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Abstract: The process of recycling electric vehicle (EV) batteries currently represents a significant
challenge to the waste management automation industry. One example of it is the necessity of
removing and sorting dismantled components from EV battery pack. This paper proposes a novel
framework to semi-automate the process of removing and sorting different objects from an EV battery
pack using a mobile manipulator. The work exploits the Behaviour Trees model for cognitive task
execution and monitoring, which links different robot capabilities such as navigation, object tracking
and motion planning in a modular fashion. The framework was tested in simulation, in both static
and dynamic environments, and it was evaluated based on task time and the number of objects that
the robot successfully placed in the respective containers. Results suggested that the robot’s success
rate in accomplishing the task of sorting the battery components was 95% and 82% in static and
dynamic environments, respectively.

Keywords: Behaviour Trees; electric vehicle batteries; recycling; mobile manipulator; semi-autonomous
robot

1. Introduction

Efficient management of Electrical Vehicle Battery (EVB) packs is essential given the
increase in the number of Electrical Vehicles (EVs) around the world. According to the
work in [1], in just 2017 the world sales of EVs exceeded one million of units, which
in turn, will generate around 250,000 tonnes of obsolete lithium-ion battery packs after
completing their service life. Handling and recycling this type of material represents a
high risk to the human health if not properly managed. This risk can be minimised if
robots takeover the task of testing [2] or dismantling of EV batteries (EVB) in high demand
situations [1,3]. However, a significant amount of research has to be carried out in order to
ensure high reliability.

The process of recycling an EVB involves many stages, from the logistics process to
removing raw material from the battery cells. Nonetheless, the literature has been mainly
focused on the recycling process of lithium ion batteries and forsaken the other stages
within the recycle process [4]. This is why there is an opportunity to cover the logistics
problems such as sorting EVB packs and lithium ion battery modules using intelligent
automation [5].

EVB designs have been developed to suit the manufacturer and the model of the
car, therefore, as yet, no common standard has been developed. However, according to
the work in [6] there are some fundamental steps for dismantling any EVB starting with
opening the battery system until dismantling the battery modules and cells. Furthermore,
most of the automation literature in EVB is oriented and tailored either towards the
automation of detecting and unscrewing bolts [3] or the disassembly of specific parts such
as battery modules [7]. As proposed in [3], fixed robotic arms have the capability to open
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an EVB case and unscrew its components. However, due to their workspace limitation,
assisted technology is required to remove, and to sort, the dismantled components from
the workspace. Mobile manipulation addresses this problem as it offers more flexibility of
the robot’s workspace to achieve a desired task [8]. In general, effective industrial recycling
highly depends on the quality of sorting. In addition, automating the process of sorting the
battery components could considerably increase the safety of workers while reducing the
labour costs and making this process economically viable.

In this paper, we propose a proof of concept framework that contributes towards
automating the process of sorting the EVB components using a mobile robot. The proposed
method is developed by a Behaviour Tree-based framework which semi-automates the
process of removing EVB components from the workspace in an industrial environment.
Behaviour Trees (BT) have been widely used in the game industry and in the recent years
have been gaining traction in robotics for task execution monitoring as they offer better
modularity than earlier control architectures such as Finite State Machines (FSM). FSM and
its variant, Hierarchical-Finite State Machines, have been the standard choice of control
architecture in the game and robotics industries. They are mostly used to programme
autonomous task-level processes. They are composed of states, transitions and events.
The transitions between states are defined by a response from events or conditions. They
are considered one-way control transfers, where the process jumps to another state and
continues executing from there. This creates a significant disadvantage over BTs when
designing a complex task as stated in [9], as a significant amount of states and transitions
has to be implemented to define a full task. Therefore, adding or removing states forces
the developer to revisit the entire design to ensure logical consistency. This is not practical
when handling large processes. Instead, BTs are composed of sufficient expressive and
independent sub-behaviours which make the design and development of a BT highly
independent and scalable. Thus, our proposed system opens the possibility to separate
the development of complex robot skills from the architecture design allowing non-robot
expert users to create new sub-behaviours.

Outline of the Proposed Method

The proposed framework is composed of three main modules: navigation, object pose
tracker and grasping. As its name implies, the navigation module allows the robot to
navigate within its workspace by generating collision-free paths as well as localising itself
inside the environment. The object pose tracker finds a pose relative to the end-effector
frame by using a model-based visual method and initialisation points introduced by a user.
The grasping module receives the pose of an object and ensures collision-free grasping
by using Rapidly-Exploring Random Trees (RRT) motion planner [10], inverse kinematics
solver and vacuum gripper. The main contribution in this work is a novel Behaviour
Tree architecture that manages and monitors the aforementioned modules and their sub-
modules to collect and sort EVB components. The schematic diagram that outlines the
proposed framework is illustrated in Figure 1.

Navigation

Global planning

Localization by AMCL

Object Pose Tracker Grasping

Model-based 
visual tracker

Initialization

Collision-free 
motion by RRT

Ros Vacuum 
Gripper Plugin

Behaviour Tree

Pose estimation of 
the mobile robot

Collision-free path

Pose extraction
Inverse 

kinematics solver

Figure 1. Schematic diagram of the proposed framework. It includes three main of Navigation,
Object Pose Tracker and Grasping which are linked together using Behaviour Tree structure.
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2. Related Work

Over the past years, different approaches for high-level dismantling EV batteries packs
have been proposed. A methodology to develop a disassembly plan based on the trade-off
between a partial and complete dismantling of an EVB has been proposed in [11]; it offers
an optimised plan that ensures the best profitability with the least environmental impact.
In another study, a disassembly plan was developed for an Audi Q5 battery by comparing
one-to-one parts and defining a priority matrix based on their precedents [6]. Furthermore,
a high-level disassembly process of the lithium-ion battery module has also been proposed.
For instance, a method to characterise the battery model and recover material while
providing safety guidelines on each disassembly stage has been developed and detailed
in [12]. Note that our work centres its attention on sorting EVB packs components rather
than the management of lithium-ion battery modules. Moreover, the aforementioned
works have been developed to be handled manually by human, therefore automating this
process offers new challenges for the automation industry.

The variability in the configuration of designs of EVBs is high as it depends on the
manufacturer and on the car model. Therefore, tailored automation processes have to be
carried out to disassemble specific EVB packs. For instance, a fixed robot-assisted battery
disassembly workstation has been proposed in [3]. This allows both the human and robot
to have access to the EVB simultaneously. The robot autonomously detects the locations of
the fastener by either using visual recognition or human instruction. Then, it changes the
tool bit to match the head of the bolt and plans to approach it and removes it. The detection
was performed using a training set of M5 bolts along with the Haar Cascade classifier and
90% of true positives were obtained.

The industry has benefited from the use of mobile manipulators as they offer a better
solution when a robot has to operate in a larger workspace than fixed manipulators.
In addition to that, the use of redundant manipulators increases manipulability as well as
defines secondary task such as avoiding the joint limits or singularities as stated in [13].

Behaviour Trees (BT) have been recently applied in industrial projects such as
SCARA [14] which aims to develop a programming framework that allows non-expert
users to plan complex robotics tasks with an ABB Yumi robot. Due to the expressive-
ness nature of BTs, plans can be developed and set up in a robot in a matter of days.
The Collaborative System for Task Automation and Recognition (CoSTAR) [15] is another
software framework that provides a graphic–user interface (GUI) that allows the train-
ing of robots to perform numerous tasks involving human cooperation. Furthermore,
the Intera project from Rethink Robotics aims to develop an affordable “world-fastest”
deployable robot using its well-known Sawyer manipulator [16]. Besides, BTs have also
been used in areas of autonomous vehicles and international competitions such as The
Amazon Pick challenge [9].

Different industrial applications had been developed using BTs. For instance, the soft-
ware components required to perform autonomous robotic grasping and dexterous ma-
nipulation with high-level supervision using the Behaviour Architecture for Robotic Task
(BART) have been detailed in [17]. They demonstrated that their system is able to grasp
successfully nine different types of objects as well as to perform six different dexterous
manipulation tasks such as stapling, flashlight on, drill hole, hang up a phone, open and
locking a door with success rates of 92% and 91%, respectively. Nevertheless, the BART
architecture defines a Behaviour Tree as a binary tree rather than a directed rooted tree
as in our approach. This limits control flow nodes to only execute at maximum 2 action
nodes, which significantly impacts the design complexity. Moreover, our work follows a
Behaviour Tree model stated in [18], which is an unified definition in robotics.

A Behaviour Tree-based end user framework has been proposed in [19]; it integrates
the CoSTAR framework [15] and different robot capabilities to set up a fixed UR5 manipula-
tor to execute tasks such as unloading and kitting. Their framework extends the Behaviour
Tree model to a task specification level such that the robot capabilities and the task plan
are separated. This enables an end user to easily understand the robot capabilities and
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therefore design a task plan without involving any code programming. They demonstrated
that their kitting plan is robust to pose changes of objects achieving 82 successful unloading
operations from a blender machine. In our framework, we leverage the capabilities of an
holonomic mobile manipulator in order to add workspace flexibility to pre-designed tasks.

Bin-picking is a common application problem in many industry areas and therefore
has been highly automated. This task is usually limited by the workspace of fixed robot
arms. On the other hand, mobile bin-picking exploits the flexibility of a mobile base
to increase the robot’s workspace. For instance, a mobile bin-picking application was
achieved using an Anthropomorphic Service robot [20]. The robot was programmed to
collect unordered pipe connectors from a transportation box and place them in a different
container. Active recognition was utilised in order to capture different points of view of the
target scene thus, detecting objects and dealing with occlusion on the scene. After selecting
the best object to be grasped, the robot navigates to a desired placement location. In our
approach, we deal with larger objects and we leverage the use of the mobile base to reach
any object on the scene and place them into containers, rather than just transport them.
The focus of this work is not centralised in object pose estimation, but, a model-based object
tracker is used. Despite the different industrial applications mentioned above, to the best
of our knowledge, no work has been done to tackle the sorting of electric vehicle batteries
components using a mobile manipulator and Behaviour Trees.

Assembly and disassembly tasks can be highly beneficial if different candidate grasps
and re-grasp poses are considered. For instance, in [21] the authors developed a grasping
RRT-based planner to simultaneously find the best grasping and place pose of an assemble
part as well as the collision-free path between the initial and final pose. Furthermore, they
introduced an orientation graph search-based method to find intermediate poses if the
initial pose of a part needs to be reoriented and re-grasped to be assembled. Given that the
grasping point is not limited by the initial pose of a part, reorientation of parts is an object of
study [22]. Consequently, reorienting a target object considerably increases the chances of
obtaining a successful disassembly or assembly. Furthermore, the authors of [23] propose a
high-speed assembly planner which considers the environment and the current part poses
in order to create a high and low-level assembly motion sequence. The aforementioned
processes could be also applied to EVB disassembly tasks. As the main focus of this work
is the combination of different robot capabilities using Behaviour Trees, a general motion
planner approach is used.

The main contribution of this work is the development of a Behaviour Tree-based
framework that enables the modular combination and monitoring of different robot capabil-
ities to semi-automate the process of sorting the components of an EVB. The Behaviour Tree
depicted in Figure 2 represents the architecture proposed in this work. This architecture
executes and monitors a sequence to sort different objects from an EVB using a mobile
manipulator. The flowchart diagram describing this sequence is shown in Figure 3. Fur-
thermore, this diagram shows that an edge-based tracker is exploited to estimate the pose
of a texture less object and the arm motion planner is used to plan and execute the suction
grasping. Moreover, navigation capabilities are implemented such as A* for collision-free
global path planning and Eband planner for path tracking and collision avoidance in a
2D map.
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Figure 2. Behaviour Tree of the system to collect N number of objectid class objects from a workstation
and place them inside a container using a mobile manipulator.
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Figure 3. Flowchart diagram of the proposed framework showing the sequence of actions to retrieve
and sort objects from a Electrical Vehicle Battery (EVB).

The remainder of this paper is organised as follows. Section 3 describes the industrial
scenario utilised in this work as well as the system overview of the framework. Section 4
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explains the methodology to detect and extract the pose of textureless objects from an
RGB-D camera. Section 5 explains the autonomous navigation approach utilised in this
work to move the robot inside its task-space. Section 6 explains the grasping and placing
techniques of objects using a vacuum gripper. Section 7 outlines the characteristics of
a Behaviour Tree as well as describes our behaviour architecture along with its action
nodes. Sections 8 and 9 outline the experimental setup and the results of the performance
of the robot in accomplishing the tasks in two different case studies respectively. Finally,
a conclusion is presented and our future work is stated in Section 10.

3. System Overview

For the purpose of this work, we consider a scenario where an EVB pack is already
dismantled using two KUKA KR500 robots, and the components are spread out as in the
workstation depicted in Figure 4. For simulation purposes, we differentiate four different
EVB-type objects such as plates (two types), battery module and L-shape brackets.

Objects are to be collected from the EVB pack and placed in four different bins located
in the four corners of the workstation. Locations of the bins are recorded offline respective
to the map coordinate frame. For testing and experiments, we use a KUKA KMR iiwa
robot, which is a mobile manipulator with a 4-wheeled omnidirectional base and 7-DoF
LBR arm mounted on the top of the base with a VG10 suction gripper [24] attached on
the end-effector.

KMR Mobile Base

LBR Arm

EVB Pack

Bin 1

Bin 2

Bin 3

Bin 4

Stationary Robot 1

Stationary Robot 2

Workstation

RGBD Camera

Figure 4. Bin-picking scenario. Mobile platform grasp objects from the simulated open electric
vehicle battery and place them into boxes around the workstation.

The robot has two lasers scanners: one on the front-right and one on the rear-left side
of the mobile base. These sensors allow the robot to detect static and dynamic obstacles in
a 2D map. For object detection, an RGB-D camera is configured in an eye-in-hand fashion,
which, in turn, adds flexibility to the detection point of view.

The target object and the bin number ID are specified at the beginning of the tree to
ensure that every node on the tree reads the same variables at running time. The system
is modelled based on pre-recorded poses around the workstation referred in this work
as candidate poses, where the locations of each bin and the available poses to perform
grasping are included. This helps to simplify the problem when an object is detected but
is not reachable. In that case, the system will choose the best mobile pose candidate to
perform the grasping of the target object. Moreover, the following poses of the mobile
manipulator were recorded to ensure that the eye-in-hand camera has a panorama view of
the entire workstation: one configuration of the LBR arm and two 2D poses for the mobile
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base, and one for each side of the workstation. In this work, these mobile base poses are
referred as view points.

The robot starts in an arbitrary position outside the workstation and it will navigate
to the closest view point in order to execute the first detection. As the layout of the content
of an EVB is known, the number of instances of the same class and its priority of collection
(i.e., which object class has to be collected first and which one afterwards) can be set.
Afterwards, a window showing the current camera view will be prompted to the user
where they could manually select and initialise the object’s pose, and thus initialise the
tracking system. Therefore, the robot will attempt to approach the object and plan for
grasping. After grasping the object, the robot will navigate to the respective bin where the
arm is required to place it. The block diagram describing the aforementioned execution
sequence is depicted in Figure 3.

4. Object Pose Tracker

Object pose detection becomes important when a robot is planning to grab specific
objects from a workstation, but it becomes crucial when the objects represent a high risk for
human safety (e.g., manipulating lithium-ion batteries). For this work, we set up a model-
based visual tracker [25] that allows a user to initialise the tracking system in order to
secure proper handling of the objects. Thus, it minimises the risk of a wrong detection and
therefore avoids an undesired interaction between the suction gripper and the target object.

According to the work in [25], the pose estimation of an object could be considered
as an optimisation problem. Define q = (tc, Rc), where tc and Rc are the translation and
rotation matrix of the object respective to the camera frame. The goal is to approximate
the independent parameters in q by minimising the error between the features x∗ of the
model M expressed in the camera domain and the features x of the projected model. The
optimisation problem is solved using Levenberg–Marquard algorithm, which is an iterative
non linear optimisation technique and the projection method used in this approach is stated
in [26]. The objective function is defined as

q∗ = argmin
q

∑
i

ε2
i (x∗i , xi(Mi, q, γ)) (1)

where xi(Mi, q, γ) is the function that represents the i-th feature of the model Mi using
camera intrinsic parameters γ. Moreover, q∗ is the optimal pose that minimises the objective
function such that ε2

i = 0, ∀i. It is assumed that the intrinsic parameters of the camera
are known. Please note that this tracker is tested in a simulated environment, therefore,
the virtual camera sensor has no distortion. As the objects to be grasped are textureless,
the features x∗ are extracted by using the moving edges algorithm [27]. In this work,
the visual servoing platform C++ library (VISP) is used to estimate the pose of the object
on an image, which integrates the aforementioned optimisation technique, the edge-based
features extractor and the projection algorithm [28].

Four different CAD models were created in order to represent different components
of EVB depicted in Figure 5. The tracking system is triggered once the robot is strategically
positioned, the user is asked to define n initialisation points which partially denotes the
shape of the model inside the image. The initialisation and the pose estimation results of
two different objects are depicted in Figure 6.
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A

1

3

2

4

L-shape Bracket Cover Plate B

Battery Module
Cover Plate A

Figure 5. Different EVB-class objects used in the proposed work; (1) Cover Plate A, (2) Cover plate,
(3) L-shape bracket, (4) Battery module.

Figure 6. Initialisation of visual features of the objects and estimating the objects’ poses using
model-based visual tracker. (A) Initializing the visual features, (B) Extracting the pose of the object

5. Navigation

In order to safely move the robot around the workstation and to approach the bin’s
location, we used a global and local planner approach. Global planning is achieved by
representing the environment in a 2D occupancy grid map generated from 2 laser scan
sensors and to solve path planning problems we employed A* to find an optimised obstacle-
free path to the goal [29].

For localisation, we implemented Adaptive Monte Carlo Localisation (AMCL), a com-
mon method and robust particle filter to estimate the pose of a mobile robot which com-
pensates the error generated by the odometry motion model. It is based on the posterior
probability that the robot is located in a pose q given a map and sensor data [30]. Local
planning uses a local online 2D occupancy grid map (also know as 2D Cost Map) created
from the current lasers scans. This leverages the navigation to detect dynamic objects
(e.g., people or other dynamic objects) and replan if necessary. In order to follow the path
generated by the global planning, we employ the elastic band approach [31], a reactive plan-
ner that uses sensor-based data to continuously deform the global path generated by the
planner. Thus, it creates a new local collision-free path based on local changes around the
robot. Furthermore, it implements a subset of the free-collision configuration space, which
the authors refer as bubbles, as contemplating the entire free space of a three-dimensional
configuration space is expensive. A subset of the free space around the configuration b is
given by (2)

B(b) = {q :‖ b− q ‖< p(b)} (2)

where the function p(b) represents the minimum distance between the robot at configura-
tion b and the obstacles (q) in the environment. As the robot is required to reach specific
points in the space, poses for the mobile base were recorded (Figure 7) and labelled offline.
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In this way, the navigation action is initialised by feeding a goal_id to it as described in
Algorithm 1.

Selected Pose

Candidate Poses

Target location

Static obstacles

Path

RGBD Camera

Figure 7. Robot detecting a new target location and planning for a better pose for grasping.

Algorithm 1: NavigateTo
Input: goal_id ∈ R ≥ 0

1 qgoal ∈ R3 ← candiatePosesHashTable(goal_id);
2 qinit ∈ R3 ← AMCL();
3 gloabalPath← AStarPlanner( qinit, qgoal );
4 initEbandPlanner(gloabalPath) ;
5 while goalIsNotReached() do
6 qcurrent ← AMCL();
7 obstacles← 2DCostMap();
8 elastic_path← EbandPlanner(obstacles, qcurrent);
9 pathTracker.Track(elastic_path, qcurrent)

10 end
11 if isRobotInXYTolerance() then
12 return SUCCESS ;
13 else
14 return FAILURE ;
15 end

6. Object Grasping and Placing

Grasping objects with irregular shapes and specifications (e.g., metallic cases, looms
and cables) would be less feasible using conventional 2–3 finger grippers. Therefore, in this
study we employed suction grasping using a VG10 vacuum gripper [24]. In addition,
suction grasping increases the chance of a grasp if the estimated pose was not very accurate.
Moreover, suctions cups are more suitable to interact with deformable or sensitive objects
(e.g., lithium-ion batteries) as they minimise the damage risk. In this study, we used Ros
Vacuum Gripper Plugin to simulate the action of grasping [32].

The Rapidly-Exploring Random Trees (RRT) method [10] was used to generate a
collision-free motion to grasp the objects. The sequence of grasp is depicted in Figure 8.
Following grasp, a new motion plan is generated to move the arm from its current configu-
ration to a safe pose. This pose was introduced to the system as it ensures that the grasped
object has an adequate altitude respective from the battery pack such that it does not collide
with other objects on the EVB while the mobile robot base is moving. Furthermore, the safe
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pose places the end-effector above any container once the mobile base approaches it. In
order to abolish the possibility of dropping a hazardous object while grasping, moving the
arm to the safe pose or when placing the object into the container, an orientation constrain
was applied to the motion planner. This ensures that the motion planner only takes into
account movements where the arm always maintains the same post-grasp orientation while
moving to the safe pose as illustrated in Figure 8. The algorithm describing the grasping
pipeline is depicted in Algorithm 2.

Algorithm 2: Grasp
Input: target_pose ∈ SE(3), sa f e_pose ∈ SE(3),

preGrasp_o f f set, postGrasp_o f f set
1 eeGrasp_pose← trasnformToEE(target_pose)
2 preGrasp_pose← eeGrasp_pose + preGrasp_o f f set
3 postGrasp_pose← eeGrasp_pose + postGrasp_o f f set
4 currentEE_pose← Robot.GetCurrentEEPose()
5 RRTPlanner.init()
6 preGrasp_plan← RRTPlanner.Plan(currentEE_pose, preGrasp_pose)
7 approach_plan← RRTPlanner.Plan(currentGrasp_pose, eeGrasp_pose)
8 retreat_plan← RRTPlanner.Plan(eeGrasp_pose, postGrasp_pose)
9 Robot.Execute(preGrasp_plan, approach_plan, retreat_plan)
/* After executing the above plan, EE will be at post-grasp pose,

therefore the same orientation is used as constraint */
10 P← getCurrentEEOrientation()
11 RRTPlanner.SetOrientationConstraint(P)
12 sa f e_plan = RRTPlanner.plan(postGrasp_pose, sa f e_pose)
13 if Robot.Execute(safe_plan) then
14 return SUCCESS
15 else
16 return FAILURE
17 end

1 2

3 4

Figure 8. Grasping pipeline: (1) pre-grasp, (2) grasp, (3) post-grasp and (4) safe poses.

Once the robot approaches the container, a new motion plan is generated to place the
object and to retreat the end-effector. These plans also take into account the orientation
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constraint described above. For this end, inverse kinematics solver library from [33] was
used as well as Moveit! C++ API for high-level interface with the sampling-based motion
planner (RRT).

7. Control Architecture

In essence, the proposed framework, depicted in Figure 3, consists of a Behaviour Tree
architecture. This tree is in charge of switching and monitoring the task execution, in other
words, it executes the robot skills needed to perform the task given the state of the robot.
BTs have been proved to offer better modularity and reactivity to an autonomous agents
than conventional control architectures such as Hierarchical Finite State Machines (HFSM)
and Decision Trees (FT) [34] which is the motivation behind this work.

As such a detailed explanation of a BT is out of the scope of this work only the
characteristics are outlined. According to [9], a BT is composed of internal nodes known
as control flow nodes and leaf nodes known as execution nodes. The execution of the tree
starts from its root by sending ticks to its children. An internal node will run if and only if
it constantly receives ticks from its parent (analogically, this can be seen as a clock signal
that a CPU receives to execute tasks). The execution order of the tree is defined by its
configuration; therefore, it can be either defined from the top to the bottom or from left to
the right of the tree. A child node can either return RUNNING, SUCCESS or FAILURE to its
parent. Internal nodes propagate their ticks to their children as long as they continuously
return RUNNING.

Furthermore, control flow nodes are mainly divided in sequential (marked with an arrow
→), fallback (denoted with question mark?) and parallel (denoted with a double arrow ⇒).
The first one will return SUCCESS if and only if all their children return SUCCESS or it
will return FAILURE otherwise. The second one will success if and only if at least one of its
children return SUCCESS and it will fail if all of its children fail. The final node can send
ticks simultaneously to all of its children; thus, parallel executions can be achieved. This
node will only return SUCCESS if N number of its children, where N can be lower than
the total number of children, return SUCCESS FAILURE otherwise.

Each control node has one parent and at least one child. They will return RUNNING
if both its success and fail conditions have not been met. Execution nodes represent the
leaves of the tree and correspond to the actual primitives that a robot can execute which
are divided in condition and action nodes. Usually, conditions serve as a guard of action
nodes, thereby, ensure that the system meets the right requirements in order to execute a
primitive or even another sub-tree.

For removing parts from the EVB we implemented six action nodes A = {Grasp,
Place, NavigateTo, LookAtTable, DetectObject, ComputePose} and one condition node C =
{IsObjectReachable}. The BT architecture used in this work to collect N number of objects
of the same type is depicted in Figure 2. The execution order is defined from the left to
the right side of the tree. The object_id is set at the start of the tree to denote the name
of the object to be collected as well as its respective bin index (bin_id), the number of
attempts (n_attempts) and the number (n_objects) of same-class objects that are present in
the workstation. This tree can be seen as a parametrised sub-behaviour tree and to fully
programme the robot to collect the entire set of objects a sequential control flow node is
applied on the top of the sub-trees. Consequently, the priority of collection can be set by
using the execution hierarchies of the sequential node.

The sub-tree will be executed for a n number of objects with the same ID; this will
be repeated for the four different object types. Therefore, the total number of executions
will be N = ∑4

i=1 ∑n
j=1 obji,j where obji,j corresponds to the object of type i and j represents

the instance number inside the scene. Note that every action node was interfaced in ROS
and the tree was built using BehaviourTree.CPP C++ framework [9,35]. The description
of each action node is explained in the following sub sections.
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7.1. NavigateTo

As the locations of the bins and the locations where the robot should be to have a full
panorama of the workstation are pre-recorded, this action receives only the index of the
target pose. Furthermore, it takes into account the current pose of the robot respective to
the map frame and evaluates if the desired goal is already achieved.

7.2. ComputePose

One of the main characteristic of the system is to make the most of the omnidirectional
mobile base without requiring complex computations. If the robot is not able to reach an
object, the system should find a new mobile pose that makes the detected object reachable.
Additionally, this node will return the closest view point if required. This action receives
as input the current target’s 3D pose and returns a pose that the mobile base should be
in to make the object reachable by the arm. In Algorithm 3, the logic behind this node is
described. The candidate poses are recorded off-line and stored in a hash table. In addition,
this node can return the closest view point pose if required.

Algorithm 3: ComputePose
Input: Candidate poses list Q = q1, q2 ... qn, Target pose T and ViewPoint

condition U
Output: Mobile base pose q ∈ R3

1 if U then
2 RobotPosecurrent ← AMCL();
3 return ClosestViewPoint (RobotPosecurrent)
4 else
5 scores← 0;
6 targetPose← trasformToMapFrame(T);
7 foreach c in C do
8 scores.append(ComputeEuclideanDistance(c, targetPose);
9 end

10 return scores.Min()
11 end

7.3. LookAtTable

This node creates a motion planning request to set the arm in a configuration such that
the camera mounted at the end-effector has a full view-panorama of the workstation. This
configuration was defined after an arduous experimentation to evaluate the field of view
of the camera. Nevertheless, due to the modularity of the system, the arm configuration
can be replaced at any time.

7.4. DetectObject

This node encapsulates what has been described in Section 4. It receives the object_id
of the target, and it will prompt a window where the user is required to introduce the
initialisation points of the given object. In addition, the user has this option to visualise the
resulted pose (Figure 6) and to evaluate its reliability. Afterwards, the node sets the target
pose inside the knowledge blackboard of the tree as other actions will read from it.

8. Experimental Setup

Two different workstation setups (which will be referred in this paper as case studies A
and B) were used to test our framework. The first one, depicted in Figure 9a, is characterised
as containing the objects clustered (except the battery modules) either to the bottom or the
top side of the workstation as well as it respective containers. In other words, once the
robot is on one side of the EVB, it does not need to navigate to the other side to grasp an
object of the same class. However, the robot is still required to navigate to the other side
once all the same-class objects have been collected. Furthermore, it is assumed that the
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EVB pack is mounted and fixed on an industrial table, such that this one does not move
during the robot operation.

(a)

(b)
Figure 9. Two different configuration of objects on the EVB, the robot is more often required
to traverse around the workstation in scenario B rather than in A since, the objects are located
in both sides (top and bottom) of the battery. (a) Workstation for the first scenario experiments.
(b) Workstation for the second scenario experiments.

From the second workstation scenario (Figure 9b), it can be seen that at least two
objects of the same class are located in one of the side of the EVB and the remainder are
located at the opposite side. The left and right hand sides of the EVB were not considered
as they are obstructed by the two fixed robots (KUKA KR500) as illustrated in Figure 4.

Furthermore, in case study A, only static objects were considered inside the scenario.
In this work, a static object is referred as all the collision objects that were present when the
2D mapping of the environment was performed. In this scenario, the two side manipulators,
the space underneath of the EVB and the containers were considered as static objects. On the
other a hand, in case study B primitive-shape dynamic objects were added and placed into
the scene such that they interfere with the planned path of the robot every time it needs to
navigate to the other side either to place or to approach an object. This was performed to
simulate any new obstacles such as humans or even other platforms that the robot may
encounter while performing the task. The addition and removing of primitive objects was
achieved by exploiting the spawning plugging of the simulator engine. In both case studies,
before starting the task, the robot is initialised outside the workstation area, thus the first
thing that the robot has to do is to navigate to the closest viewpoint.

Given that the component’s layout of a particular EVB can be known off-line. The order
of collection or priority can be established by swapping the order of the different sub-
behaviour trees (Figure 2), corresponding to the pick and place routine to sort all the
instances of the same object class, inside a sequential control flow node. In both case studies,
the order of collection task was set in the following order: cover plate A, cover plate B, Battery
Module and L-shape bracket (Figure 5) where the number of instances for each class were 5,
3, 7 and 8, respectively. Both case studies where designed and simulated using Gazebo 9.0
with a 2.4 Ghz 4-core processor and a GeForce GT 750 M graphics card.
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9. Results

As there are no similar approaches that are highly related to EVB dismantling process
using task-control architectures such as FSM or Behaviour Trees in the literature, the pro-
posed framework was evaluated in terms of success rates and execution times. We would
like to highlight that these results are in terms that prove the concept and are based on
simulation results which may vary if other computer capabilities are used.

After running the framework several times, the best performance was obtained by
setting a maximum linear velocity vmax of 9.0 m/s, maximum absolute angular velocity
θmax of 0.4 rad/s as well as maximum translational amax and rotational accelerations αmax
of 2.0 m/s2 and 1.5 rad/s2, respectively.

Furthermore, as explained in Section 6, the end-effector of the robot should go to a
safe pose after grasping an object while maintaining the current end-effector orientation
and thus, the object orientation. However, it was observed that the motion planner was
occasionally unable to find a solution that satisfies this constraint within the time limit.
Therefore, the planner could execute undesirable trajectories such the one depicted in
Figure 10a; it can be observed that the orientation of the end-effector is drastically flipped
which caused the dropping of the object from the end-effector. Therefore, it was decided
to constraint joint 5 from the arm with a certain tolerance T. This, in turn, reduces the
amount of trajectories that the motion planner takes into account where the orientation
constraint is violated. Consequently, preferred grasping trajectories were obtained, one
example of them is depicted in Figure 10b where it can be observed that the end-effector
successfully maintained its orientation while moving to safe pose. Moreover, this constrain
was applied only to the motion plan to go from the post-grasp pose to the safe pose and for
both case studies.
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(a)
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(b)
Figure 10. Examples of end-effector trajectories. (a) End-effector trajectory of a unsuccessful grasping.
(b) End-effector trajectory of a successful grasping.

9.1. Case Study A

For this experiment, only static objects were considered as part of the sorting task
(Figure 11). Table 1 summarises the results of the proposed framework after running it
three times. An overall success rate of 95.6% was achieved in an average time of 51.63 min.
As described in the Table 1, 100% success rate was achieved for the majority of objects.
For the Bracket object, the robot was unable to grasp the object during the experiments due
to limitations of the simulation engine to successfully simulate the suction grasping for
small objects. However, as the evaluation is based on simulation we considered it as a
failure. Note that the time of accomplishing the task will also depend on the expertise of
the user to initialise the pose of the object given the current view of the camera as explained
in Section 4.
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Table 1. Results of case study A.

Object Type Avg Time (min) Std (min) Objects Placed Task Achieved

Battery Module 25.54 1.31 8/8 100%
Plate A 10.96 1.47 5/5 100.0%
Plate B 5.68 0.67 3/3 100%
Bracket 9.45 1.08 6/7 85.71%

Total 51.63 22/23 95.6%

Static Obstacles

Static Obstacles

Figure 11. Case study A: Robot navigating while holding an object (no dynamic obstacles).

9.2. Case Study B

For the second experiment, the same task was executed. As depicted in Figure 12,
in this case study different dynamic obstacles in different primitive shapes were instantiated
in front of the robot every single time it needed to either navigate to a container or to the
opposite side of the workstation. Table 2 summarises the results obtained after running the
framework. It can be observed that the average time to collect the four objects increases
approximately by 60% and the success rate decreases to 82.6% in order to sort all the
objects. As expected, it takes more time for the robot to sort all the objects given that it needs
to navigate more often between both sides of the workstation. Furthermore, whenever a
dynamic obstacle appears in front of it, it is necessary to re-plan and generate a new path
to avoid it. The performance of the reactivity of the navigation approach used in this work
is highly affected by the CPU resources to obtain a better solution. Thus, the average time
to complete the task is also affected by it.

Table 2. Results of case study B.

Object Type Avg Time (min) Std(min) Objects Placed Task Achieved

Battery Module 40.34 1.49 7/8 87.5%
Plate A 15.86 1.54 4/5 80%
Plate B 8.72 1.26 3/3 100%
Bracket 17.43 1.13 5/7 71.4%

Total 83.09 19/23 82.6%
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Dynamic Obstacle

Figure 12. Case study B: Robot encountering a dynamic obstacle and re-planning its original path to
avoid it.

In both Tables 1 and 2, the standard values (Std) are relatively small and they indicates
that the required time for sorting a specific object is almost the same over all the trials.
However, this value could be reduced significantly by replacing the self-initialisation
tracker with a more advanced learning-based tracker without requiring a user to select the
desired object.

10. Conclusions

This work, for the first time, proposes a generic/modular framework to automate the
process of sorting the EVB components in an unstructured environment using Behaviour
Tree architecture. This strategy enables the user to execute and monitor the process of
extracting and sorting the components from an EVB pack. The proposed framework was
tested in simulation in two different environments: the first environment was modelled
with static objects in which the mobile robot navigated towards the workspace and ac-
complished the task of sorting in 51 min with success rate of 95.6%, and in the second
environment, dynamic objects were modelled to randomly make obstacle for the mobile
robot and in this case the robot could successfully complete the task of sorting in 83 min
with the success rate of 82%. The proposed framework benefits from its deployed Be-
haviour Tree which has this potential to be generalised with appropriate actions for various
EVB packs.

The implementation of learning-based methods to autonomously detect the objects
and classify them along with a pose estimation using point cloud data could add benefit
to the current work. Furthermore, the full coordination between the manipulator and the
mobile base to create more accurate motion plans and sampling the 3D free space will add
robustness to the system to approach and grasp objects. This in turn can increase the level
of task success.

Transferring this work to a real-world scenario should not represent difficulties in
terms of the task-control architecture (BT). However, more action or condition nodes may
be required to handle future case failures. Examples of them: handling properly when the
object could not be grasped and the object has fallen from the end-effector, verifying that
the grasped object is the correct one by adding force-torque sensors or planning when the
robot should go back to home station due to low battery. Furthermore, as mentioned before,
Behaviour Trees offer a great modular architecture, thus adding more sub-behaviours or
new robot capabilities can be efficiently scalable.
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