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Abstract: In gaze-based Human-Robot Interaction (HRI), it is important to determine human visual
intention for interacting with robots. One typical HRI interaction scenario is that a human selects
an object by gaze and a robotic manipulator will pick up the object. In this work, we propose
an approach, GazeEMD, that can be used to detect whether a human is looking at an object for
HRI application. We use Earth Mover’s Distance (EMD) to measure the similarity between the
hypothetical gazes at objects and the actual gazes. Then, the similarity score is used to determine if
the human visual intention is on the object. We compare our approach with a fixation-based method
and HitScan with a run length in the scenario of selecting daily objects by gaze. Our experimental
results indicate that the GazeEMD approach has higher accuracy and is more robust to noises than the
other approaches. Hence, the users can lessen cognitive load by using our approach in the real-world
HRI scenario.

Keywords: Human-Robot Interaction; fixation; gaze; EMD

1. Introduction

Mobile eye-tracking devices, i.e., eye-tracking glasses usually comprise eye camera(s)
for detecting pupils and a world camera for capturing the image of the scene. Gaze is
calculated from the pupil images and projected to the image of the scene, which can
reveal the information of a human being’s visual intention. Gazes can be identified as
different eye movements. Fixation and saccade are two of the most common types of eye
movement event. Fixation can be viewed as gaze being stably kept in a small region and
saccade can be viewed as rapid eye movement [1]. They can be computationally identified
from eye tracking signals by different approaches, such as Identification by Dispersion
Threshold (I-DT) [2], Identification by Velocity Threshold (I-VT) [2], Bayesian-method-
based algorithm [3] and machine-learning-based algorithm [4].

In gaze-based HRI, fixation is often used as an indication of the visual intention of a
human. In [5], when a fixation was detected, an image patch is cropped around the fixation
point and fed to a neural network to detect a drone. In [6], fixation is used to determine if
a human is looking at Areas of Interests (AOIs) in a mixed-initiative HRI study. In [7–9],
fixations were used for selecting an object to grasp. They were also used in the selection
of a grasping plane of an object in [7]. However, there are limitations to using fixation to
select an object for further actions. Consider a scenario such as that displayed in Figure 1,
where a human is wearing a mobile eye-tracking device and can select detected objects
on the table by gaze and then let a robot pick the object up for him or her. The robot will
receive the information of the selected object and plan the grasping task; it does not share
the human gaze points.

One approach to determine if the human visual intention is focused on an object is to
use fixation. When a fixation event is detected, the gaze points in the event are in a small
region in the world image. If the fixation center is on the object, the visual intention is
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considered to be on the object. Using fixation to select an object requires that the human
looks at a very small region of the object and tries to not move the eyes. When observing
an object, the human gaze is not fixating on a single point (or a small region). The authors
in [10] demonstrated that human gazes, when observing an object, spread over different
regions of the object. Figure 2a displays the gazes within a duration spent looking at
scissors. The human gazes over time are plotted in yellow dots. This implies that saccade
may occur during the process of observation. When using the fixation-based approach,
the visual intention may cause information loss in the sense that, when a saccade has
happened, the human is still looking at the object.

Figure 1. The scenario where a human can select one of the objects on the table using eye-tracking
glasses and a robotic manipulator will pick up the selected object.

(a) Gaze patterns of obser-
vation over time. Yellow
dots are the gaze points.

(b) Gaze outside of bounding box. Yellow circle is a
single gaze point.

Figure 2. (a): The gaze patterns over time when a human is looking at the scissors. (b): Two
consecutive frames with tracked gaze and detected bounding box. The variation in the size of the
bounding box comes from the detection algorithm and can cause the gaze to fall outside of the
bounding box while the human intention is still on scissors.

Intuitively, considering all gaze points can overcome the problem that the saccadic
gazes on the object are lost. HitScan [11,12] uses all gaze points when determining if the
visual intention is on the object. However, there exists one more kind of noise which we
refer to as gaze drift error. Both fixation based method and HitScan have this problem.
On some occasions, the center of a gaze point may fall out of the bounding box while
the human is still looking at the object. This kind of noise has various sources. First is
the fluctuation of the size of the bounding box caused by the object detection algorithm.
Figure 2b gives one example. The figure shows two consecutive frames in one sequence.
The gazes in two frames are located at the same position of the object, but the bounding box
of the object changes. Second, a poor calibration would also result in this error. Moreover,
the head-mounted mobile eye tracking device may accidentally be moved after calibration
and the detected gaze will be shifted. Both fixation based method and HitScan based on
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checking if the gaze/fixation center is inside the object bounding box. Both will suffer from
the gaze drift error. In addition, fixation based method will have information loss due to
the saccades inside the bounding box.

When using gaze to select an object to interact with a robot, one issue is that the robot
does not know if the human has decided on an object for interaction, even if the human
visual intention is on the object. This is the Midas problem [13]. One solution is to use a
long dwell time to confirm the selection [14]. Using fixation or HitScan with a long dwell
time will also be less efficient due to the saccades and gaze drift error.

We propose GazeEMD, an approach to detect human visual intention which can over-
come the limitations mentioned above. We form the question of detecting visual intention
from a different perspective than checking if the gaze points are inside a bounding box.
We compare the hypothetic gaze distribution over an object and the real gaze distribution
to determine the visual intention. For a detected object, we generate sample gaze points
within the bounding box. They can be interpreted as a hypothesis of where a human
being’s visual focus is located. These sample points are formed as the hypothetic gaze
distribution. The gaze signals from the mobile eye-tracking device provide information of
the actual location a human is looking at. The actual gaze points are formed as the actual
gaze distribution. The similarity between hypothetic gaze distribution and actual gaze
distribution is calculated by Earth Mover’s Distance (EMD) distance. The EMD similarity
score is used to determine if the visual intention is on the object. We conduct three experi-
ments and compare GazeEMD with a Fixation-based approach and HitScan. The results
show that the proposed method can significantly increase accuracy in predicting human
intention with the presence of saccades and gaze shift noise.

To our best knowledge, we are the first to deploy EMD similarity to detect if the visual
intention is on an object. Until recently, the fixation-based method and the method checking
all gazes are still widely used in HRI applications, although both have the problem of gaze
drift error. Little research focusing on solving this problem has been reported. The novel
contributions of our work compared to the state-of-the-art are:

1. We proposed GazeEMD, which can overcome the problem of gaze drift error which
the current state-of-the-art methods do not solve and capture saccadic eye movements
when referring objects to a robot;

2. We show that GazeEMD is more efficient than the fixation-based method and HitScan
when confirming selection, using a long dwell time which has not been reported in
the literature before. The eye gaze is not required to be held in a small region.

The rest of the paper is organized as follows, In Section 2, we review the related work.
In Section 3, we explain our method in detail. We describe the experimental setup and
evaluation in Sections 4 and 5. In Section 6, the experimental procedure and evaluation
method are presented, and Section 7 is the discussion.

2. Related Work

The I-DT and I-VT [2] are two widely used algorithms to identify fixation events. I-DT
detects fixation based on the location of gazes. If the gazes are located within a small region,
i.e., the coordinates of gazes are under de ispersion threshold, the gazes are considered as a
fixation event. I-VT detects fixation based on the velocities of gazes. Gazes with velocities
are under the velocity threshold are considered as a fixation event.

When a fixation event is detected, the fixation center is compared with the bounding
box of the object to determine the visual intention. Some works use all gaze points to
detect visual intention on objects. In [14,15], the accumulated gazes on objects are used to
determine the object at which the user is looking. HitScan [11] detects the visual intention
by counting the number of gazes entering and the number exiting a bounding box. If the
counts of gazes inside a bounding box is higher than the entering threshold, then an event
is started. If the count of gazes consecutively located outside of a bounding box is higher,
then the event is closed.
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In gaze-based HRI, an important issue in referring to objects is the Midas Touch
problem [13]. If the gaze dwell-time fixating on an object is too short, then a selection is
activated even if that is not the human intention. To overcome this problem, an additional
activation needs to be made to confirm the human intention. The activation can be ad-
ditional input devices [16,17], hand gestures [18,19] and eye gestures [20,21]. A common
solution to overcome the Midas Touch problem is using a long gaze dwell-time [14,22] to
distinguish the involuntary fixating gazes, which are rarely higher than 300 ms. Several
HRI works have adopted this solution. In [23,24], dwell time is set to 500 ms to activate the
selections of AOIs. In [8,9], the 2D gazes obtained from eye-tracking glasses are projected
into 3D with the help of an RGB-D camera. The fixation duration is set to two seconds to
confirm the selection of an object in [8]. A total of 15 gaze points on the right side of the
bounding box are used to determine the selection in [9]. In [21], gaze is used to control a
drone. A remote eye-tracker is used to capture the gazes on a screen. Several zones are
drawn on the screen with different commands to guide the drone. Dwell time from 300 ms
to 500 ms is tested to select a command to control the drone. In [25], a mobile eye-tracker
and a manipulator are used to assist surgery in the operating theatre. A user can select an
object by looking at the object for four seconds. Extending gaze dwell time to overcome
the Midas Touch problem in HRI has proven valid regardless of the type of eye-tracking
device and application scenario. However, a long dwell time would increase the user’s
cognitive load [17]. The users deliberately increase the duration time, which means extra
effort is needed to maintain the gaze fixation on the object or AOI. Furthermore, if a user
fails to select an object, the long dwell time will make the process less efficient and also
increase the user’s effort. Such disadvantages are critical to users who need to use the
device frequently, such as disabled people using gaze to control wheelchairs.

Dwell time has also been evaluated with other modalities of selection. In [26], dwell
time is compared with clicker, on-device input, gesture and speech in VR/AR application.
Dwell time is preferred as a hands-free modality. In [17], dwell time obtains a worse perfor-
mance than the combination of dwell time and single-stroke gaze gesture in wheelchair
application. When controlling drone [21], using gaze gestures is more accurate than using
dwell time, although it takes more time to issue a selection. Depending on the different
dwell times and applications, the results of these works differ. There is no rule of thumb
to select the best specific modality; dwell time still has the potential to reduce the user
discomfort and increase efficiency, provided that the problems mentioned in Section 1 are
overcome.

Our proposed approach uses EMD as the metric to measure the similarity of two
distributions. EMD was first introduced into the computer vision field in [27,28]. The
EMD distance was also used in image retrieval [27,29]. The information of histograms of
images were derived to construct the image signatures P = {(p1, wp1)...(pm, wpm)} and
Q = {(q1, wq1)...(qn, wqn)} where pi, wpi , m and qj, wqj , n are the cluster mean, weighting
factor and number of clusters of the respective signature. Distance matrix D is the ground
distance between P and Q and flow matrix F describes the cost of moving “mass” from P
to Q. EMD distance is the normalized optimal work for transferring the “mass”. In [29],
EMD is compared with other metrics, i.e., Histogram Intersection, Histogram Correlation,
χ2 statistics, Bhattacharyya distance and Kullback–Leibler (KL) divergence to measure
image dissimilarity in color space. EMD had a better performance than the other metrics.
It was also shown that EMD can avoid saturation and maintain good linearity when the
mean of target distribution changes linearly.

A similar work [30] also uses EMD distance to compare the gaze scan path collected
from the eye tracker and the gaze scan path generated from images. The main differences
between their work and ours are: (i) In [30], the authors use a remote eye tracker to record
gaze scan paths when the participants are watching images. We use First Person View
(FPV) images and gazes record by a head-mounted eye tracking device. (ii) We want to
detect if the human intention is on a certain object, and their work focuses on generating
the gaze scan path based on the image.
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3. Methodology

Our methodology will be applied in the scenario described in Section 1. There are
three objects, namely, cup, scissors and bottle, in the scene (Figure 1). All objects are placed
on a table. The user can select one of the objects and a robotic manipulator can pick up the
desired object. Figure 3 shows the overview of the GazeEMD visual intention detection
system. We use a head-mounted eye tracking device that provides the world image Iw and
gaze point g(x, y), where x and y are the coordinates in Iw. We first detect all the objects
by feeding the world image Iw to the object detector. Then, we generate hypothetic gaze
samples on the detected objects and compare them with actual gazes obtained from the
head-mounted eye tracking device. Finally, the similarity score between the hypothetic
gaze distribution and actual gaze distribution is used to determine if the human visual
intention is on an object.

Object Detection

World image 
Hypothetic Gaze

Distribution

Actual Gaze
Distribution

Gaze

Bounding Boxes

Visual Intention Detection

Similarity
Visual

Intention
Prediction

Figure 3. The block diagram of the GazeEMD system.

3.1. Object Detection

We use deep-learning-based object detector YOLOv2 [31] to detect the objects in our
scene. The network of YOLOv2 is trained on a COCO dataset [32]. YOLOv2 detector
Y = [B, C] takes world image Iw as the input of network and predicts the bounding boxes
B and class labels C.

3.2. GazeEMD
3.2.1. Hypothetic Gaze Distribution and Actual Gaze Distribution

Figure 4 shows an example of the hypothetic gaze distribution and the actual gaze
distribution. The hypothetic gaze instances are plotted in blue and the actual gaze instances
are plotted in yellow.

(a) Gaze length k = 5. (b) Gaze length k = 60. (c) Gaze length k = 120.

Figure 4. The hypothetic gaze distributions and the actual gaze distribution. The hypothetic gaze
instances are plotted in blue and the actual gaze instances are plotted in yellow.

For each detected object, we crop an image patch Iobj from Iw by the size of the
object bounding box. From all pixels of Iobj, k pixels are sampled, following a Gaussian
distribution. The sampled pixels are interpreted as hypothetic gaze points. Next, we
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calculate the Euclidean distance between each of the k pixels and the center of the bounding
box. This distance distribution is denoted as hypothetic gaze distribution πs. To form
the actual gaze distribution, we collect k gaze points from the eye tracking device and
calculate their Euclidean distances to the center of the bounding box. The resulting distance
distribution is denoted as actual gaze distribution πg.

3.2.2. Similarity between Distributions

EMD is used as the measure of the similarity between distributions πs and πg. In order
to use EMD, the distributions need to be transformed into signatures. We first calculate the
geometric distance histograms Hs = ∑m

i=1 bi
s for πs and Hg = ∑n

j=1 bj
g for πg, where m and

n are the number of bins. The range of histogram value depends on the size of the world
image. If the image size is 640× 480, the maximum value will be 800. The signatures ss
and sg are calculated similarly to [29]

ss =
m

∑
i=1

bi
swi

s, sg =
n

∑
j=1

bj
gwj

g (1)

where bs and bg are the bin values from Hs and Hg; the weighting factors ws and wg are the
middle values of the respective bin intervals [29]. The distance matrix Dsg = [dij] is the

ground distance between πi
s and π

j
g. The flow matrix Fsg = [ fij] is the cost of moving the

“mass” from πs and πg. The work function is

Work(Dsg, Fsg) =
m

∑
i=1

n

∑
j=1

dij fij. (2)

The EMD distance is calculated as

EMD(πs, πg) =
min(Work(Dsg, Fsg))

∑m
i=1 ∑n

j=1 fij
. (3)

Then, the similarity score, i.e., EMD distance, is used as a metric to determine whether
the visual intention is on an object, given the detected object bounding boxes B and a set of
consecutive gaze g. The EMD visual intention VEMD(B, g) is calculated as

VEMD(B, g) =

Ci if argmin
i

(EMD(πsi , πg)) < Ti

0 else
. (4)

where Ci and Ti is the ith label of object and the threshold for ith object. The EMD visual
intention VEMD(B, g) is the object a human is looking at. VEMD(B, g) = 0 represents that
the human is not looking at any object. The threshold Ti is required for binary classification.
We use Receiver Operating Characteristic (ROC) curve to select appropriate threshold
values for GazeEMD. The threshold Ti for ith object is calculated by

Ti = argmax
j

(TPRj − FPRj) (5)

where TPRj and FPRj are the jth True Positive Rate and the jth False Positive Rate in the
ROC curve.

3.3. Fixation-Based Method

The GazeEMD is compared with the fixation-based method and the HitScan. We
describe the fixation-based method here, and the HitScan in Section 3.4. The I-DT algorithm
detects fixation events and calculates the fixation center fp = IDT(td) for each detected



Robotics 2021, 10, 68 7 of 18

fixation event. The parameter td is the fixation duration. The rest of the gaze instances are
all considered as saccadic events. The fixation visual intention Vf is calculated as

Vf =

{
Ci ∀i ∈ [0, 1, ...n], ∃ fp ∈ Bi,
0 else

(6)

where n is the number of detected objects. If the fp is within the ith bounding box Bi, the
intention is assigned to the object.

3.4. HitScan with Run Length Filtering

We implement the HitScan with run length filtering approach proposed in [11]. For a
given gaze sequence g and the bounding box of one object B, HitScan Hi checks if a gaze
point gi is located inside a bound box

Hi =

{
1 if gi ∈ B,
0 else

(7)

Run length filter defines two constraints, T1 and T2. T1 is the minimal number of
consecutive gaze points, which are located inside a bound box. Similarly, T2 is the minimal
number of consecutive gaze points located outside a bound box. Run length filter uses
T1 and T2 to define if a “look” L is on an object. L is equivalent to our visual intention for
single objects and it meets the condition that, for a set of gazes, gL,

T1

∏
i=0

Hi = 1,
T2

∑
j=n−T2

Hj = 0 (8)

where n is the length of gL. A HitScan event consists of the gaze points in the look L. In the
case of multiple objects, the visual intention Vhr is calculated by iterating the HitScan and
run length filter over all objects.

4. Experiment

We conduct three experiments to evaluate the performance of our proposed algorithm.
First, we see the performance on single objects. Second, we evaluate the case with multiple
objects and last is free viewing. In all experiments, three daily objects, i.e., bottle, cup and
scissors, are used. Although we only test with three objects, GazeEMD can generalize
well on different objects, since the hypothetic gaze distribution is generated based on the
size of the bounding box. The objects are placed on the table. The participant wears the
eye-tracking glasses and sits next to the table and conducts the experiments.

4.1. Experiment Procedure
4.1.1. Single Objects

In this experiment, each participant performs three experiment sessions. In each
session, a different object is used. At the beginning of one session, the participants look at
the object first and then look away from the object. During the “look away” period, the
participants can freely look at any place in the scene except the object.

4.1.2. Multiple Objects

In this experiment, each participant performs one experiment session. In the session,
all objects are placed on the table at the same time. Participants look at objects one by
one, in order, and repeat the process several times. For instance, a participant looks at the
scissors, bottle and cup sequentially, and then looks back at the scissors and performs the
same sequence.
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4.1.3. Free Viewing

The scene setup of the experiment is the same as Multiple Objects: instead of looking at
objects with a sequence, the participants can freely look at anything, anywhere in the scene.

4.2. Data Collection and Annotation

We asked seven people to participate in the experiments. All participants are aged
between 20 and 40, and all of them are researchers with backgrounds in engineering. All the
people voluntarily participated in the experiments. One of the participants has experience
in eye tracking. The rest had no prior experience in eye tracking.

A researcher with eye-tracking knowledge and experience labelled the dataset. The
annotator used the world image to label the data. The object-bounding boxes and gaze
points are drawn in the world images. All datapoints are annotated sample by sample.
For the Single Objects experiment, an algorithm can be viewed as a binary classifier, i.e.,
whether the visual intention is on an object or not. The annotations are clear since the
visual intention on and off the object is distinguishable. In the phase of looking at the
object, even if gazes are outside of the bounding box, they can be labeled as “intention on
object”. Conversely, in the phase of looking away from the object, all data can be labeled
as “intention not on object”. In the Multiple Objects and Free Viewing experiment, an
algorithm acts as a multi-class classifier. If a participant looks at none of the objects, it is
treated as a null class. The labeling in the Multiple Objects experiment is also clear, since
the sequence of shifting visual intention between objects is distinguishable. During the free
viewing period, the annotator subjectively labels the data by experience.

4.3. Implementation

We used Pupil Labs eye-tracking glasses [33] for eye tracking. The frame rate of the
world image and the eye-tracking rate are both set to 60 fps. The YOLOv2 object detector
is implemented by [34].

For the GazeEMD, we calculated the optimal thresholds for each object by Equation (5).
The calculation used the data from the Single Objects experiments. The thresholds were
applied in the Multiple Objects and the Free Viewing cases too. The number of bins and
the histogram range in GazeEMD is 10 and 715. They were used in all experiments. The
I-DT for fixation detection we used is also implemented by [33]. The dispersion value for
the I-DT is three degrees. It was used in all experiments. The selection of parameter T1 and
T2 are described in Section 5.1.

5. Evaluation

For all experiments, we carry out sample-to-sample analysis and event analysis. We
compared our algorithm with the fixation-based approach and HitScan With Run Length
Filtering proposed in [11].

The Single Objects experiment serves three purposes. First, the optimal thresholds are
determined. As described in Section 3.2.2, our algorithm needs a threshold value for the
binary classification in GazeEMD. We first evaluated the performances with different
thresholds with the data from the Single Objects experiment. For each object in the
experiment, we selected one threshold for further evaluation and the threshold value
is also used in the Multiple Objects experiment and the Free Viewing experiment. Second,
we evaluated the sample-to-sample accuracy with different gaze lengths to show that
GazeEMD can deal with the gaze drift error better than fixation and HitScan. Third,
the event analysis with a long gaze length is equivalent to using a long dwell time to
confirm the object selection. We evaluated the performance on the event level to show that
GazeEMD is more efficient in confirming the selection.

The Single Objects experiment setup is constrained. The participants are asked to look
at the object and look away. There is only one object in the scene. We conduct the same
evaluation to Multiple Objects experiment and the Free Viewing experiment to see whether
GazeEMD can overcome gaze drift error when the constraints are fewer.
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5.1. Selection of Event Length

All algorithms are evaluated with three different event lengths: 90 ms, 1000 ms and
2000 ms. They correspond to a short, medium and long dwell time. The short dwell time is
within the normal fixation duration [35], and medium and long dwell times can be used
to distinguish the involuntary fixations. Since the algorithms detect events differently, it
is not possible to set the event lengths exactly the same. We set the parameter of each
algorithm so that they have approximately the same event length. The event length of our
algorithm depends on the size of distribution k. k is set to 5, 60 and 120, respectively. The
fixation duration td determines the event lengths of the fixation-based approach, which
iareset to 90 ms, 1000 ms and 2000 ms. For detection by HitScan with run length filtering,
the parameter T1 decides the event length. T1 is sample related; thus, it is also set to 5, 60
and 120, respectively. T2 is set to 17 according to the experiment in [11].

5.2. Metrics
5.2.1. Sample-to-Sample Analysis

The prediction of algorithm contains a set of gaze points. For labeling the ground truth
for sample-to-sample analysis, each gaze in the data is assigned a label. To analyze the
results sample-wise, the algorithm predictions are compared with the ground truth sample
by sample, i.e., the predicted label of each gaze point in one prediction is compared with the
ground truth label of each gaze point. We use Cohen’s Kappa to evaluate sample-to-sample
accuracy instead of other commonly used metrics such as Precision-Recall and F1 score.
Cohen’s Kappa measures the agreement between two sets of data. The value zero means no
agreement and a value of one means perfect agreement. Cohen’s Kappa is commonly used
to evaluate the agreement between different annotators. However, it can also be used to
compare the predictions by algorithms with ground truth [4]. Then, the Kappa score can be
interpreted as a measure of accuracy. As pointed out in [4] Cohen’s Kappa is a better option
than Precision-Recall and F1 score when evaluating imbalanced data. In our experiment,
we will compare the results of algorithms with annotated data. When determining visual
intention using the fixation-based method, the data is imbalanced due to the high number
of fixations. Thus using Cohen’s Kappa will give a better understanding of the results.

5.2.2. Event Analysis

We first define the events for the event analysis. An event consists of a set of con-
secutive gaze points whose label is on the object. For the data in a session, two sets of
events—the events in the predictions and the events in the ground truth—are obtained. The
calculations of predictions of GazeEMD, fixation-based approach and HitScan events are
described in Sections 3.2–3.4. The event analysis metrics are similar to the ones in [36,37].
We derive the segments from the events in the predictions and the events in the ground
truth and score the segments for evaluation. Segments are the partitions of a sequence that
have one-to-one relations between the events in predictions and ground truth. A segment
is either partitioned by the boundary of the events in prediction or the boundary of the
events in ground truth. Figure 5 shows how segments are partitioned from the events.

The segments are scored with True Positive (TP), False Positive (FP), True Negative
(TN) and False Negative (FN). In the single-object case, the segment scoring is a binary
case. A TP segment means that, in this segment, the algorithm has an intention event
detection and there is also an intention event in the ground truth. An FP segment has
algorithm detection but no detection in ground truth. TN means neither algorithm nor
ground truth has a detection in segment, and FN means that the algorithm fails to detect
the intention event in ground truth. In the multiple-object case, all scoring is the same as in
the single-object case, except for FN. An FN in multiple objects still holds the definition in
the single-object case. In addition, if an algorithm detects an intention event but its label is
not the same as in the ground truth, the segment is also an FN segment.
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Figure 5. The segments derived from intention events.

Then, the scores of all segments are summed and we calculate the F1 score for the full
sequence. We use F1 instead of Cohen’s Kappa for the following reason. For long gaze
length (2000 ms), the predictions made by Fixation and Hitscan are extremely low. There
are cases where it is not possible to calculate the Kappa score.

6. Results
6.1. Single Objects

As indicated in Equations (4) and (5), the GazeEMD acts as a binary classifier. We
use Area Under the Curve (AUC) scores under the ROC curve to see the binary classifier
performance. Table 1 shows the means and standard deviations of AUC scores of all
participants. As shown in the table, our algorithm performs almost perfectly on all objects
with different gaze lengths. This implies that there are clear boundaries in the EMD scores.

Table 1. AUC Scores of All Participants.

Bottle Cup Scissors
90 ms 1000 ms 2000 ms 90 ms 1000 ms 2000 ms 90 ms 1000 ms 2000 ms

mean 0.983 0.979 0.974 0.989 0.989 0.99 0.985 0.982 0.987
std 0.023 0.021 0.028 0.018 0.017 0.018 0.017 0.028 0.016

Figure 6 displays the EMD distances and Euclidean distances of the object bottle
from one participant with different gaze lengths. The blue dots are the EMD distance
between the gaze distribution and the hypothetic gaze distribution. The Euclidean distance
is represented by red dots, showing the geometric distance between actual gaze points and
the center of the bounding box. Figure A1a–c shows the distances with all tested objects in
Appendix A. The phase of “looking at the object” and “looking away” can be observed from
the figures. For instance, in Figure 6a, the participant switches from “looking at the object”
to “looking away” at the 1570th sample. The EMD distance values can be easily separated
between the two phases. With a longer gaze length, it is easier to distinguish if a participant
is looking at an object. Moreover, the EMD distances demonstrate a good correlation
with the Euclidean distances, which means that, in addition to its use as similarity score,
the EMD value also indicates the information of geometric distance between gaze and
bounding box, i.e., a higher EMD value means that the gazes in a gaze distribution are
farther from the center of the bounding box.
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(c)
Figure 6. EMD and Euclidean distances of the bottle with different gaze lengths. The red dots
represent the Euclidean distances and the blue dots represent the EMD distance. (a) EMD distance
and Euclidean distance with gaze length of 5. (b) EMD distance and Euclidean distance with a gaze
length of 60. (c) EMD distance and Euclidean distance with a gaze length of 120.

Table 2 shows the means and standard deviations of the Kappa scores in sample-to-
sample analysis. The Kappa scores suggest that our algorithm generally performs better
than the other two algorithms. For all three objects with all gaze lengths, the GazeEMD has
the highest mean Kappa scores, which are all above 0.9 and lowest standard deviations.
GazeEMD is less affected by the gaze length. As shown in Table 2, the mean Kappa scores
for all objects in all gaze lengths are comparable. The fixation-based method is severely
affected by the gaze length. For the object bottle, when the gaze length is increased from
90 ms to 1000 ms and 2000 ms, the mean Kappa score is dropped to 0.398 and 0.143. For the
object cup and scissors, it is dropped to 0.389, 0.13 and 0.539, 0.283, respectively. The mean
Kappa of HitScan is also decreased to 0.657 and 0.559 for bottle, 0.75 and 0.67 for cup, 0.794
and 0.733 for scissors. For each object, it contains a certain percentage of gaze points which
locate outside of the bounding box while the human intention is still on the object, 19.8%
of the gazes when looking at the bottle is located outside of the bounding box. For cup and
scissors, the percentages are 11.2% and 8%. The analysis in 90 ms shows that GazeEMD can
better deal with the gaze drift error. The predictions with 90 ms assign sample labels on the
basis of five samples, which is more precise than 1000 ms and 2000 ms. Although the mean
Kappa of all algorithms decreases with more gaze drift error, GazeEMD has the highest
mean Kappa and lowest standard deviation. This shows that GazeEMD is more accurate
with the presence of the gaze drift error. In this experiment, the participants are asked to
look at the object and then look away. The majority of gazes either belong to the period of
looking at the object or the period of looking away, and the gazes are easily distinguishable.
The factor affecting the performance is the gaze drift error. The higher Kappa of GazeEMD
indicates that it can better overcome the drift error compared to Fixation and the HitScan.
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Table 2. The Mean And Standard Deviation of Cohen’s Kappa In Single-Object Experiment.

90 ms 1000 ms 2000 ms
mean (std) mean (std) mean (std)

Bottle
GazeEMD 0.901 (0.132) 0.93 (0.079) 0.924 (0.056)
Fixation 0.717 (0.257) 0.398 (0.197) 0.143 (0.075)
HitScan 0.745 (0.272) 0.657 (0.309) 0.559 (0.273)

Cup
GazeEMD 0.968 (0.043) 0.925 (0.072) 0.928 (0.037)
Fixation 0.809 (0.067) 0.389 (0.105) 0.13 (0.124)
HitScan 0.828 (0.07) 0.75 (0.113) 0.67 (0.113)

Scissors
GazeEMD 0.958 (0.041) 0.936 (0.045) 0.928 (0.054)
Fixation 0.833 (0.162) 0.539 (0.165) 0.283 (0.259)
HitScan 0.874 (0.176) 0.794 (0.219) 0.733 (0.255)

Table 3 shows the means and standard deviations of the event F1 scores. The GazeEMD
has the best mean and the best standard deviation for all objects with all gaze lengths, and
the effect of a longer gaze length is trivial. Similarly to the sample-to-sample analysis, the
mean F1 scores of the fixation and the HitScan decrease with the increase in gaze length.

Table 3. The Mean And Standard Deviation of Event F1 In Single-Object Experiment.

90 ms 1000 ms 2000 ms
mean (std) mean (std) mean (std)

Bottle
GazeEMD 0.965 (0.054) 0.971 (0.022) 0.962 (0.026)
Fixation 0.831 (0.126) 0.661 (0.131) 0.41 (0.105)
HitScan 0.872 (0.167) 0.765 (0.226) 0.692 (0.233)

Cup
GazeEMD 0.989 (0.012) 0.97 (0.032) 0.952 (0.035)
Fixation 0.878 (0.024) 0.664 (0.084) 0.374 (0.173)
HitScan 0.93 (0.033) 0.843 (0.056) 0.773 (0.071)

Scissors
GazeEMD 0.984 (0.017) 0.975 (0.014) 0.965 (0.022)
Fixation 0.892 (0.065) 0.75 (0.083) 0.506 (0.272)
HitScan 0.951 (0.073) 0.876 (0.117) 0.794 (0.176)

Table 4 shows the numbers of detected events by all algorithms. The number of
detected events of all participants for each object and each gaze length are summed
together. HitScan is not affected by the gaze length. The number of detected events is close
in all three gaze lengths. HitScan decides when an event is closed by checking if the gaze
remains located outside of the bounding box for T2 frames. This merges the gazes inside the
bounding box into a long event, and thus the total number of events is lower. Furthermore,
our algorithm detects more events than the fixation algorithm in all cases (Table 4). The
fixation algorithm cannot capture the saccadic gaze movements while the GazeEMD does.
The additional events are mostly detected during saccades. In addition, when using a long
dwell time to confirm the selection, more events and higher event accuracy means that
GazeEMD is more efficient than fixation and HitScan. Fewer events in Fixation means that
the remaining gazes are detected as saccade events. When a saccade event occurs inside
the object bounding box, the fixation is interrupted and the participant needs to start a new
fixation event in order to confirm the selection. For the HitScan, fewer events are caused
by the algorithm itself. A HitScan event contains more gazes than the GazeEMD, which
means that it will take a longer time to detect the event. Fewer detected events and a lower
F1 in Fixation and HitScan means that a participant may attempt to confirm the selection.



Robotics 2021, 10, 68 13 of 18

Table 4. Number of Detected Events In Single-Object Experiment.

90 ms 1000 ms 2000 ms

Bottle
GazeEMD 1899 155 74
Fixation 1259 73 16
HitScan 25 18 13

Cup
GazeEMD 1882 146 70
Fixation 1336 72 13
HitScan 24 15 14

Scissors
GazeEMD 1967 159 74
Fixation 1477 101 30
HitScan 19 13 11

6.2. Multiple Objects

In this experiment, we extend the evaluation from Single Objects to Multiple Objects.
The means and standard deviations of the sample-to-sample Kappa are shown in Table 5.
The GazeEMD has the best mean Kappa scores in all gaze lengths. It also has the lowest
standard deviations in gaze lengths of 90 ms and 1000 ms. Although the lowest standard de-
viation in gaze length 2000 ms is the fixation-based method, the mean Kappa of GazeEMD
is still 0.307 higher than the fixation-based method. In the Single Objects experiment, we
showed that GazeEMD outperformed fixation and HitScan with the presence of gaze drift
error. When there are multiple objects in the scene, the GazeEMD also has the best mean
Kappa, showing that it can deal with gaze drift error in a multi-object scene.

Table 5. Means and Standard Deviations of Sample-to-Sample Kappa Scores and Event F1 Scores In
Multiple-Object Experiment.

90 ms 1000 ms 2000 ms
mean (std) mean (std) mean (std)

Sample-to-sample (Kappa)
GazeEMD 0.871 (0.082) 0.658 (0.124) 0.469 (0.155)
Fixation 0.693 (0.153) 0.326 (0.174) 0.162 (0.123)
HitScan 0.235 (0.168) 0.185 (0.143) 0.136 (0.138)

Event (F1)
GazeEMD 0.961 (0.014) 0.755 (0.053) 0.591 (0.117)
Fixation 0.944 (0.024) 0.571 (0.134) 0.327 (0.168)
HitScan 0.847 (0.06) 0.466 (0.32) 0.365 (0.365)

The means and standard deviations of the event F1 are shown in Table 5. GazeEMD
has the best means and standard deviation in all gaze lengths. The numbers of detected
events are displayed in Table 6. HitScan can detect considerably more events than in the
case of a single object when the gaze length is 90ms. The detected events are 1559 in this
experiment. In the Single Objects experiment, the detected events of bottle, cup and scissors
are 25, 24 and 19, respectively. The reason for this is that the participants keep switching
the visual intention onto different objects in this experiment. The exit parameter T2 can,
therefore close an event accordingly. When the gaze lengths are 1000 ms and 2000 ms, the
enter parameter T1 for entering an event is set to 1000 ms and 2000 ms, which means a
participant needs to look at an object for 1000 ms and 2000 ms to start an event. Thus, the
number of detected events is 92 and 29, which is significantly lower than the events when
the gaze length is 90 ms. Overall, GazeEMD still has the highest number of detected events
and event F1, which indicates that the confirmation of object selection is more efficient in
the multiple-objects scenario.
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Table 6. Number of Detected Events In Multiple-Object And Free-Viewing Experiment.

90 ms 1000 ms 2000 ms

Multiple Objects
GazeEMD 2821 196 80
Fixation 2262 96 28
HitScan 1559 92 29

Free Viewing
GazeEMD 1511 95 35
Fixation 1151 42 10
HitScan 1204 74 33

6.3. Free Viewing

Table 7 shows the means and deviations of the Kappa and F1 scores. In the sample-to-
sample analysis, GazeEMD has the highest mean Kappa for all gaze lengths. HitScan has
the fewest standard deviations on 90 ms and 1000 ms. Fixation has the fewest standard
deviations when the gaze length is 2000 ms. The sample-to-sample results show that
GazeEMD is more accurate in dealing with gaze drift error when the participants are not
instructed. On the event level, GazeEMD has the highest mean F1 on 1000 ms. On 90 ms
and 2000 ms, HitScan has the highest mean F1 scores. However, on 2000 ms gaze length, the
mean F1 of GazeEMD is 0.334, close to the 0.365 of HitsScan. The event analysis does not
represent the scenario of confirming selection by a long dwell time, since the participants
are freely looking at anything, without instruction to look at a particular object for a long
time.

Table 7. Means and Standard Deviations of Sample-to-Sample Kappa Scores and Event F1 Scores In
Free-Viewing Experiment.

90 ms 1000 ms 2000 ms
mean (std) mean (std) mean (std)

Sample-to-sample (Kappa)
GazeEMD 0.736 (0.216) 0.521 (0.168) 0.301 (0.264)
Fixation 0.727 (0.169) 0.221 (0.161) 0.091 (0.096)
HitScan 0.197 (0.107) 0.134 (0.129) 0.12 (0.134)

Event (F1)
GazeEMD 0.864 (0.143) 0.544 (0.198) 0.334 (0.268)
Fixation 0.896 (0.07) 0.377 (0.25) 0.193 (0.171)
HitScan 0.919 (0.06) 0.466 (0.32) 0.365 (0.29)

On both sample-to-sample level and event level, the Kappa scores and F1 scores in
Free Viewing (Table 7) are lower than the ones in Multiple Objects (Table 5). One of the
causes of this is confusion in annotation. The annotations in Single Objects and Multiple
Objects are clear, since whether the gaze is on an object is distinguishable. However, in Free
Viewing, the gaze intention is not as clear as in the other two experiments. Especially when
the gazes are close to the bounding boxes, whether a participant is looking at the edge
of an object or deliberately looking at the area around the object cannot be determined.
Although the annotations of the gazes contain uncertainties, they create a scenario with
noisier data. All algorithms will have the same uncertainties and we can see how they
perform on the noisier data. The higher Kappa of GazeEMD on sample level shows it
has better performance not only in the constrained experiments (clean data), but also in
the experiment without constraints (noisier data). This demonstrates that GazeEMD can
generalize well.

The numbers of detected events are displayed in Table 6. Similar to the Multiple
Objects, the number of events detected by the HitScan when the gaze length is 90 ms
is significantly higher than 1000 ms and 2000 ms. The reason for this is described in
Section 6.2.
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7. Discussion and Conclusions

In this work, we propose a new approach to determine visual intention for gaze-based
HRI applications. More specifically, our algorithm GazeEMD determines which object a
human is looking at by calculating the similarity between the hypothetical gaze points
on the object and the actual gaze points acquired by mobile eye tracking glasses. We
evaluate our algorithm in different scenarios by conducting three experiments: Single
Objects, Multiple Objects and Free Viewing. There are two constraints in the Single Objects.
The scene is rather clean—only one object exists at a time—and the participants are asked to
look at the object first and then look away. We use this constrained setting for three reasons.
First, it is easier to evaluate the performance of GazeEMD as a binary classifier and select
appropriate threshold values for different gaze lengths. Second, we can remove the noise
from annotation to better evaluate the noises caused by gaze drift error and variations in
bounding boxes. Finally, we can create sequences with medium and long gaze lengths
(1000 ms and 2000 ms), which are essential for confirming the selection of an object by long
dwell time. Evaluating the long gaze lengths is equivalent to solving the Midas problem
with a long dwell time in HRI applications.

The results demonstrate that the GazeEMD has excellent performance, as well as the
ability to reject the gaze drift error. Tables 2 and 3 show that GazeEMD has the highest
mean Kappa and F1 scores on both the sample-to-sample level and event level. When
the gaze length is 1000 ms and 2000 ms, the mean Kappa and F1 scores are significantly
higher than the fixation-based method and HitScan. For the bottle, when the participants
look at the object, 19.8% of the gazes are outside of the bounding box. This indicates that
GazeEMD has a better performance than the fixation-based method and HitScan, when
gaze drift errors occur. The same conclusion can be drawn for the cup and scissors. We
extend the evaluation from the single-object case to the scene with multiple objects and
free viewing. GazeEMD still has higher Kappa and F1 scores (Tables 5 and 7) than Fixation
and HitScan, except the cases of 90 ms and 2000 ms in the Multiple Objects experiment,
where the F1 scores are 0.055 and 0.031 lower than the HitScan. Nevertheless, the results
are still comparable in these two cases.

In a lot of gaze-based HRI applications, a human needs to interact with objects. A
common case is the selection of an object to be picked up by a robotic manipulator. One key
issue in this kind of interaction is confirming the selection of an object. The robot knows
which object a human is looking at, but does not know that he or she has confirmed the
selection of a certain object without additional information, i.e., the Midas problem. One
approach to this is looking at the intended object for a longer time, i.e., a long dwell time.
This scenario is equivalent to the 2000 ms in the Single Objects experiment. If the gaze
dwells on the object for 2000 ms, the object is considered to be selected and confirmed. The
robot can perform further steps. For the fixation-based approach, voluntarily increasing
the fixation duration will be helpful to increase the number of successful confirmations,
but it will also increase the cognitive load [38]. Another downside of fixation is that it
cannot capture the saccadic gazes located within the bounding box. This means that using
the fixation-based approach will miss the information from gained from the human gaze
moving to different parts of the object. This will interrupt a long fixation; hence, the human
needs to try harder to select an object for interaction, which will increase the cognitive load.
By using an algorithm such as HitScan, which considers all gazes within the bounding
box, this problem could be eliminated. However, both the fixation-based approach and
HitScan still cannot deal with the gaze drift problem. The trials would potentially be
increased to confirm the selection. However, GazeEMD can overcome these problems.
GazeEMD detects more events and has higher accuracy than fixation and HitScan (Tables 3
and 4). This indicates that GazeEMD has more successful confirmations of the selection
than the other two methods. This is important in the real application, where the users
constantly use gaze for interaction, such as disabled people who will need wheelchairs
and manipulators to help with daily life. The GazeEMD also has an excellent performance
with a short dwell time (90 ms). It can be applied to the cases in which the gaze and object
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need to be evaluated but interaction with the object is not required, such as analyzing
gaze behavior during assembly tasks [39], or during the time in which an object is handed
between humans or human and robot [40].

We propose using GazeEMD to detect whether the human intention is on an object
or not. We compared GazeEMD with the fixation-based method and HitScan in three
experiments. The results show that GazeEMD has a higher sample-to-sample accuracy.
Since the experimental data contain gaze drift error, i.e., the intention is on the object while
the gaze points are outside of the object bounding box, the higher accuracy of GazeEMD
indicates that it can overcome the gaze drift error. In HRI applications, a human often needs
to confirm the selection of an object so that the robot can perform further actions. The event
analysis with long gaze lengths in Single Objects experiments shows the effect of using a
long dwell time for confirmation. The results show that GazeEMD has higher accuracy on
the event level and more detected events, which indicates that GazeEMD is more efficient
than the fixation. The proposed method now can detect the human intention in the scenario
where the detected bounding boxes of the objects are not overlapped. One future research
direction could be further developing the algorithm so that the gaze intention can be
detected correctly when two bounding boxes are overlapped.
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(a) EMD distance and Euclidean distance with gaze length of 5. Left is bottle, middle is cup and right is scissors.
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(b) EMD distance and Euclidean distance with gaze length of 60. Left is bottle, middle is cup and right is scissors.

Figure A1. Cont.
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(c) EMD distance and Euclidean distance with gaze length of 120. Left is bottle, middle is cup and right is scissors.

Figure A1. EMD and Euclidean distances of all objects with different gaze length. The red dots represnet the Euclidean
distances and the blue dots represent the EMD distance.

References
1. Holmqvist, K.; Nyström, M.; Andersson, R.; Dewhurst, R.; Jarodzka, H.; Van de Weijer, J. Eye Tracking: A Comprehensive Guide to

Methods and Measures; OUP: Oxford, UK, 2011.
2. Salvucci, D.D.; Goldberg, J.H. Identifying fixations and saccades in eye-tracking protocols. In Proceedings of the 2000 Symposium

on Eye Tracking Research & Applications, Palm Beach Gardens, FL, USA, 6–8 November 2000; pp. 71–78.
3. Santini, T.; Fuhl, W.; Kübler, T.; Kasneci, E. Bayesian identification of fixations, saccades, and smooth pursuits. In Proceedings

of the Ninth Biennial ACM Symposium on Eye Tracking Research & Applications, Charleston, SC, USA, 14–17 March 2016;
pp. 163–170.

4. Zemblys, R.; Niehorster, D.C.; Komogortsev, O.; Holmqvist, K. Using machine learning to detect events in eye-tracking data.
Behav. Res. Methods 2018, 50, 160–181. [CrossRef] [PubMed]

5. Yuan, L.; Reardon, C.; Warnell, G.; Loianno, G. Human gaze-driven spatial tasking of an autonomous MAV. IEEE Robot. Autom.
Lett. 2019, 4, 1343–1350. [CrossRef]

6. Chanel, C.P.; Roy, R.N.; Dehais, F.; Drougard, N. Towards Mixed-Initiative Human-Robot Interaction: Assessment of Discrimina-
tive Physiological and Behavioral Features for Performance Prediction. Sensors 2020, 20, 296. [CrossRef] [PubMed]

7. Li, S.; Zhang, X.; Webb, J.D. 3-D-gaze-based robotic grasping through mimicking human visuomotor function for people with
motion impairments. IEEE Trans. Biomed. Eng. 2017, 64, 2824–2835. [CrossRef] [PubMed]

8. Wang, M.Y.; Kogkas, A.A.; Darzi, A.; Mylonas, G.P. Free-View, 3D Gaze-Guided, Assistive Robotic System for Activities of Daily
Living. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain,
1–5 October 2018; pp. 2355–2361.

9. Shafti, A.; Orlov, P.; Faisal, A.A. Gaze-based, context-aware robotic system for assisted reaching and grasping. In Proceedings of
the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 863–869.

10. Takahashi, R.; Suzuki, H.; Chew, J.Y.; Ohtake, Y.; Nagai, Y.; Ohtomi, K. A system for three-dimensional gaze fixation analysis
using eye tracking glasses. J. Comput. Des. Eng. 2018, 5, 449–457. [CrossRef]

11. Chukoskie, L.; Guo, S.; Ho, E.; Zheng, Y.; Chen, Q.; Meng, V.; Cao, J.; Devgan, N.; Wu, S.; Cosman, P.C. Quantifying gaze
behavior during real-world interactions using automated object, face, and fixation detection. IEEE Trans. Cogn. Dev. Syst. 2018,
10, 1143–1152. [CrossRef]

12. Venuprasad, P.; Dobhal, T.; Paul, A.; Nguyen, T.N.; Gilman, A.; Cosman, P.; Chukoskie, L. Characterizing joint attention behavior
during real world interactions using automated object and gaze detection. In Proceedings of the 11th ACM Symposium on Eye
Tracking Research & Applications, Denver, CO, USA, 25–28 June 2019; pp. 1–8.

13. Jacob, R.J. What you look at is what you get: Eye movement-based interaction techniques. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, Seattle, WA, USA, April 1990; pp. 11–18.

14. Blattgerste, J.; Renner, P.; Pfeiffer, T. Advantages of eye-gaze over head-gaze-based selection in virtual and augmented reality
under varying field of views. In Proceedings of the Workshop on Communication by Gaze Interaction, Warsaw, Poland, 14–17
June 2018; pp. 1–9.

15. Tanriverdi, V.; Jacob, R.J. Interacting with eye movements in virtual environments. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, The Hague, The Netherlands, 1–6 April 2000; pp. 265–272.

16. Stellmach, S.; Dachselt, R. Still looking: Investigating seamless gaze-supported selection, positioning, and manipulation of distant
targets. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Paris, France, 27 April–2 May 2013;
pp. 285–294.

17. Meena, Y.K.; Cecotti, H.; Wong-Lin, K.; Prasad, G. A multimodal interface to resolve the Midas-Touch problem in gaze controlled
wheelchair. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), Jeju, Korea, 11–15 July 2017; pp. 905–908.

18. Chatterjee, I.; Xiao, R.; Harrison, C. Gaze+ gesture: Expressive, precise and targeted free-space interactions. In Proceedings of the
2015 ACM on International Conference on Multimodal Interaction, Seattle, WA, USA, 9–13 November 2015; pp. 131–138.

http://doi.org/10.3758/s13428-017-0860-3
http://www.ncbi.nlm.nih.gov/pubmed/28233250
http://dx.doi.org/10.1109/LRA.2019.2895419
http://dx.doi.org/10.3390/s20010296
http://www.ncbi.nlm.nih.gov/pubmed/31948046
http://dx.doi.org/10.1109/TBME.2017.2677902
http://www.ncbi.nlm.nih.gov/pubmed/28278455
http://dx.doi.org/10.1016/j.jcde.2017.12.007
http://dx.doi.org/10.1109/TCDS.2018.2821566


Robotics 2021, 10, 68 18 of 18

19. Pfeuffer, K.; Mayer, B.; Mardanbegi, D.; Gellersen, H. Gaze+ pinch interaction in virtual reality. In Proceedings of the 5th
Symposium on Spatial User Interaction, Brighton, UK, 16–17 October 2017; pp. 99–108.

20. Istance, H.; Bates, R.; Hyrskykari, A.; Vickers, S. Snap clutch, a moded approach to solving the Midas touch problem. In
Proceedings of the 2008 Symposium on Eye Tracking Research & Applications, Savannah, GA, USA, 26–28 March 2008; pp. 221–
228.

21. Yu, M.; Lin, Y.; Schmidt, D.; Wang, X.; Wang, Y. Human-robot interaction based on gaze gestures for the drone teleoperation. J.
Eye Mov. Res. 2014, 7, 1–14.

22. Velichkovsky, B.B.; Rumyantsev, M.A.; Morozov, M.A. New Solution to the Midas Touch Problem: Identification of Visual
Commands Via Extraction of Focal Fixations. Procedia Comput. Sci. 2014, 39, 75–82. [CrossRef]

23. Krishna Sharma, V.; Saluja, K.; Mollyn, V.; Biswas, P. Eye gaze controlled robotic arm for persons with severe speech and motor
impairment. In Proceedings of the ACM Symposium on Eye Tracking Research and Applications, Stuttgart, Germany, 2–5 June
2020; pp. 1–9.

24. Araujo, J.M.; Zhang, G.; Hansen, J.P.P.; Puthusserypady, S. Exploring Eye-Gaze Wheelchair Control. In Proceedings of the ACM
Symposium on Eye Tracking Research and Applications, Stuttgart, Germany, 2–5 June 2020; pp 1–8.

25. Kogkas, A.A.; Darzi, A.; Mylonas, G.P. Gaze-contingent perceptually enabled interactions in the operating theatre. Int. J. Comput.
Assist. Radiol. Surg. 2017, 12, 1131–1140. [CrossRef] [PubMed]

26. Esteves, A.; Shin, Y.; Oakley, I. Comparing selection mechanisms for gaze input techniques in head-mounted displays. Int. J.
Hum. Comput. Stud. 2020, 139, 102414. [CrossRef]

27. Rubner, Y.; Tomasi, C.; Guibas, L.J. The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 2000, 40, 99–121.
[CrossRef]

28. Peleg, S.; Werman, M.; Rom, H. A unified approach to the change of resolution: Space and gray-level. IEEE Trans. Pattern Anal.
Mach. Intell. 1989, 11, 739–742. [CrossRef]

29. Bazan, E.; Dokládal, P.; Dokladalova, E. Quantitative Analysis of Similarity Measures of Distributions In Proceedings of the
British Machine Vision Conferences, Cardiff, UK, 9–12 September 2019; pp 187.

30. Yoo, B.S.; Kim, J.H. Evolutionary fuzzy integral-based gaze control with preference of human gaze. IEEE Trans. Cogn. Dev. Syst.
2016, 8, 186–200. [CrossRef]

31. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. arXiv 2016, arXiv:1612.08242.
32. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in

context. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2014; pp. 740–755.
33. Kassner, M.; Patera, W.; Bulling, A. Pupil: An Open Source Platform for Pervasive Eye Tracking and Mobile Gaze-based

Interaction. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Seattle,
WA, USA, 13–17 September 2014; ACM: New York, NY, USA, 2014; pp. 1151–1160. [CrossRef]

34. Bjelonic, M. YOLO ROS: Real-Time Object Detection for ROS. Available online: https://github.com/leggedrobotics/darknet_ros
(accessed on 6 July 2019).

35. Rayner, K. The 35th Sir Frederick Bartlett Lecture: Eye movements and attention in reading, scene perception, and visual search.
Q. J. Exp. Psychol. 2009, 62, 1457–1506. [CrossRef]

36. Ward, J.A.; Lukowicz, P.; Tröster, G. Evaluating performance in continuous context recognition using event-driven error
characterisation. In Proceedings of the International Symposium on Location-and Context-Awareness, Dublin, Ireland, 10–11
May 2006; pp. 239–255.

37. Ward, J.A.; Lukowicz, P.; Gellersen, H.W. Performance Metrics for Activity Recognition. ACM Trans. Intell. Syst. Technol. 2011, 2.
[CrossRef]

38. Shojaeizadeh, M.; Djamasbi, S.; Trapp, A.C. Density of gaze points within a fixation and information processing behavior. In
Proceedings of the International Conference on Universal Access in Human-Computer Interaction, Toronto, ON, Canada, 17–22
July 2016; pp. 465–471.

39. Wang, H.; Shi, B.E. Gaze awareness improves collaboration efficiency in a collaborative assembly task. In Proceedings of the 11th
ACM Symposium on Eye Tracking Research & Applications, Denver, CO, USA, 25–28 June 2019; pp. 1–5.

40. Moon, A.; Troniak, D.M.; Gleeson, B.; Pan, M.K.; Zheng, M.; Blumer, B.A.; MacLean, K.; Croft, E.A. Meet me where i’m gazing:
how shared attention gaze affects human-robot handover timing. In Proceedings of the 2014 ACM/IEEE International Conference
on Human-Robot Interaction, Bielefeld, Germany, 3–6 March 2014; pp. 334–341.

http://dx.doi.org/10.1016/j.procs.2014.11.012
http://dx.doi.org/10.1007/s11548-017-1580-y
http://www.ncbi.nlm.nih.gov/pubmed/28397111
http://dx.doi.org/10.1016/j.ijhcs.2020.102414
http://dx.doi.org/10.1023/A:1026543900054
http://dx.doi.org/10.1109/34.192468
http://dx.doi.org/10.1109/TCDS.2016.2558516
http://dx.doi.org/10.1145/2638728.2641695
https://github.com/leggedrobotics/darknet_ros
http://dx.doi.org/10.1080/17470210902816461
http://dx.doi.org/10.1145/1889681.1889687

	Introduction
	Related Work
	Methodology
	Object Detection
	GazeEMD
	Hypothetic Gaze Distribution and Actual Gaze Distribution
	Similarity between Distributions

	Fixation-Based Method
	HitScan with Run Length Filtering

	Experiment
	Experiment Procedure
	Single Objects
	Multiple Objects
	Free Viewing

	Data Collection and Annotation
	Implementation

	Evaluation
	Selection of Event Length
	Metrics
	Sample-to-Sample Analysis
	Event Analysis


	Results 
	Single Objects 
	Multiple Objects
	Free Viewing

	Discussion and Conclusions
	
	References

