepare for climbing on the pole. During stage 1,
the static force of the WL_PCR is analyzed, and the force condition provided by the gripper
is obtained to ensure that the robot can be stably lifted from the ground. During stage 2, the
dynamic torque of the WL_PCR is analyzed, and the torque condition of the servomotor
at j0 (or j2) is obtained. During stage 3, the flip locomotion of the WL_PCR is analyzed to
ensure that the WL_PCR can complete the first flip without collision.

3.2. Force Analysis of Static State

In stage 1, the WL_PCR uses g1 to grasp the pole, and j0 rotates to make Part II and
Part III off the ground at time t0, as shown in Figure 3a. At t0, the robot is in a static state
and the resultant moment of the WL_PCR system is 0. The moment at L, M and N points
can be described as follows:

G(l1 + l2 + l3) = Ff 3l1 + F′f 3l1 + Ff 2(l1 + l3) + FN2l4 (1)
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G(l2 + l3) + Ff 1l1 + F′f 1l1 = FN2l5 + Ff 2l3 + FN1(l4 − l5) + F′N1(l4 − l5) (2)

Gl2 + Ff 3l3 + F′f 3l3 + Ff 1(l1 + l3) + F′f 1(l1 + l3) = FN1l4 + F′N1l4 (3)

Ff 1 = µ1FN1 (4)

Ff 2 = µ2FN2 (5)

Ff 3 = µ3FN3 (6)

G = (m1 + m2 + m3)g (7)

where G is the gravity of the WL_PCR at the center of mass m, FN1, F′N1, FN2, FN3 and F′N3
are the supporting force, µ1, µ2 and µ3 are the static coefficients of frictions between the
gripper and the pole, Ff 1, F′f 1, Ff 2, Ff 3 and F′f 3 are the frictions between the pole and the
robot, l1, l2 and l3 are the projections of the arm of forces Ff 1, Ff 2, and Ff 3 on the x-axis
respectively, as shown in Figure 3.
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According to Equations (4)–(6), Ff 1, F′f 1, Ff 3 and F′f 3 increased with increasing FN1, F′N1,
FN3 and F′N3 which are related to the clamping force of the gripper. Due to the symmetry
of the mechanical structure in Figure 3b, FN1 = F′N1 and FN3 = F′N3. Then Ff 1 = F′f 1
and Ff 3 = F′f 3 by Equations (4)–(6). Set A = µ2(l1 + l3) + l4, B = 2l4 − 2µ1(l1 + l3),
C = l4 − l5 − 2µ1l1 and D = µ2l3 + l5, then FN3 can be obtained.

FN3 =
G[AB(l2 + l3)− BD(l1 + l2 + l3)− ACl2]

2µ3l3 AC− 2µ3l1BD
(8)

FN3 is the reaction of the clamping force FC generated by the gripper g1. FC is provided
by the servomotor SG1 mounted at the support frame h1. To ensure the completion of the
locomotion in stage 1, the equivalent force Fsg produced by the torque M1 of SG1 meets the
following Condition 1:

Fsg1 ≥ FC (9)

FC = FN3 (10)
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According to Equation (8), Figure 4 can be obtained. The range of the j0’s rotation
angleω is between 0 ∼ π

2 . In this range, FN3 increases with the increase ofω. Thus, the
minimum value of Fsg1 is 20.6 N; the maximum value of Fsg1 is 41.4 N.
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3.3. Force Analysis of Dynamic Process
3.3.1. Analysis of the Trajectory of Mass Center

The WL_PCR performs the locomotion of stage 2 from t0 to t3. j0 continues to rotate
until the other gripper g2 grasps the pole at t3.

To simplify the analysis, we made assumptions as follows:
Assumption 1: j0 rotates at a constant speed in the second stage.
Assumption 2: The relative positions between Part II and Part III remain unchanged

during the rotation process.
The coordinate system of j0 is represented by X-Y-Z as shown in Figure 4. Let the center

of mass of Part III be A (Ax, Ay, Az), the center of mass of Part II be B
(

Bx, By, Bz
)
, and

the center of mass of Part II and Part III be D
(

Dx, Dy, Dz
)
.
(

Dx, Dy, Dz
)

can be calculated
by Equation (11). 

Dx = Bx ·m2+Ax ·m3
m2+m3

Dy =
By ·m2+Ay ·m3

m2+m3
Dz = 0

(11)

where m2 is the mass of Part II, and m3 is the mass of Part III.
In the X-Y-Z coordinate system, the coordinate values of (Ax, Ay, Az) are (26.0, 16.0, 0)

and
(

Bx, By, Bz
)

is (13.0, 0, 0) at t0 according to the dimensions of each part in Table 3. Then(
Dx, Dy, Dz

)
are (17.9, 6.0, 0) at t0 according to Equation (11).(

Dx, Dy, Dz
)

changes with the rotation of the servomotor j0. Under Assumption 2,
its trajectory is a circle, which centers on the origin of the coordinate and has radius r
described in Equation (12). During stage 2, the trajectory of point D is shown by the dotted
line in Figure 5.

r =
√

D2
x + D2

y (12)
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3.3.2. Torque Analysis of the WL_PCR

The servomotor SG2 installed at j0 provides the torque M2 for part II and part III
to rotate.

M2 = lOC·G′ (13)

G′ = (m2 + m3)g (14)

where lOC is the gravity arm of G′. lOC can be obtained by Equations (15) and (16).

lOC = r· cos(ω + α) (15)

α = arctan
Dx

Dy
(16)

where α (0 ≤ α ≤ 90◦) is the angle between OD and OE and ω is the angle between OE
and the X-axis.

lOC decreases with the increase ofω (0 ≤ ω ≤ 90◦ − α) and then increase according to
Equations (15) and (16). When ω + α = 90◦, the minimum value of lOC is 0. The range of
lOC can be obtained by Equation (17).

0 ≤ lOC ≤ rcos(α) (17)

The range of M2 can be obtained by Equation (18). The torque M2 of SG2 meets the
following Condition 2:

0 ≤ M2 ≤ rcos(α)·G′ (18)

According to Equations (13)–(16), Figure 6 can be obtained. The minimum value of M2
is 0, the maximum value of M2 is 34.8 kg·cm. The movement process of stage2 is shown
in Figure 7.
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Figure 7. (a) Start rotating Parts II and III and ω = 0 at t0. (b) M2 decreases with the rotation of
ω and 0 ≤ ω + α ≤ 90◦ at t1; (c) M2 = r·G′ and ω + α = 90◦ at t2; and (d) M2 increases with the
rotation ofω and 90◦ ≤ ω + α ≤ 180◦ at t3. B is the center of mass of Part II; A is the center of mass
of Part III; D is the total center of mass of Part II and Part III; O is the rotating shaft of Part II and Part
III during the movement of the robot; C is the intersection of the vertical line passing through D to
the x-axis and the x-axis; λ (0 ≤ λ ≤ 90◦ ) is the angle between the axis of Part I and the horizontal
direction; ω is the angle between the axis of Part II of the robot and the horizontal direction; t2 is for
the servomotor j0 say, the gravity arms of Part II and Part III.

3.4. Load Analysis of the WL_PCR

The robot is required to have a certain carrying capacity to carry special equipment
for special tasks. Since the WL_PCR is a symmetrical structure and two clamping devices
are loaded alternately, the optimal position of the loading weight of the WL_PCR should
be in the center of the robot structure.

Let the mass of the heavy object be m4.
During stage 1, F′′N3 with load can be obtained according to Equation (8).

F′′N3 =
G′′ [AB(l′2 + l3)− BD(l1 + l′2 + l3)− ACl′2]

2µ3l3 AC− 2µ3l1BD
(19)

G′′ = (m1 + m2 + m3 + m4)g (20)

where l′2 is the arm of gravity G′′ to N.
F′C with load is provided by the servomotor SG1 mounted at the support frame h1.

F′C = F′N3 (21)
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Therefore, in the case of load, Fsg1 needs to meet the following condition 3:

Fsg1 ≥ FC (22)

The position of the total center of mass of Part II, Part III and the load is D′
(

D′x, D′y, D′z
)

and its trajectory are still circular with the rotation of j0. Let the trajectory radius be r′.
D′x = OB + BE· m3

m2+m3+m4
D′y = AE· m3

m2+m3+m4
D′z = 0

r′ =
√

D′2x + D′2y

(23)

Let the torque for Part II, Part III and the load be M′2.

M′2 = l′OC·G′′′ (24)

G′′′ = (m2 + m3 + m4)g (25)

l′OC = r′· cos
(
ω + α′

)
(26)

α′ = arctan
D′x
D′y

(27)

0 ≤ l′OC ≤ r′ cos
(
α′
)

(28)

When the robot is loaded, the torque M2 of SG2 meets the following Condition 4:

0 ≤ M′2 ≤ r′ cos
(
α′
)
·G′′′ (29)

where G′′′ is the total gravity of Part II, Part III and the load, l′OC is the gravity arm of G′′′ ,
and α′(0 ≤ α′ ≤ 90◦) is the angle between OD’ and OE.

The change of l′OC is the same as that of lOC, which first decreases and then increases
with the rotation of ω. When ω + α′ = 90◦, the minimum value of l′OC is 0. The range of
M′2 can be obtained by Equation (29).

In this paper, the same type of servomotor is used for driving the grippers and joints,
and the torque of the servomotor is 60.0 kg·cm. When condition 3 is satisfied, the maximum
mass of the load is 8.7 kg according to Equations (19)–(22); when condition 4 is satisfied,
the maximum mass of the load is 1.9 kg according to Equations (23)–(29). Therefore, the
maximum mass of the WL_PCR’s load is 1.9 kg.

3.5. Flip Locomotion
3.5.1. Flip Condition

Stage 3: The flip locomotion of the WL_PCR was conducted to prepare for climbing
on the pole. According to the execution of the first stage and second stage, several control
schemes were selected to perform the flip locomotion as described in Figures 8 and 9.
During the transition from Figure 8a,b, the WL_PCR controls g1 to keep λ approach to the
pole until g1 grasps the pole. The specified tasks of Stage 1 described in Section 3.1 are
completed. Then, the WL_PCR controls g2 grasp the highest point on the pole within the
reachable range. The specified functions of stage 2 described in Section 3.1 are completed,
as illustrated in Figure 8c,d. j3 starts to rotate and drives part I and part II to rotate together,
during which part I and part II remain relatively stationary, as illustrated in Figure 8e.
Figure 8e shows the key stage of the flip action, and its collision-free completion determines
the successful execution of the flip locomotion. j3, j2, j1 and j0 rotate harmoniously until
g1 clamps the pole as shown in Figure 8f. The posture in Figure 8f is the initial posture of
the flip locomotion in [28]. Figure 8e,f describe a scheme in which the flip locomotion is
successfully performed.
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Figure 9. The failed execution of the flip locomotion. (a) Approach to the pole. (b) The gripper g1 grasps the pole. (c) j0
rotates and the robot leaves the ground. (d) The gripper g2 grasps the pole. (e) j3 rotates but the robot can’t complete the
flip action.
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λ is controlled to a fixed value during the approach to the climbing pole, and g1 grasps
the pole, as shown in Figure 9a,b. Then the WL_PCR controls g2 grasp the lowest point
on the pole within the reachable range. The specified functions of stage 2 are conducted
from Figure 9c,d. As shown in Figure 9, j3 failed to drive part I and part II to complete
the locomotion. In the process of j3 rotation, g1 touches the ground and is hindered by the
ground and forced to halt.

The last posture in the second stage is planned as the initial posture of the flip loco-
motion, as shown in Figures 8 and 9. Condition 5 for completing the flip locomotion is
as follows:

Condition 5: Draw a circle CR with j3 as the center and the distance from j3 to the
ground as the radius R. If CR contains all the components of part I and part II, the robot
completes the flip locomotion smoothly; otherwise, it fails. As shown in Figure 10.
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In Figure 8d, CR surrounds all the components of part I and part II, which satisfies
condition 3. The flip locomotion is executed smoothly, as shown in Figure 8e,f. In Figure 9d,
CR cannot surround all the components of part I and part II, which violates condition 5.
The flip action fails to be executed, as shown in Figure 9e.

The quantitative expression of condition 5 can be calculated by Equations (30)–(32).

R = b + e (30)

CR =

√
a2 + b2 − 2ab(l − d)√

l2 + h2
(31)

CR ≤ R (32)

where b is the length from j3 to j0, e is the length from j0 to the ground, a is the length from
j0 to the tip of the gripper g1, CR is the distance from j3 to the tip of the gripper g1, d is the
diameter of the pole, h is the height of the support frame h1, and l is the distance from the
tip of the gripper g1 to the support frame h1, as illustrated in Figure 8.

According to the dimensions in Table 3, CR is the longest distance point from j3 to
parts I and II. When Equation (32) is satisfied, condition 5 is satisfied. The structure and
size of the WL_PCR are determined, then e is fixed. According to Equation (30), R depends
on b. Condition 5 can be expressed as follows:

b ≥ a2 − e2

2e + 2a(l−d)√
l2+h2

(33)
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3.5.2. Control Scheme

The control scheme is realized by adjusting j0, j1, j2 and j3 to satisfy Equation (33).
The rotation angles ω1, ω2 and ω3 of the servomotor j0, j1 and j2 determine b, as shown
in Figure 11. The control quantities of between b and ω1, ω2 and ω3 can be calculated
by Equation (34).

b = la1sinω1 + la2 sin(ω1 + ω2) + la3 sin(ω1 + ω2 + ω3) (34)
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Figure 11. The control relationship of b with ω1, ω2 and ω3.

In order to keep the WL_PCR as balanced as possible when climbing the pole, the
control scheme is to adjust ω1, ω2 and ω3 to keep the robot’s posture as symmetrical as
possible. According to Equation (33), we simulate the extreme action of the flip locomotion,
as illustrated in Figure 12. When ω1 = 63◦, ω2 = 26◦ and ω3 = 28◦, the WL_PCR
can complete the flip locomotion according to condition 5. Under the limit condition,
bmin = 24.5 cm.
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Figure 12. The extreme locomotion of the flip locomotion. (a) Approach to the pole. (b) The gripper g1 grasps the pole.
(c) j0 rotates and the robot leaves the ground. (d) The gripper g2 grasps the pole. (e) j3 rotates and the robot complete the
flip action. (f) The robot completes the flip, the gripper g1 grasps the pole again.
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4. Experiments

According to the motion planning and control scheme of the ground-to-pole transition,
the feasibility of simulation results is verified by experiments.

In the experiment, the trunk with a diameter of 14 cm was selected as the climbing
pole. The tree grows evenly and the diameter of the selected climbing area of the trunk is
almost the same. We set three groups of control parameters to control the transition gait of
the robot, and the parameters are shown in Table 5.

Table 5. Three groups of control parameters.

Parameters λ ω1 ω2 ω3 b (cm)

1 48◦ 90◦ 0◦ 0◦ 26.0
2 48◦ 0◦ 90◦ 90◦ 12.4
3 48◦ 63◦ 26◦ 28◦ 24.5

According to the structure size of the WL_PCR (see Table 3) and the selected trunk
diameter, λ = 48◦. By executing the first set of control parameters, the WL_PCR’s gait
execution results are illustrated in Figure 13. The WL_PCR completes the actions of stage 1,
stage 2 and stage 3 according to the predetermined plan. The WL_PCR has no touch with
the ground and completes the flip action smoothly.
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Figure 13. Climbing experiment with the first group of control parameters. (a) Approach to the pole.
(b) The gripper g1 grasps the pole. (c) j0 rotates and the robot leaves the ground. (d) The gripper g2

grasps the pole. (e) j3 rotates and the robot complete the flip action. (f) The robot completes the flip,
the gripper g1 grasps the pole again.

By executing the second set of control parameters, the WL_PCR ‘s gait execution
results are illustrated in Figure 14. The WL_PCR completes stage 1 and stage 2 according
to the predetermined plan. However, in stage 3, the WL_PCR’s body is blocked by the
ground and fails to complete the scheduled action.
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Figure 14. Climbing experiment with the second group of control parameters. (a) Approach to the
pole. (b) The gripper g1 grasps the pole. (c) j0 rotates and the robot leaves the ground. (d) The
gripper g2 grasps the pole. (e) j3 rotates but the robot can’t complete the flip action.

By executing the third set of control parameters, the WL_PCR ‘s gait execution results
are illustrated in Figure 15. The robot can complete the actions of stage 1, stage 2 and
stage 3 according to the predetermined plan. In the third stage, the tip of the gripper of the
robot skims over the ground. Under this limit condition, the WL_PCR completes the third
stage of the turning action.
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Figure 15. Climbing experiment with the third group of control parameters. (a) Approach to the pole.
(b) The gripper g1 grasps the pole. (c) j0 rotates and the robot leaves the ground. (d) The gripper g2

grasps the pole. (e) j3 rotates and the robot complete the flip action. (f) The robot completes the flip,
the gripper g1 grasps the pole again.
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5. Conclusions

In this study, we designed and manufactured the WL_PCR based on the original
PCR [10,26]. The WL_PCR is composed of the original PCR’s leg structure and the wheel
structure. It can be moved on the ground through the wheel structure and on the pole
through the leg structure.

The WL_PCR can perform four gaits: traveling on the ground, climbing on a pole,
transiting from the ground to the pole and transiting from the pole to the ground. This
paper studies the transiting from the ground to the pole. We study the force analysis of
WL_PCR and motion planning during the transition process. By analyzing the force of
static and dynamic processes in the ground-to-pole transition, the condition of the joint
providing force to the WL_PCR is proposed. The motion planning of the WL_PCR is
analyzed by the flipping scheme, which provides joints for the WL_PCR to complete the
ground-to-pole motion smoothly.

The experimental verification of the transition posture determination conditions pro-
posed in this paper is confirmed. The average time to complete the whole transition is 14 s,
the maximum climbing height is 26.0 cm and the minimum climbing height is 24.5 cm in
the transition.

The transition process of the robot from the ground to the climbing pole is an im-
portant part of the unmanned detection system of the climbing pole robot, which can
reduce the workload of the operator in the dangerous environment and avoid harming
the environment and people. This research will be helpful in the application of climbing
robots for pipeline inspections in dangerous environments, such as inspecting leakages in
nuclear pipelines.
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Appendix A

Table A1. All variables used in the manuscript.

Variable Variable Name

bar linkages a0, a1, a2, a3, a4
joints j0, j1, j2, j3

supports h1, h2
grippers g1, g2
wheels w1, w2, w3, w4

fixed poles k1, k2, k3, k4
Contact point between robot’s Part I front end with pole L

Contact point between robot’s Part I middle end with pole M
Contact point between support with pole N
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Table A1. Cont.

Variable Variable Name

Static friction coefficient at point L µ1
Static friction coefficient at point N µ2
Static friction coefficient at point M µ3

Acceleration of gravity g
The supporting force of pole on the gripper at L point FN1, F′N1
The supporting force of pole on the gripper at M point FN3, F′N3
The supporting force of pole on the support at N point FN2

The frictional force between gripper with pole at L point Ff 1, F′f 1
The frictional force between gripper with pole at M point Ff 3, F′f 3
The frictional force between support with pole at N point Ff 2

Center of mass of robot m
Gravity of robot G

Arm of force Ff 1, F′f 1 to point M l1
Arm of force G to point N l2

Arm of force Ff 2 to point M l3
Arm of force FN1, F′N1 to point N l4

Arm of force FN2 to point M l5
Quality of Part I m1
Quality of Part II m2
Quality of Part III m3

Quality of load m4
The pressure exerted by the gripper on the pole FC

Maximum force provided by gripper Fsg1
Center of mass of Part II B
Center of mass of Part III A

Center of mass of Part II and Part III D
Center of mass of Part II, Part III and load D′

The position of j0 O
The position of j3 E

Gravity of Part II and Part III G′

Arm of force G′ to point O lOC
Distance between point O and D r
Distance between point O and D′ r′

The angle between OD and OE α

The angle between OD′ and OE α′

Angle between OE and horizontal line ω

Angle between Part I and horizontal line λ

Torque of servomotor at j0 when there is no load M2
Torque of servomotor at j0 when there is a load M′2

Gravity of robot and load G′′
Gravity of Part II, Part III and load G′′′

Arm of force G′′′ to point O l′OC
The supporting force of pole on the gripper at M point

when there is a load F′′N3

Distance from the top of the gripper to the support a
Distance from j0 to j3 b

Distance from the top of the gripper to j3. CR
Diameter of pole d

Distance from j0 to the ground e
Length of support h

Distance from j3 to the ground R
Rotation angle of servomotor at j0 ω1
Rotation angle of servomotor at j1 ω2
Rotation angle of servomotor at j2 ω3

Length of bar linkage a1 la1
Length of bar linkage a2 la2
Length of bar linkage a3 la3
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