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Abstract: A multi-AGV based logistic system is typically associated with two fundamental problems,
critical for its overall performance: the AGV’s route planning for collision and deadlock avoidance;
and the task scheduling to determine which vehicle should transport which load. Several heuristic
functions can be used according to the application. This paper proposes a time-based algorithm
to dynamically control a fleet of Autonomous Guided Vehicles (AGVs) in an automatic warehouse
scenario. Our approach includes a routing algorithm based on the A* heuristic search (TEA*—Time
Enhanced A*) to generate free-collisions paths and a scheduling module to improve the results of the
routing algorithm. These modules work cooperatively to provide an efficient task execution time
considering as basis the routing algorithm information. Simulation experiments are presented using
a typical industrial layout for 10 and 20 AGVs. Moreover, a comparison with an alternative approach
from the state-of-the-art is also presented.

Keywords: multi-robot coordination; automated guided vehicles; routing; scheduling; motion
planning; simulation; robotics

1. Introduction

In recent years, and due to the mandatory need to continuously adapt the production
flow, industrial companies are increasingly adopting fully automated internal logistic
systems, namely based on AGVs, instead of manual or inflexible mechanical solutions (e.g.,
forklifts, conveyors, and others).

Considering the Industry 4.0 initiative, both AGVs, as well as mobile manipulators,
are seen as strategic tools in the Factories of the Future. In a very competitive industrial
environment, these can contribute to increase productivity and reduce the costs associated
with the internal logistic system, ensuring an efficient material flow. Likewise, their
introduction also allows human operators to be reallocated to more complex and ergonomic
tasks, with increasing value to the final product. These set of characteristic makes AGV’s
appealing for a wide range of industrial applications, such as goods transportation, end-of-
line automation chain, warehouse and distribution. However, and despite their versatility,
there is the need to deploy advanced multi-robot coordination algorithms in order to ensure
the AGV’s continuous operation, guaranteeing the minimum tasks execution time and the
smoothness of the vehicle’s movements.

The AGV’s fleet coordination problem has received wide attention from both the
research and industrial fields. Typically, two main systems comprise any multi-AGV
application: free-collision routing system [1,2] and scheduling system, that encompass
both task scheduling and dispatching [3]. The vehicle routing system is responsible for
computing trajectories that minimize the total distance traveled by AGVs considering
different constraints such as each vehicle’s carrying capacity and the plant layout where
vehicles can circulate, while ensuring free-collision routes. Some approaches are based on
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time windows as proposed by the authors in [4–8]. Here, the AGV route is constructed
considering that one point can only be visited one time for only one vehicle at a given time
interval. The feasibility of each route is evaluated, checking windows overlapping. In its
turn, the scheduling system is associated with the task scheduling and their attribution to
individual AGVs. This scheduling and dispatching should take into account some decision
criteria, namely the task deadlines and traffic status, among others.

Bearing these ideas in mind, this paper proposes an integrated approach for both AGV
route planning and task scheduling and dispatching. More in detail, the proposed routing
algorithm called Time Enhanced A* (TEA*) is an extension of our previous work addressed
in [9,10], that is, in this paper, further integrated with a scheduling module in order to
minimize the tasks execution time. The main feature of TEA* is the addition of a temporal
component to the known A* algorithm that generates routes efficiently, considering that
each robot knows other robots’ positions during the time. Furthermore, TEA* is an on-line
approach allowing its integration in dynamic environments.

The major contributions of our paper are to propose a Multi-Robot Coordination
System which includes a time-based algorithm to generate free-collision routes based on
the A* algorithm and a scheduling module that use the routing algorithm information to
minimize a cost function, dependent on the following parameters:

1. Average execution time of all tasks;
2. Number of stoppages;
3. Execution time for the last vehicle;

This paper is organized as follows. In Section 2 the state-of-the-art of path planning
algorithms and multi-robot systems are presented. Section 3 describes the proposed multi-
robot routing algorithm. Section 4 describes the industrial case scenario, followed by
the comparison between the proposed approach with an alternative state-of-the-art [11].
Sections 5 and 6 present the results achieved using Tabu-Search Method. Finally, some
conclusions and the contribution of this paper are presented in Section 7.

2. Related Work

In the last decade, the multi-robot coordination problem has been a target of many
scientific studies. To solve it, several authors have proposed the use of meta-heuristic
approaches to address both the problem of AGV routing and task scheduling. The au-
thors in [12–16], propose using a Genetic Algorithm to find the optimal or sub-optimal
solution, which satisfies the routing system goals, including the minimization of the tasks
completion time, minimal distance, among others. Likewise, ref. [17] proposes an in-
tegrated solution that comprises a routing module based on genetic algorithms and a
scheduling system based on bid auctions. Despite the potential of the proposed meth-
ods, normally these approaches treat each robot as an individual agent (without physical
constraints) [17,18], simplifying the problem at hand. Furthermore, the results do not in-
clude industrial case scenarios. Alternatively, particle swarm strategies can also be applied
to multi-AGV systems as in [19,20]. Ref. [21] proposes a Particle Swarm Optimization (PSO)
based algorithm, called Fractional Order Robotic Darwinian Particle Swarm Optimization
(FORDPSO), integrated with a fuzzy system to optimize the driving of multi-robots in
unknown environments. However, these methodologies are not yet sufficiently tested in
real industrial environments.

Considering solely the use of a bid auction strategy, the authors in [3,22] propose a
solution where each robot constructs ‘bids’ for each task and a central module receives
the bids and assigns tasks considering the fitness function’s maximization. Similarly,
ref. [23] proposed different combinatorial bidding strategies, comparing its performance
with single-item auctions.

Recognize the use of analytical methods, the authors in [24] define a robot mission
through Linear Temporal Logic formulas (LTL). An LTL approach considers that the truth
of a declaration can be changed during the time. This work focus on minimizing the
cost function, which is the maximum time between candidate solutions of an optimizing
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proposition. In [25] the authors use a model based on Integer Linear Programming (ILP) to
find paths that minimize the time until the last robot reaches its goal or minimizes the total
traveled distance.

Generally, two different approaches define the architecture of any multi-robot system:
a Centralized [26] or Distributed [27] methodology. The authors in [28,29] use a central-
ized architecture where one of the robots is the leader, and the others are the followers.
Here, the major challenges are related to ensuring communication robustness and the
algorithm flexibility to change the leadership. Other works use distributed architecture
like in [27,30], where each robot calculates its path independently using, for example, a
D* Algorithm [31] and then, the path is broadcast for all robots, making that every robot
knows all path information.

Regarding only task scheduling system, it typically aims for minimizing an objective
function which includes system characteristics, such as the number of vehicles, the order in
which the vehicles execute their missions, etc. In [32], Kelen et al. compares two scheduling
methods that determine the ideal number of vehicles for a given industrial scenario: the
Shortest Job First and Tabu Search. Additionally, a routing method based on an enhanced
Dijkstra algorithm, was used to manage the AGV’s path. The number of stoppages and the
time that each vehicle waits for the mission assignment was not measured.

In [20], Yu Zhang et al. proposes simple heuristics at the high-level layer, referred
to as the ‘coalition’ level, that creates an abstraction layer relatively to specific details in
robots’ specifications. Simple heuristics can be ‘MinProcTime’, that gives priority to the
missions with shorter processing times, and another one can be the ‘MinStepSum’, similar
to the ‘MinProcTime’, but determines the best solution incrementally when the ordering of
the assignment are not pre-determined. However, in the simulation experiments presented
were not considered an industrial scenario with real-world scheduling problems.

In the past half-decade, new approaches based on Artificial Intelligence (AI) are
emerging. AI addressed in [33,34], is the science that seeks to study and understand the
phenomenon of intelligence and, at the same time, a branch of engineering, as it seeks
to build instruments to support human intelligence. In practice, an AI system besides
storing and manipulate data can also acquire, represent, and manipulate knowledge.
This manipulation concerns the ability to deduce or infer new knowledge from existing
knowledge and use representation and manipulation methods to solve complex problems.
This area of engineering is vast and has been the subject of huge investment from both
business and research institutes. More specifically in Robotics, there is already a recent
line of work on Multi-Agent Path-Finding (MAPF) [35–38]. On AGVs, the MAPF problem
is to find the best paths, for a fixed number of agents, from their current locations to the
final task position, where all agents have a free-collision path, as it is described in [39–41].
Another use of AI in Robotics, is the combination of non-AI algorithms (time-window
based or greedy) for the AGV coordination with AI for the prediction of future tasks [42].

Despite the many scientific studies carried out, task scheduling solutions often resort to
small heuristics (First-in-First-Out, Shortest-Distance), often decoupled from the trajectory
planning system. In turn, trajectories are predefined in offline mode and designed to
prevent, as far as possible, the occurrence of deadlocks. This type of solution often leads to
the logistics system being oversized concerning the operation’s real needs.

3. Proposed Routing Algorithm

To overcome the challenges related with the multi-AGV coordination problem, pre-
sented in the previous sections, in this section a new methodology for AGV’s route planning
is proposed. This novel methodology is called TEA* Algorithm [9,10], in which the paths
are recalculated continuously, making it an online method. According to the vehicles’
movements and the environment changes, TEA* updates the paths of each AGV in order
to avoid collisions and to guarantee the continuous operation of the logistic system. In fact,
as in the majority of the industrial logistic systems, it is expectable that changes on initial
task information and/or unpredictable events, such as delays in the transportation system
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as a result of obstacles presence [21], can occur. In these scenarios, the adoption of online
path planning algorithms, capable of dealing with such events, becomes mandatory.

As referred before, TEA* is based on the traditional A*, where a third dimension was
added, the time. The input map has three dimensions: vertex’s coordinates (x and y) and a
representation of the time, as shown in Figure 1. The time is represented with temporal
layers given by k ∈ [0, kMax] (kmax denotes the maximum number of layers). Each temporal
graph is a set of free and occupied/obstacles vertexes.

Figure 1. Representation of the input map focusing the vertexes with the same position of the AGV
(over the time) denoted with different colors.

As far as computational complexity is concerned, many factors can influence the
system (RAM, CPU, others), however, through [43] where the test conditions are the same
for all algorithms, it is possible to validate that A* is the most suitable algorithm for robot
fleet management in different environments. Therefore, taking into account the case study
carried out in [43], and the results obtained in [9], it can be concluded that TEA* is a
practical, versatile and quite optimized algorithm in terms of path planning algorithms.

3.1. The TEA* Method

In multi-AGV systems, time is a crucial component for a better prediction of the
vehicles’ positions. Besides the constantly recalculated paths, TEA* determines the route
for each AGV during the temporal layers. This grants the identification of upcoming
collisions, allowing them to be avoided with considerable anticipation. The path informa-
tion for each AGV is converted to a busy vertex on the following robot’s map, allowing
collision avoidance.

Consider a graph G with a set of vertexes V = {0, 1, ..., NUM_VERTEXES} and edges
E = {0, 1, ...NUM_EDGES} (links between the vertexes), with a representation of the time
[ 0, 1, ..., kmax ] (as can be seen in Figure 1). Each AGV can only starts and stops in vertexes
and each vertex can only be occupied by only one vehicle at the time.

During the path search for a single AGV the neighboring vertexes are evaluated using
a similar approach as A* algorithm [44]. Moreover, each edge in each temporal layer, has a
cost function value, denoted as f (j, k), given by the sum of two terms (see Equation (1)).

f (j, k) = αg(j, k) + βh(j, k),

k ∈ [0, kmax], j ∈ [0, NUM_VERTEXES] (1)

Considering the path between j0 and j f , the first term αg(j, k), represents the distance
between the current vertex j to the initial vertex j0, in the k temporal layer. The second
term, denoted as βh(j, k), is a heuristic value that calculates the distance to the final vertex
j f . The terms α and β assign different weights to the distance and the heuristic function.

Each vertex, in each temporal layer, has different values of g(j, k) and h(j, k), according
with the Equation (2). Here, g(j, k) is given by the sum of the distance between the current
vertex j and the initial vertex j0, being the edge distance between j and its adjacent vertex
j + 1 denoted as dis(j, j + 1, k).
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g(j, k) = dis(j, j0, k) + dis(j, j + 1, k)

h(j, k) = dis(j, j f , k)
(2)

The main differences between TEA* and the known A* algorithm are mainly concerned
with the addition of the time component and can be defined as follows:

Definition 1. The neighbor vertexes belong to the next temporal layer. The neighbor vertexes of a
vertex j (vj

adj) are given by the set of all adjacent vertexes in the next time component (k + 1). The
number of temporal layers depends on the required iterations to achieve the final point of the mission
and the map dimensions. Note that the larger the map, more time layers are required.

Definition 2. The neighbor vertexes include the vertex containing the AGV’s current position. The
set of neighbor vertexes includes not only the adjacent vertexes but also the vertex corresponding to
the position in analysis. This property allows a vehicle to maintain its position between consecutive
time instants if any neighbor vertex is free. In this case, dis(j, j, k + 1) assumes a constant value
that corresponds to the cost of keeping its position.

The Algorithm 1 describes the TEA* approach for a single AGV with the following
parameters:

• valk
j : Value of vertex j in the time layer k (Free—0 or Occupied/Obstacle—1).

• posk
l,j: AGV l occupies the vertex j in the k time layer.

• O = {ok
j , ..}: Open list contains the vertex j in the k time instant. Each item contains

the respective cost value, ok
j .cost.

• j0: initial vertex.
• j f : final vertex.

• vj
adj: adjacent vertex of vertex j.

• pj,k = (i, τ): The vertex i in the time layer τ is the parent vertex of vertex j in the
instant k.

• hk
j : Heuristic Value for vertex j in k temporal layer.

• gk
j : Distance Value for vertex j in k temporal layer.

• dis(j1, j2): Distance value of the edge (j1, j2).

3.2. Smoothing Trajectories

For TEA* to be applied, the shop floor layout requires to be modeled as a set of
vertexes and edges (links between the vertexes). Each AGV travels on these graph paths,
from one node to another, through a pre-defined set of edges. Each edge is represented as
a cubic Bézier curve (as proposed in article [45]), given by Equation (3).

x(λ) = axλ3 + bxλ2 + cxλ + x0

y(λ) = ayλ3 + byλ2 + cyλ + y0
(3)

Here, λ denotes an integer value between 0 and 1 according with the AGV’s position
in the curve, (x0, y0) is the initial point of the curve, and ax, bx, cx, defines the spline’s
curvature. Figure 2 represents a portion of the map which contains Bézier curves and
straight lines.
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Algorithm 1: TEA* ALGORITHM

1 O← o0
vi;

2 while OpenList.size() 6= 0 do
3 j = minO{ok

j .cost};
4 if j == j f then
5 return

6 for vj
adj adjacent vertexes of j do

7 if valk+1
vj

adj

== 0 then

8 Only the non-visited vertexes have heuristic zero;
9 if hk+1

vj
adj

== 0 then

10 CalculateHeuristic(hk+1
vj

adj

);

11 pj,k = (vj
adj, k + 1);

12 CalculateCost(ok+1
vj

adj

);

13 O← ok+1
vj

adj

;

14 else if gk+1
vj

adj

> gk
vj

adj

+ dis(j, vj
adj) then

15 UpdateCost(ok+1
vj

adj

);

16 O← ok+1
vj

adj

17 return 0;

Figure 2. Cubic Bézier Curves Example.
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4. Industrial Layout and Comparison Scenario Description

In this section, the TEA*, based on Robot Operating System (ROS), is compared with
a state of the art alternative, namely the coordination algorithm presented in [46]. This
algorithm relies on coordination diagrams for planning the coordinated motion of a fleet of
AGVs. One of the contributions of [46] is the definition of a heuristic function that estimates
the number of times a vehicle starts and stops during its path execution.

For the comparison of the two algorithms, a set of experiments were conducted using
the same layout, the same number of vehicles and the same missions’ list used by the
authors of [11]. Each mission is defined by four tasks (Sn- Starting positions; Pn- Pick-up
Positions; Dn- Drop-off Stations; Rn- Rest Positions). The layout dimensions are 80× 110 m
and 10 AGVs were used to generate the results of [11].

Figure 3 represents the input map of TEA* Algorithm. The graph was built using a
graph editor, which was created with the Robot Operating System Visualization (RVIZ)
platform and the Interactive Markers tool.

Figure 3. Layout Snapshot built in RVIZ.
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5. Routing Algorithms Comparison

Considering the industrial scenario previously presented, Table 1 illustrates the mis-
sion execution time for each vehicle with the TEA* Algorithm, using 10 AGVs and 30 tasks.
For each AGV, the time of advancement (Tadv) and the stopping time (Tstop) are reported. In
Figure 4 is illustrated the final solution found for each vehicle. Two black circles represent
possible collision points in different robot paths, but the third dimension of TEA* allows
AGVs to share the same trajectory by passing at different times at the common points, i.e.,
avoiding possible collisions.

Comparing the results achieved with the TEA* (Table 1), with the results presented by
the authors in [11] (Table 2), it is possible to conclude that TEA* is advantageous mainly
considering the Tadv of the last vehicles (AGVs 6, 7, 8, 9, 10). Conversely, the Tadv of the
AGVs 3, 4 and 5 surpasses the value of the same robots in Table 2. However, in these cases
the Taverage and the Tmax are lower in TEA*. Therefore, this algorithm presents itself as a
better solution for multi-robot path planning.

Figure 4. Routing Algorithm Results—10 AGVs.
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The average time (Taverage) to complete the missions list with TEA* is 116.7 s and in
the case of [11] this time is approximately 121.78 s. The last vehicle in [11] takes 144.2 s to
finish its tasks, while in TEA*, the last vehicle performs its tasks in 135.8 s.

To highlight the capability of TEA* Algorithm to optimize the routes even with
considerable workload in the system, Table 3 presents the same industrial scenario but
now with 20 AGVs and 60 tasks. Note that the difference in the average time between 10
and 20 AGVs are approximately 11 s. The fact that a vehicle considers the current and
future positions of each vehicle as obstacles during the discrete-time, gives it the possibility
to wait for some instants for the traveling of previous AGV, instead of calculating a
longer deviation.

Table 1. TEA* Results—10 AGVs.

Vehicle 1 2 3 4 5

Tadv(s) 123.5 110.3 135.8 134.2 91.6
Tstop(s) 0 0 6 0 3

Vehicle 6 7 8 9 10

Tadv(s) 129.0 103.4 105.4 108.6 125.6
Tstop(s) 0 0 6 0 0

Taverage(s) 116.7

Tmax(s) 135.8

Tstop(s) 15

Table 2. TRAFCON Results—10 AGVs, adapted from [11].

Vehicle 1 2 3 4 5

Tadv(s) 144.2 118.6 115.2 127 73.4
Tstop(s) 26.8 0 1.6 0 17

Vehicle 6 7 8 9 10

Tadv(s) 151 123 107 121.6 136.8
Tstop(s) 0 0 1.4 0 0

Taverage(s) 121.8

Tmax(s) 151

Tstop(s) 46.8

For the sake of completeness, it is important to refer that the TEA* Algorithm has
been designed to be integrated into dynamic industrial environments, thus allowing direct
scaling concerning the number of robots to be used. The structure of the algorithm itself is
already prepared for different exchanges of industrial scenarios.
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Table 3. TEA* Results—20 AGVs.

Vehicle 1 2 3 4 5

Tadv(s) 123.5 110.3 135.8 134.2 91.6
Tstop(s) 0 0 6 0 3

Vehicle 6 7 8 9 10

Tadv(s) 129.0 103.4 105.4 108.6 125.6
Tstop(s) 0 0 6 0 0

Vehicle 11 12 13 14 15

Tadv(s) 144.3 166.6 107.7 129.6 121.5
Tstop(s) 9 3 0 12 0

Vehicle 16 17 18 19 20

Tadv(s) 161.4 139.5 179.3 81.5 154.7
Tstop(s) 3 0 3 3 3

Taverage(s) 127.7

Tmax(s) 179.3

Tstop(s) 51

6. Task Scheduling Algorithm

As referred earlier, the problem of AGV coordination is not only closely related with
the route planning of the AGVs, but also with the task scheduling. The performance of the
routing algorithm can be improved. The AGV execution order affects the calculation of
routes since the path positions over time for a given vehicle are obstacles for the following
AGVs. If the execution order changes, the paths and respective task execution times for
each vehicle are different.

6.1. Tabu Search Method

The Tabu Search Method is a ‘meta-heuristic’ adaptive method of local search in
continuous exploration within a search space, moving from one solution to another, the
Tabu Moves, diversifying the solutions found in this process of the search for an improved
solution [47]. The best permissible movement is the one with the highest evaluation in the
vicinity of the current solution regarding target function value and taboo restrictions. Thus,
the ‘meta-heuristic’ Tabu Search is an iterative search algorithm characterized by dynamic
memory and consisting of two parts: initialization and search.

Starting from an initial randomly generated solution or using a heuristic, the Tabu
Search will evaluate a set of different mutations (neighborhood exploration) of the current
solution in each iteration. The best mutation will be accepted, and the changes made
saved in a Tabu List adopted to store the most used changes, which are classified as
prohibited in later iterations. This strategy is necessary to avoid a return to solutions
already checked previously.

Therefore, in this method, in each iteration, the evaluation function consists of vali-
dating a certain quantity of new solutions, where the best solution, based on the objective
function, is accepted, even if its cost is higher than the cost of the current solution. Thus,
the algorithm chooses the new solution that produces an improvement or the least dete-
rioration in the cost function (an attempt to evade minimal locations). The Tabu Search
algorithm runs until a stop criteria is reached.

Figure 5 presents the main blocks of the Tabu Search method.
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Figure 5. Tabu Search Diagram.

In the AGV scheduling problem presented, the final objective is the allocation of the n
sub-tasks by the j available AGVs, in order to minimize the total time for the overall task
completion. The main goal is to determine/distribute the best sequence of attendance of
the sub-tasks by the AGVs to minimize the total time of execution.

For the problem presented, the initial solution (sequence of sub-tasks assigned to each
AGV) is generated using the closest neighboring heuristic, as presented in Algorithm 2.
In other words, each AGV (and taking into account the last sub-task performed, which
influences its position on the map) is assigned to the next sub-task with lower cost (shorter
travel time/distance).

This process is executed cyclically until all sub-tasks have been assigned to one, and
only one, AGV.

Algorithm 2: CLOSEST NEIGHBOUR ALGORITHM—PSEUDO CODE

1 while AllSubTasksUnallocated do
2 for j = 1 to NumAGVs do
3 NewAGV(j)SubTask← NeighbourNext <

SubTasksUnallocated, PreviousSubTaskAGV(j) >;
4 ListSubTasksAGV(j)←< NewSubTaskAGV(j) >;
5 PreviousAGV(j)SubTask← NewAGV(j)SubTask;
6 AllUnassignedSubTasks← delete < NewSubTaskAGV(j) >;

The Algorithm 3, describes the implementation of the Tabu Search used in the pro-
posed approach.

6.2. TEA* Algorithm with Tabu Search Method—Results

The Tabu Search Method was implemented to find better vehicle configuration and to
schedule the order in which vehicles execute their tasks. A configuration comprises the
order in which vehicles should be processed by the TEA* Algorithm.
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Algorithm 3: ‘META-HEURISTIC’ TABU SEARCH—PSEUDO CODE

1 s← s0;
2 BestSolution← s;
3 for k = 1 to TabuSearchMaxIteration do
4 CandidateList← null;
5 for sCandidate in sNeighborhood do
6 if not containsTabuElements < Candidate, tabuList > then
7 candidateList← candidateList + sCandidate;

8 sCandidate← LocateBestCandidate < candidateList >;
9 tabuList← addFeatureDifferences < sCandidate, sBest >;

10 s← sCandidate;
11 if f itness < s > < f itness < sBest > then
12 sBest← s;

13 UpdateTabuList < tabuList >;

14 return sBest

The AGV execution order affects the calculation of routes since the path positions
over time for a given vehicle are obstacles for the following AGVs. If the execution order
changes, each vehicle’s paths and respective task execution times will be different.

The optimization goal is the minimization of the three following parameters:

1. Time of the last vehicle, denoted as Tmax in seconds;
2. Average Time of the missions execution, denoted as Taverage in seconds;
3. Number of Stoppages, denoted as nstop;

That were aggregated in the following cost function (Equation (4)):

c = γ× Tlast + ψ× Taverage + τ × nstop (4)

Here, γ, ψ and τ are components that are weighting parameters. In the simulation
experiments the following values were used, respectively 0.1, 0.7, 0.2. These were manually
defined considering an iterative and experimental way, with the main goal of minimizing
the cost function c.

The configuration that leads to the lowest cost function is chosen as the better so-
lution. In our approach is not required to achieve the optimal solution, a near-optimal
configuration that leads to an efficient TEA* execution is enough.

To obtain the initial configuration of the Tabu Search Method, a heuristic function
was defined. It consists of the path computation for each vehicle without consider the
other vehicles as obstacles (optimal solution) and ordering it by decreasing the order of
execution task times. The objective is to process firstly the longer paths minimizing the
number of stoppages. The candidate solutions are generated, changing two by two the
vehicle execution order from the current solution.

Table 4 presents the results for the TEA* Algorithm using the AGV configuration
solution found by the Tabu Search method. The average time for completing all tasks is
lower, but the more significant improvement was the waiting time. In Table 1 using as
initial configuration = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} AGVs were stopped 15 s. Using the Tabu
Search solution = {6, 2, 4, 3, 1, 10, 9, 7, 8, 5}, total waiting time was 6 s.

Considering 20 AGVs, besides the stoppage time to be higher, the task completion
time is lower than TEA* results without scheduling module. In Table 3 the total time to
complete all tasks was 179.3 s and in Table 5 this time was 159.1 s.
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Table 4. TEA* Results with the Tabu Search Configuration—10 AGVs.

Vehicle 6 2 4 3 1

Tadv(s) 129.0 110.3 133.7 122.6 125.4
Tstop(s) 0 0 0 0 0

Vehicle 10 9 7 8 5

Tadv(s) 124.2 108.6 103.4 105.4 91.3
Tstop(s) 0 0 0 3 3

Taverage 115.4

Tmax(s) 133.7

Tstop(s) 6

Table 5. TEA* Results with the Tabu Search Configuration—20 AGVs.

Vehicle 18 16 4 12 6

Tadv(s) 159.1 152.5 133.9 157.3 131.2
Tstop(s) 0 0 0 6 0

Vehicle 11 10 1 15 17

Tadv(s) 133.7 124.2 123.5 125.8 136.1
Tstop(s) 6 0 0 9 0

Vehicle 3 14 2 9 13

Tadv(s) 148.5 131.6 136.0 119.1 138.4
Tstop(s) 0 12 3 0 3

Vehicle 20 7 8 5 19

Tadv(s) 145.1 121.4 106.7 105.0 78.5
Tstop(s) 3 0 3 18 0

Taverage 130.4

Tmax(s) 159.1

Tstop(s) 63

7. Conclusions

This article proposes a multi-AGV system that comprises a routing algorithm based
on the search method A*. This algorithm is suitable for multi-robot applications, avoiding
collisions and deadlocks and guaranteeing any industrial scenario required safety levels. To
optimize the results achieved scheduling method (Tabu Search) minimizes a fitness function
defined by several parameters calculated by TEA*. The two modules work cooperatively,
sharing the TEA* information.

Our work’s major contributions are: (i) Presentation of a promising approach for multi-
AGV applications in warehouse environment, improving the flexibility and efficiency of
the complete system; (ii) Validation of an on-line Multi-Robot Coordination Algorithm
comparing it with a state-of-the-art alternative.

As future work, it will be interesting to validate the TEA* Algorithm in a real environ-
ment, with a real robotic system, by comparing it to the simulation results.
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