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Abstract: This study was conducted to develop robot prototypes of three models that navigate
mallards to achieve high-efficiency rice-duck farming. We examined two robotics navigation ap-
proaches based on imprinting and feeding. As the first approach, we used imprinting applied to baby
mallards. They exhibited follow behavior to our first prototype after imprinting. Experimentally
obtained observation results revealed the importance of providing imprinting immediately up to one
week after hatching. As another approach, we used feed placed on the top of our second prototype.
Experimentally obtained results showed that adult mallards exhibited wariness not only against the
robot, but also against the feeder. After relieving wariness with provision of more than one week
time to become accustomed, adult mallards ate feed in the box on the robot. However, they ran away
immediately at a slight movement. Based on this confirmation, we developed the third prototype as
an autonomous mobile robot aimed for mallard navigation in a paddy field. The body width is less
than the length between rice stalks. After checking the waterproof capability of a body waterproof
box, we conducted an indoor driving test for manual operation. Moreover, we conducted outdoor
evaluation tests to assess running on an actual paddy field. We developed indoor and outdoor image
datasets using an onboard monocular camera. For the outdoor image datasets, our segmentation
method based on SegNet achieved semantic segmentation for three semantic categories. For the
indoor image datasets, our prediction method based on CNN and LSTM achieved visual prediction
for three motion categories.

Keywords: rice-duck farming; feeding; imprinting; mallards; navigation; segmentation; long short-
term memory; convolutional neural network

1. Introduction

With the evolutionary development of machines and information technologies rep-
resented by robots, artificial intelligence (AI), and the internet of things (IoT), precision
agriculture and smart farming have been attracting attention in recent years [1–7]. Herein,
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we propose a novel agricultural concept as remote farming for fundamental technologies
to actualize smart farming. Remote farming specifically emphasizes not only the use of
information and communications technology (ICT) to improve production efficiency and
reduce costs but also remote robot operation and remote field monitoring. For this study,
we intend to develop a small robot that accommodates functions to move autonomously
along a path between rice paddies and that automatically monitors crop growth, disease
infection, and natural enemy attacks.

Existing large agricultural machines demand great effort to ensure safety during
locomotion [8]. By contrast, small farming robots accomplish proximity crop monitoring
and various tasks in complex and narrow areas that are difficult for large robots to negotiate.
Moreover, damage from collision with grown crops or animals as livestock or work animals
is reduced by a safe robot system [9]. Nevertheless, smaller robots impose constraints
on the mounting of devices and sensors. For this study, we used a monocular camera to
recognize surroundings for our robot to achieve autonomous locomotion as a part of a
monocular vision-based navigation system [10].

Laser imaging detection and ranging (LiDAR) sensors offer great potential in agricul-
ture to measure crop volumes and structural parameters [11]. Nevertheless, our robot uses
no LiDAR sensor because of the reduction of parts to be mounted on the body, the total
cost, and system complexity. Moreover, the field of view (FOV) of LiDAR is narrower than
that of a normal camera. The rapid development of image processing methods enhanced
with deep-learning (DL) techniques [12] has expanded to use open-source code libraries
that have been released on numerous websites [13]. Therefore, various technologies and
approaches to elucidate objects, scenes, and their surroundings for autonomous locomo-
tion can be applicable for numerous applications to images obtained using an ordinarily
available monocular camera [14].

We consider that time-series FOV images obtained from a frontal monocular camera
while moving between rice paddies provide consistency in image features to line up on
both sides of a route. Moreover, we consider that machine learning (ML) algorithms
present benefits for processing image features for accomplishing necessary functions for
autonomous locomotion. However, the paddy field soil states undergo various changes
concomitantly with growth of the rice plants. In the case of a typical Japanese rice crop, a
paddy field is flooded to approximately 300 mm depth after rice planting in spring. Then
the water depth decreases along with the progress of rice growth in summer. Water is
completely drained from the field for harvesting in autumn.

In a paddy field, soil conditional changes vary concomitantly with the growth of
rice plants, seasons, regional climate characteristics, wind direction and speed, and solar
radiation. One important challenge for an autonomous mobile robot in a paddy field
is to maintain robustness and adaptability to environmental changes. We assume that
incremental learning for field locomotion images based on ML algorithms has an effective
potential to improve generalization capability. This study was conducted to develop three
robot prototypes as depicted in Figure 1 that move among rice plants. Moreover, this study
was done to implement and evaluate our proposed method based on time series learning
algorithms for vision-based autonomous locomotion.

The contribution of this paper is as follows:

• investigation of the possibility of small robots to actualize highly efficient rice-
duck farming,

• verification of useful methods to navigate mallards using robot prototypes based on
imprinting and feeding,

• construction of image datasets among rice paddies obtained using an onboard monoc-
ular camera,

• and demonstration of segmentation and prediction based on deep-learning-based methods.



Robotics 2021, 10, 63 3 of 26

Figure 1. Exterior photos of respective robot prototypes that moves among rice plants for mallard
navigation.

This paper is structured as follows. In Section 2, we briefly review related stud-
ies of existing rice-ducking robots and navigation methods. Section 3 presents the first
prototype as depicted in Figure 1a used for imprinting-based navigation and its basic
experimental results applied for baby mallards. Subsequently, Section 4 presents the sec-
ond prototype as depicted in Figure 1b used for feeding-based navigation and its basic
experimental results applied for adult mallards. As a fully customized mallard navigation
robot, Sections 5 and 6 respectively present the design of the third prototype as depicted in
Figure 1c and the basic results of locomotion experiments in an actual paddy field based on
visual navigation. Finally, Section 7 concludes and highlights future work. Herein, we had
proposed this basic method with originally developed sensors of two proceedings [15,16].
For this paper, we have described detail results and discussion as a whole system.

2. Related Studies
2.1. Rice-Ducking Farming

Rice-duck farming is an environmentally friendly rice cultivation method that employs
neither chemical fertilizers nor pesticides. Although hybrid ducks are generally used for
rice-duck farming, farmers in northern Japan use mallards (Anas platyrhynchos) because of
their utility value as a livestock product. For this study, we specifically examine rice-duck
farming using mallards considering regional characteristics. Figure 2 depicts rice-duck
farming using mallards.

Figure 2. Rice-duck farming using mallards in northern Japan. For protecting mallards from natural
enemies, colored fishing lines made of nylon are stretched over the paddy field. Paddy rice is eaten by
mallards. Mallards often concentrate in a specific area because of a swarm habit. These photographs
were taken in Ogata Village, Akita, Japan (40◦00′ N, 140◦00′ E).

Regional competition of rice production in Japan has come to be difficult since the rice
reduction policy was abolished in 2018. Rice farmers are requested not only to secure food
safety for the nation, but also to switch to novel rice production styles that are requested by
consumers and which are consequently rewarded on the market. One solution is organic
farming rice production. To reduce the environmental load related to agricultural produc-
tion, organic farming uses no agricultural chemicals including fertilizers and pesticides.
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For the benefit of natural production capacity, organic farming has come to be regarded as
an effective approach to improve the value of products.

Since ancient times, mallards have been domesticated as poultry for human consump-
tion. Mallards are used not only for rice-duck farming, but also for meat because their smell
is not strong. Mallards eat leaves, stems, seeds, and shells of plants. For weeding and pest
control, mallards eat not only aquatic weeds such as Echinochloa esculenta, Cyperus microiria,
and Juncus effuses, but also aquatic insects such as Lissorhoptrus oryzophilus, Sogatella fur-
cifera, Nilaparvata lugens, Laodelphax striatellus, but also river snails in a paddy field. Mallard
movements in a paddy field also produce positive effects of full-time paddling. For weed
prevention, turbid water suppresses photosynthesis of weeds below the surface. More-
over, mallards not only provide feces for nutrients of growing rice, but also contact rice
during movements as a stimulus. A paddy field is a place of abundant water and life for
mallards [17]. Moreover, the grown paddy rice can provide refuge from natural enemies.

Organic farming using hybrid ducks or mallards is commonly known as rice-duck
farming. Ducks provide weed control and pest control in paddy fields. As an example,
the rice price using rice-duck farming is up to three times higher than that of conventional
farming using agricultural chemicals and fertilizers. Therefore, improved stabilization for
farmers is expected. Generally, organic farming without pesticides requires more labor than
conventional farming for weed control and for cultivation management. In underpopulated
regions, especially in rural areas with population aging and labor shortage, rice-duck
farming is extremely attractive because it provides a substitute for human labor. However,
one important shortcoming is that a flock of ducks tends to gather in a specific area that
then becomes a spring pond. No rice is grown in such a spring pond because seedlings
are pushed down. Another shortcoming is the ineffective weed control achieved in areas
outside of ducks’ active moving areas. We consider that robotics technologies, especially
for small robots [18,19], provide the potential to solve these diverse shortcomings. The aim
of this study was to develop an autonomous mobile robot that guides mallards to realize
highly efficient rice-duck farming. This study was conducted to develop robot prototypes
of three models that navigates mallards to achieve high-efficiency rice-duck farming.

2.2. Rice-Ducking Robots

As air-cushion vehicles (ACVs), Yasuda et al. [20] developed a brush-roller type paddy
weeding robot that floats in a paddy field using a hovercraft mechanism. They used a
tension member coated with glass fiber with polypropylene for a brush roller. Rotation
of the brush roller behind the robot actualized weeding to the roots of rice. Although
blowers for feeding air into skirts and the brush roller were driven using dedicated motors,
a generator with a gasoline engine was used because the robot had no battery. Regarding
locomotion in a large paddy field, they provided not only manual operation, but also
automatic pilot using GPS. Their prototype robot assumed for a practical use had the ability
to perform weeding of 10,000 m2 up to 4 h. However, miniaturization was important
future work because the body of 1900 mm long, 1860 mm wide, and 630 mm high was
big, especially for carrying on a light truck used for transportation by small-scale farmers
in Japan. Furthermore, the brush roller using the tension member damaged the rice.
An important difficulty was that the rice yield decreased by up to 30%. Although they
considered an alternative cultivation approach to increase the number of planted seedlings
as a countermeasure against damage to paddy rice, the production cost and the rice quality
remained as a subject for future work in this area.

For controlling weed growth with soil agitation, a small weeding robot named iG-
AMO was developed by the Gifu Prefectural Research Institute of Information Technology,
Japan [21]. This robot was improved in collaboration with an agricultural machine manu-
facturer for practical use and dissemination [22]. The main body is 580 mm long, 480 mm
wide, and 520 mm high. Two crawlers with 150 mm gap provided locomotion to run over a
line of rice plants. The robot achieved autonomous locomotion from rice plant distribution
information detected using a near infrared (IR) camera and two position-sensitive device
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(PSD) depth sensors. Two 1.41 N·m motors driven by a 180 Wh battery provided continu-
ous operation up to 3 h with working efficiency of 1000 m2/h. Moreover, they improved
the weeding efficiency using not only stirring of the crawlers, but also metal chains for
scraping the soil surface. They compared their robot with a conventional weeding machine
and actual hybrid ducks in several rice paddy fields The experimentally obtained results
revealed amounts of residual grass and differences of yields and rice grade. Sori et al. [23]
proposed a rice paddy weeding robot with paddle wheels instead of crawlers. The main
body is 428 mm long, 558 mm wide, and 465 mm high. The two paddle wheels provide
locomotion to run over a line of rice plants. The experimentally obtained results revealed
that the number of tillers was increased when using their robot compared to the case
without weeding.

Nakai et al. [24] described a small weed-suppression robot. The main body is 400 mm
long, 190 mm wide, and 250 mm high. The robot achieved locomotion with a passage
width of 300 mm, which is the standard rice plant interval in Japan. The robot accommo-
dates a tri-axial manipulator with an iron brush for improving the efficiency of weeding,
combined with crawler-based weeding. For autonomous locomotion, they actualized
stable movement in rough paddy fields using a laser range finder (LRF). However, hybrid
ducks provide not only weeding, but also pest predation and excrement, the latter of which
provides nutrients for the rice. Weeding robots can provide no such effect. Hybrid ducks
do not move freely in a paddy field because they have no consciousness or responsibility
for agricultural work. Therefore, improving weeding efficiency, pest control, and nutri-
ent injection from excrement remain as challenging tasks. An approach that combines
robots and green ducks is positioned as an excellent solution for outdoor cultivation in
conventional farming.

Yamada et al. [25] proposed an autonomous mobile robot that navigated hybrid ducks.
They conducted an imprinting experiment for baby hybrid ducks using the robot. The
main body size is similar to the mean size of parent hybrid birds. They used crawlers for
the locomotion mechanism of the robot in the paddy field. In the imprinting experiment,
they put a baby hybrid bird at 48 hr after hatching in a square box of 300 mm length. They
applied visual stimulation for 45 min repeated six times. They confirmed that baby hybrid
ducks acted according to robot behavior patterns. This result demonstrated that imprinting
using a robot was possible for baby hybrid ducks. The robot appearance need not be similar
to that of parent hybrid ducks. Imprinting was performed on quadrangular objects with
no pattern. Moreover, they conducted induction experiments for up to four baby hybrid
ducks that had hatched seven days before. The experimentally obtained results revealed
the effectiveness of imprinting for the effect between feeding as a reward for bait and as
a direct reward from stamped stimulus. Nevertheless, no experiment was conducted in
actual paddy fields. In an artificial environment of 1500 mm long and 2000 mm wide,
the robot merely repeated a reciprocating motion over an acrylic board. Regarding the
influence of duck calling, no significant effect was found.

Moreover, Yamada et al. [26] noted the fact that about one week had passed for baby
hybrid ducks for hatching as a condition for farmers. They conducted not only imprinting
on ducklings that had passed the critical period of imprinting, but also conducted induction
experiments with feeding. This experiment was conducted at a paddy field. The robot
supported a camera, a speaker used for sound reproduction, and two pyroelectric IR
sensors from the rear. In addition, a feeding port for feed learning was provided at the
tail end of the robot. According to the sensor conditions, the feed port had a function of
automatically opening and closing. The pyroelectric IR sensors covered from 0.3 m through
0.5 m for near measurements and from 0.5 m through 1.5 m for remote measurements for
detecting objects including obstacles. Although they performed 45 min × 6 imprinting
operations for two hybrid ducks, they concluded that no action was observed to approach
an autonomous mobile robot after the critical period. However, respective behaviors after
playing a call of a parent bird from a robot without movement revealed that feed-learned
hybrid ducks approached the feed outlet of their robot system. Moreover, results revealed
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as the effect of feeding learning that feeding-learned individuals were more likely to
follow the robot than unlearned individuals. They inferred that hybrid ducks learned
that the robot was harmless because they contacted the robot several times. However, the
movement ranges of the robot and hybrid ducks in the evaluation experiment was about
1.50 m2. Compared with the actual paddy field, the result of this experiment is limited to
induction within a limited range. The robot guided two hybrid ducks in the stop status
and one hybrid duck in the moving status. Therefore, no indication was shown for feeding
guidance for hybrid ducks, which show group behavior as a basic habit.

2.3. Animal–Robot Interaction

Animal–robot interaction (ARI) is an extended concept of human–robot interaction
(HRI) and human–robot relation based on ethorobotics, which relies on evolutionary, ecolog-
ical, and ethological concepts for developing social robots [27,28]. One important factor
for ARI is that developers should have full knowledge of animal behaviors and emo-
tions to make a robot understand their needs sufficiently for natural interaction with the
animal [29]. Moreover, robot behaviors should be well designed considering the animal
ethology for a sudden movement [29]. Recently, ARI studies and technologies represent
a relatively novel research field of bio-robotics and are opening up to new opportunities
for multidisciplinary studies, including biological investigations, as well as bio-inspired
engineering design [30]. Numerous ARI studies have been conducted, especially on Ze-
brafish [31–37], the green bottle fly (Lucilia sericata) [38], squirrels, crabs, honeybees, rats,
and other animal species, including the studies on interactive bio-robotics [39]. In the case
of waterfowl, two representative studies are as follows.

Vaughan et al. [40] developed a mobile sheepdog robot that maneuvers a flock of ducks
to a specified goal position. After verifying the basic characteristics through simulations,
they evaluated the navigation of 12 ducks to an arbitrary position set as a goal in an
experimental arena with a 7 m diameter created as an actual environment. Nevertheless,
they indicated no specifications such as the mobile performance of their robot.

Henderson et al. [41] navigated domestic ducks (Anas platyrhynchos domesticus) using
two stimuli: a small mobile vehicle and a walking human. They navigated 37 adult ducks of
6 flocks at a donut-shaped experimental course. The experimentally obtained comparison
results demonstrated the differences in navigation capability between humans and robots
based on the index of mean latency to return to food.

2.4. Autonomous Locomotion and Navigation

Numerous state-of-the-art robots including flying robots as unmanned aerial vehicles
(UAV) have been proposed for autonomous locomotion and navigation. Chen et al. [42] pro-
posed a legged stable walking control strategy based on multi-sensor information feedback
for large load parallel hexapod wheel-legged robot developing. They developed a mobile
robot that has six legs and six wheels applied in complex terrain environments. The results
revealed that their proposed active compliance controllers based on impedance control
reduced the contact impact between the foot-end and the ground for improving the stability
of the robot body. Moreover, they actualized the anti-sliding ability after introducing the
swing leg retraction that provided stable walking in complex terrain environments.

Li et al. [43] developed a wheel-legged robot with a flexible lateral control scheme
using a cubature Kalman algorithm. They proposed a fuzzy compensation and preview
angle-enhanced sliding model controller to improve the tracking accuracy and robustness.
The simulations and experimentally obtained results demonstrated that their proposed
method achieved satisfactory performance in high-precision trajectory tracking and stability
control of their mobile robot.

Chen et al. [44] proposed an exact formulation based on mixed-integer linear program-
ming to fully search the solution space and produce optimal flight paths for autonomous
UAVs. They designed an original clustering-based algorithm to classify regions into clus-
ters and obtain approximate optimal point-to-point paths for UAVs. The experimentally
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obtained results with randomly generated regions demonstrated the efficiency and effec-
tiveness for the coverage path planning problem of autonomous heterogeneous UAVs on a
bounded number of regions.

In a paddy field, mallards often concentrate in a specific area because of a swarm habit.
Some areas therefore have persistent weeds because mallards do not disperse. Mallards
do not weed a whole paddy field uniformly. Moreover, a stepping pond occurs where
all the paddy rice has been eaten by mallards. As a different approach, some farmers
use feed to navigate mallards. The difficulty of this approach is the necessity of human
burdens, especially for large paddy fields. Therefore, farmers must weed them using a
weed-removing machine. For this study, we examined three navigation approaches used
for mallards: imprinting, pheromone tracking, and feeding.

Imprinting is a unique behavior observed in nidifugous birds such as ducks, geese,
and chickens [45]. Imprinting is a contacting and follow response to a stimulus that is
received for the first time during a short period after hatching. Moreover, imprinting is
enhanced for running and following in response to sounds or moving shadows. For this
study, we specifically examined imprinting-based navigation. We used a small robot as an
imprinting target for baby mallards.

Pheromones are chemicals that promote changes in behavior and development of
conspecific individuals after being produced inside the body and secreted outside the
body [46]. Pheromones are used mainly when insects communicate with conspecific
individuals. Although no pheromone is available to navigate mallards, we consider
indirect navigation using insects favored by mallards with pheromone. Specifically, we
devised an indirect usage that navigates mallards using insects that are gathered to a
pheromone trap attached to a robot. Although baby mallards attempt to eat insects, adult
birds have no interest in them. We consider that the efficiency of this approach decreases
along with mallard development. For this study, we conducted no experiments using
pheromone-based navigation because of the difficulty of the procedures using insects and
the weak overall effects.

For rice-duck farming, breeders use feed to collect ducks. Breeders give minimum
feed for ducks because ducks stop eating weeds if too much feed is given. We expect that
feeding-based navigation is effective for adult mallards because imprinting can only be
performed during the baby mallard period. Yamada et al. tested the effects of feed learning
and navigation for hybrid ducks. However, they described no test for feed learning for
mallard navigation. For this study, we specifically examined the method of navigating
mallards following the use of feed combined with a small robot.

For actualizing self-driving cars, research and development of autonomous locomo-
tion have been conducted actively [47] in the field of automated driving using multiple
sensors [48]. Murase et al. [49] have applied a convolutional neural network (CNN) to their
proposed method for automatic automobile driving to improve control precision and accu-
racy. Their developed CNN model was trained with vehicle states using on-board camera
images and vehicle speeds as system inputs and the volumes of steering, acceleration, and
break operations as system outputs. The experimentally obtained results demonstrated the
effectiveness of the combination of time-series images and CNNs for automated driving.
Although the method exhibited usefulness for weather and changes, the evaluation results
using video datasets remain as simulations.

Kamiya et al. [50] attempted to estimate car motion patterns in video images from a
first-person view (FPV) [51] using a recurrent convolutional neural network (RCNN) [52].
They compared estimation accuracies with those of three RCNN models trained with
three input patterns: color images, dynamic vector images obtained from optical flow
features, and both images. Evaluation experiments targeting four behavior prediction
patterns, which comprise moving forward, turning right, turning left, and moving back-
ward, demonstrated the usefulness of switching input features to accommodate the driving
scenario characteristics.
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Xu et al. [53] proposed a generic vehicle motion model using end-to-end trainable
architecture to predict a distribution over future vehicle ego-motion from instantaneous
monocular camera observations and previous vehicle states. They evaluated their model
using the Berkeley DeepDrive Video dataset (BDDV) [54] to predict four driving actions:
straight, stop, turn left, and turn right. Their proposed model demonstrated superior
accuracy compared with existing state-of-the-art prediction models based on deep learning
(DL) algorithms.

As described above, various studies using DL-based methods for elucidation, esti-
mation, and prediction of semantics from video images for automatic driving have been
actively conducted. Nevertheless, no report of the relevant literature has described a
feasible means of realizing small farming robots that can move autonomously in a field
based on DL and visual processing. Moreover, studies of mobile robots that can infer
behavior patterns from time-series images in a field of complex surface conditions have
not progressed. Therefore, the challenge remains of [55] exploring the applicability of DL
technologies to a small robot that moves autonomously in a paddy field.

For this study, we assume that the environment used for our prototypes as a mobile
robot is a paddy field filled with water to 200 mm depth. In a paddy field, the robot
encounters difficulties with locomotion because the ground condition is muddy, rough,
and underwater. The robot must move in a passage of approximately up to 300 mm wide
between rice plants with inter-rice locomotion. Moreover, stems and leaves are spreading
according to the growing of rice plants. Therefore, we assume that the robot body size is
restricted to a similar size to that of a sheet of A4 paper.

3. Imprinting-Based Navigation
3.1. Experiment Setup

For this experiment, we attempted imprinting of baby mallards after a hatch. We
obtained eggs from a mallard farm as depicted in Figure 3. Particularly, the middle panel
of Figure 3 depicts the inside of an aviary for laying.

Figure 3. Mallard farm (left), inside of aviary (middle), and mallard eggs (right). We obtained eggs
from this mallard farm.

The left panel of Figure 4 depicts the mallard eggs and an incubator (MX-20; Autoelex
Co. Ltd., Kimhae, Korea) that we used for a hatch. We divided 18 eggs into four groups be-
cause we shifted hatching dates in two-day intervals. We set the temperature and humidity
in the incubator respectively to 37.5 ◦C and 45.0%. The bottom incubator plate includes a
slider to roll the eggs periodically. We set the rolling frequency to one-hour intervals. We
stopped the rolling approximately one week before the predicted hatching dates.

Figure 4. Mallard eggs in incubator (left), baby mallards after hatching (middle), and after drying of
feathers in breeding cage (right).
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The rolling was stopped approximately one week before the predicted hatching dates.
Simultaneously, the humidity was increased to 65%. The middle panel of Figure 4 depicts
a baby mallard immediately after hatching. We kept the baby mallards in the incubator
until their feathers were dry. After drying, we moved them to a breeding cage, as depicted
in the right panel of Figure 4. We kept them warm in the cage using an electric heater.

The upper panel of Figure 1a depicts a 3D mallard model used for imprinting. After
creating the model using a 3D printer, we put it on the base of the first prototype as depicted
in the bottom panel of Figure 1a. The model was made of acrylonitrile butadiene styrene.

3.2. Experiment Results

We applied imprinting sequentially to three mallards in each. The robot was moved
manually in the cage for 3 h in front of the baby mallard. While observing the baby mallards,
we moved the robot to lead them with random behavior patterns. After imprinting, the
baby mallard attempted to follow the robot. Subsequently, we observed that the baby
mallard changed responses of calling patterns according to robot movements. The baby
mallard moved near the electric heater when the robot stopped.

We applied imprinting to the second baby mallard, which hatched two days later, with
similar stimulation patterns and procedures. Although the second baby mallard followed
the robot, both were interested in each other. Our observations suggest that the interest
between them was higher than that for the robot. Therefore, we put a partition in the cage
to separate them. First, they attempted to cross the partition. We showed the robot to each
baby mallard in their separated zone for enhanced imprinting. They continued the follow
behavior against the robot. Subsequently, we added the third baby mallard to the cage after
installing a partition. The imprinting procedure for the third baby mallard was similar to
that used for the former two baby mallards.

For observing the follow behavior, we moved the three baby mallards and the robot
from the cage to the test file with the size of 2.0 m2. Figure 5 depicts time-series images of
this experiment. The four sides of the test field were surrounded by wooden boards. As an
objective after imprinting, the baby mallards followed a robot that moved slowly. They
continued following the robot after increase of the velocity.

Figure 5. Follow behavior displayed after imprinting. Baby mallards followed the robot that
moved slowly.

Imprinting among baby mallards after hatching occurred in a cage because they
moved frequently. Based on the experiment for baby hybrid ducks conducted by
Yamada et al. [25,26], we considered that imprinting was enhanced for separating baby
mallards because they spent time longer with the robot together. Moreover, imprinting of
individuals was effective because the calling sound volume of separated baby mallards
was greater than that of the gathered baby mallards.
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We attempted imprinting to baby mallards at one week after hatching using a similar
procedure with the robot. We confirmed that baby mallards falsely recognized the robot as
an enemy. Moreover, we observed that they avoided the robot with a big call. Actually,
mallards reach a peak sensitive period at 15 hr after hatching. Subsequently, the imprinting
effect is reduced considerably. For the robot, the interest for baby mallards arose at more
than one week after hatching because the so-called critical period is weaker than that of
baby mallards several hours after hatching. Experimentally obtained results reveal that
navigation is possible for baby mallards before the critical period of imprinting.

4. Feeding-Based Navigation
4.1. Experiment Setup

For this experiment, feed navigation tests were conducted for adult mallards using
our second prototype. We used an off-the-shelf snow vehicle model (Blizzard FR1/12EP
Belt Vehicle; Kyosho Corp., Tokyo, Japan) as depicted in Figure 1b. The body is 488 mm
long, 320 mm wide, and 220 mm high. At the robot rear body, we installed a feeder and
a water-protected monocular camera (CS-QR300; Planex Communications Inc., Tokyo,
Japan). A 1/3 inch CMOS sensor (IMX225; Sony Corporation) is used for the imaging
device. The video image resolution is 1280 × 720 pixels with 15 fps.

For this experiment, we used nine adult mallards (six months old) without imprinting.
The aviary used for this experiment is depicted in Figure 6. We conducted feed learning
experiments for them not only getting used to the robot while eating feed, but also following
the robot with a desire to get feed. To relieve wariness, we changed the 10 experiment
conditions in terms of positional combinations between the feeder and the robot, feed types,
and sound stimulation. Mainly, we used compound feed that comprises corn, soybean,
milo, bran, press cake, and fish flour. Table 1 denotes the experimental conditions including
dates and hours. The positions of the robot and the feeder are depicted in Figure 7.

Figure 6. Exterior and inside of aviary.

Figure 7. Layout and assignment of robot and feeder.
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Table 1. Experiment conditions for feed-based mallard navigation. The positions of the robot and the
feeder are depicted in Figure 7.

No. Date Hours Position Position of Feeder

1 30 November 2018 13:00–14:00 P1 P1
2 4 December 2018 11:00–13:00 P1 P1
3 4 December 2018 13:00–13:20 P2 P1
4 4 December 2018 13:20–13:30 P2 P3
5 4 December 2018 13:30–13:40 – P3
6 4 December 2018 13:40–13:50 P4 P3
7 14 December 2018 13:30–14:30 P3 P3
8 14 December 2018 13:00–14:00 P3 P3

4.2. Experiment Results

For the first experiment, we placed the robot and the feeder at P1. We played a sound
clip of calling recorded in advance using a microphone. Figure 8 depicts images obtained
using the camera on the robot. The mallards gathered at a corner in the aviary. They did
not attempt to approach the robot because they might have alerted. We observed that they
seemed to watch the robot while keeping their distance. As described herein, we gave no
feed to the mallards from the morning of the experiment day. Although they were hungry,
they did not approach the feed because of their own wariness. Compared with curious
baby mallards, adult mallards were more vigilant against something that they saw first.
We considered that the fear of natural enemies was attained by adult mallards for their
work in paddy fields.

Figure 8. Behavior and response patterns for the first experiment. The mallards gathered at a corner
in the aviary. They did not attempt to approach the robot because they might have alerted.

One week later, we conducted the second experiment. We gave no feed to the mallards
during the two days prior. The robot and the feeder were placed in a similar position with
playing of a similar sound clip. As additional feed, we gave them cabbage and broccoli,
which are vegetables preferred by mallards. The mallards gathered to a corner in the aviary.
They showed no approach to the feeder on the robot. After a few minutes, we observed that
their wariness had disappeared. Two mallards watched the robot from the pond. However,
they showed no approach to the robot.

For the third experiment, the robot position was changed to P2 near the entrance
whereas the feeder position remained at P1. We expected that mallards would eat the feed
irrespective of wariness of the robot because the robot and feeder were located separately.
However, they did not approach the feeder.

For the fourth experiment, the feeder position was changed to P3, although the robot
position remained at P2. Moreover, we changed the feed to rice with small granularity.
Mallards like to eat rice more than compound feed. However, they showed no approach to
the rice.

For the fifth experiment, we removed the robot, although the feeder position remained
at P3. Although the robot did not exist in their view range, they exhibited no approach to
the feeder.

For the sixth experiment, we placed the robot at P4 whereas the feeder position
remained at P3. During the previous five experiments, mallards frequently gathered at P4
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and its surrounding area. For this experiment, mallards gathered at a position between
P3 and P4. Particularly, they moved near P3 when the robot moved to P4. However, they
showed no feed eating.

The seventh experiment was conducted eight days after the sixth experiment. We set
this period for mallards that became accustomed to the feeder. The robot and the feeder
were placed at P3. The one-hour observation result demonstrated that mallards showed no
feed eating.

Before the eighth experiment, we left the robot for two days in the aviary. The robot
and the feeder were placed at P3, which was a similar position to that used in the previous
experiment. As an experimentally obtained result, Figure 9 depicts images obtained from
the camera on the robot. Mallards were swimming in the pond after relieving wariness, as
depicted in the upper two images. Twenty minutes later, one mallard approached the robot
with feed, as depicted in the middle and right images of Figure 9. Other mallards gathered
around the robot to eat the feed. We moved the robot slightly while they were eating. They
ran away immediately when the robot moved. As described herein, they approached the
robot from rear. We considered that this behavior derived from a rapid escape response to
a dangerous situation.

Figure 9. Behavior and response patterns for the eighth experiment. Mallards were swimming in
the pond after relieving wariness, as depicted in the upper two images. Twenty minutes later, one
mallard approached the robot with feed.

After stopping the robot, we attempted to approach the mallards. Fifteen minutes later,
another mallard approached. The mallard gradually shortened the distance to the feeder.
Other mallards were eating feed. We forwarded the robot slightly again. Although the
mallards fled all at once, the escape distance was shorter than that of the robot movement.
Apparently, the wariness was relieved for mallards. Although mallards approached from a
large place behind, they gathered for eating feed from a narrow direction behind.

4.3. Discussion

Results obtained from eight experiments indicate that adult mallards had strong
wariness. We demonstrated that at least two days are required to get used to the robot
and the feeder. Moreover, they do not always eat feed. Maintaining navigation using feed
alone is expected to be difficult because mallards eat feed only several times a day. As
described herein, a breeder gave feed with similar behavior from a similar place every day.
We infer that mallards recognize the input combined with breeder’s behavior patterns. For
this experiment, the feeder was placed in the aviary with the feed placed in advance. We
infer that the similar behavior to enter feed to a vacant feeder on the robot contributes
to wariness relaxation for mallards. Moreover, we infer that the wariness for the robot
movements is relieved if they recognize it as a harmless object.

5. Mallard Navigation Robot

Based on the above two experiments, we developed our third prototype as a fully
customized mobile robot for mallard navigation. To confirm the mobility performance
for a paddy field, we conducted buoyancy evaluation and locomotion tests in indoor
and outdoor environments. For the present experiment, we did not attach the motor
waterproof boxes.
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5.1. Overall Design and Specifications

For inter-rice locomotion, the restriction of the body size is strict because it is necessary
to avoid contact between the robot and rice stems. Figure 10 depicts the initial design of our
third prototype, which satisfies this specification. The body size is 270 mm long, 210 mm
wide, and 250 mm high. We identified one point of difficulty for the strength of the driving
unit. Therefore, we searched for a consumer product for an alternative driving unit with a
size that required similar specifications with consideration of the whole body strength.

Figure 10. Initial design of the third prototype.

We selected an off-the-shelf tank-truck suspension system (TS100-MT) as our alterna-
tive platform. Figure 11 depicts the exterior of this platform, which is made of aluminum.

Figure 11. Exterior of driving platform. We selected an off-the-shelf tank-truck suspension system.

5.2. Waterproof Design

For actualizing a remote control as a part of autonomous locomotion, the robot has
a single-board computer, motors, sensors, and a battery. We designed waterproof boxes
of two types for protecting motors inside the crawlers and for protecting other electrical
devices from water.

Figure 10c depicts the design of a body waterproof box, which contains four pillars
as a vertical sliding mechanism to float in water to prevent immersion. The box contains
four pillars with a vertical sliding mechanism to float in water to prevent immersion. We
used acrylonitrile butadiene styrene (ABS) resin for molding the boxes using a 3D printer.
The body waterproof box is 210 mm long, 163 mm wide, and 120 mm high. For the 50 mm
water draft, the buoyancy obtained from the box size is 1.68 kg, which is sufficient after
loading a single-board computer and batteries.

5.3. Assembly

We assembled TS100-MT with reference to the manufacturer’s instruction manual
with photographs. Although attached parts that make up the drive wheels were a different
shape from the parts described in the manual, we considered that they were functionally
equivalent for assembly. The assembly time for one person was approximately four hours.
After molding a body waterproof box in each plain using a 3D printer, we mounted it to
the top plate of TS100-MT using bolts and nuts.
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Figure 1c depicts the robot after installing all devices. The input voltages of the single-
board computer board and the motors are, respectively, 5 V and 9 V. Although the best
solution to supply electric power is to use a converter that can provide these two voltages
from the 12 V battery, we used a 5 V battery for the single-board computer with the motor
driver and a 9 V battery for the motors.

5.4. System Configuration

Figure 12a depicts a single-board computer (Raspberry Pi 3 Model B; Raspberry Pi
Foundation) used for our system. For two reasons, we selected Raspberry Pi Model B.
Sufficient peripherals are present for this single-board computer in terms of a camera inter-
face, multiple USB ports, and pins used for sensor interface. For actualizing autonomous
locomotion, the robot is controlled by sensors attached from these ports. Second, this
single-board computer accommodates a Wi-Fi module for wireless communication. We
used a Wi-Fi router (WXR-25533DHP; Buffalo Inc., Nagoya City, Japan) for actualizing a
remote control and robot status recognition.

Figure 12. Electrical devices.

Figure 12b depicts a motor driver (BTS 7960; Infineon Technologies AG, Neubiberg,
Germany) for the control of two DC motors. For three reasons, we selected this motor
driver. First, this motor driver accommodates one set of input ports and two sets of output
ports that provide motor control easily and simplicity. We used two motors for driving
respective crawlers. Both motors are controlled by a single motor driver. Second, this
motor driver copes with widely various input voltages from 4.8 V to 35.0 V. Regarding
actual applications, it is suitable to cover widely various input voltage for a battery. Third,
this motor driver includes a heat control function combined with a heat sink. For long-term
operation to run a paddy field for many hours, a failure risk of electric devices from heating
is unavoidable.

Figure 12c depicts pins of the motor driver board. For motor control using pulse width
modulation (PWM), the single-board computer transmits a duty ratio that determines the
rotation speed and control signals to change the rotation direction. The power pins are
wired to the 5.0 V power supply and ground pins. Other pins are used for general-purpose
input and output (GPIO) pins. Particularly, P2, P4, P35/P38, and P37/P40 are mapped,
respectively, to 5 V power supply, the ground, rotation directional control for the right/left
motor, and rotation speed control for the right/left motor. The PWM duty ratio is set as 1.0
for motor rotation and 0.0 for a stop. The rotational direction is switched for the positive or
negative rotation.

5.5. Buoyancy Evaluation

We checked the friction of the sliding rails used in the body waterproof box because
the friction had come to be large without holding it horizontally. Moreover, we checked the
buoyancy of the body waterproof box on water for repeating vertical sliding with pushing
and releasing by hands. Subsequently, we checked synchronized vertical movements
according to waves. For measuring the water draft, we attached a ruler to the side of the
box. We fixed a gap on each corner of the body waterproof box using rubber tape. We
changed the amount of the water in the plastic bottle used as ballast. This experiment
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was conducted under condition of water from 0.2 L to 1 L step by 0.2 L poured into the
plastic bottle.

First, we confirmed changes in water draft to weight. The experimentally obtained
result revealed that the waterproof box floated up without difficulty at any loading capacity,
pushing the body waterproof box with both hands. Moreover, the sliding mechanism
moved vertically and worked without difficulty. We infer that the friction of the sliding
mechanism was reduced because water served as a lubricant.

Subsequently, we made waves by manually stirring the water in the tank. The wa-
terproof box moved vertically along with the waves. A small amount of the wave water
entered the box inside because the top of the body waterproof box had no cover. The top
of the body waterproof box was closed to the water surface when the loading capacity
was increased with the riding water draft surface. Water immersion was prevented after
a top cover was used. This preliminary experiment revealed that the slide mechanism
functioned with no difficulty.

5.6. Test Locomotion

From the indoor locomotion experiment, we confirmed the three points: accessing
the website for operation, running the robot according to instructions, and measuring
locomotion velocity. We set a fixed Internet Protocol (IP) address for a single-board com-
puter. Although we confirmed that the same IP address provides the access to the website
smoothly, the single-board computer sometimes denied access with warning messages that
denote long time to open the website. This warning disappeared after rebooting the server
with sufficient passage of time.

To operate the robot remotely, we developed a web-based tool with a touch panel
interface used for a tablet computer. Assigned instructions, which comprise forward, right,
left, and stop, are executed with clicking a button on a display. The single-board computer
is specified from this tool.

As a result of executing respective instructions, the robot turned without moving
forward or backward. Herein, the motor rotational direction was opposite. We connected a
reversed motor driver output terminal for one motor. Finally, the robot moved forward
and backward normally. We measured the locomotion velocity moved a distance of 100 m
in 5 min 33 s that correspond to 0.30 m/s.

From an outdoor locomotion experiment, we confirmed the two points. The first point
is performance evaluation to run on rough roads with unevenness. The second point is
distance measurement of an effective wireless communication range to send instructions
using a mobile router.

For this experiment, the effective range of wireless instruction transmission was up
to 41 m. As specifications of the mobile router, the interference distance limit was set
to 40 m, which is insufficient for moving in a paddy field. We infer the necessity for an
alternative high-power router or a multi-router system as a remote control method. Remote
operations are unnecessary for a use case of autonomous locomotion. However, long-
distance communication is fundamentally important because monitoring and transmission
of emergency stop commands are indispensable. We infer that one solution is to use cellular
communication networks as an alternative method of Wi-Fi communication. An important
difficulty of stepping on the rice plants occurred for the late response against instructions.
We infer that the delay of instruction execution can eliminate the implementation of
autonomous locomotion functions.

Figure 13 depicts time-series images of outdoor locomotion tests on a snow road. For
a step larger than 50 mm, as depicted in the bottom panels, the robot used much time to
run over because of insufficient motor torque. Overall, we confirmed that the robot ran
without problems in this environment. In contrast, a time difference was found between
the operation on the tablet computer and the execution of instructions. Although we sent
an instruction to turn right, the robot continued to move forward. We confirmed that
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a rotational difference between the left and right motors occurred after the locomotion
several times. The robot was moving in a zigzag slightly even with forward instructions.

Figure 13. Time-series images of outdoor locomotion on a snow road.

We confirmed that the third prototype has sufficient locomotion capability not only for
a gravel road, but also for a snowy road controlled by remote operation through wireless
communication. Although the robot spent much time surmounting a step approximately
50 mm high, no shortage of the motor torque was apparent because of continued rotation
of wheels and crawler belts. In contrast, a difficulty existed by which the motor revolutions
differed between the left and right was apparent. This motor driver includes a feedback
function of motor revolutions. We infer that the rotational difference can be eliminated
with respect to the actual numbers of rotations for correction using this function calculated
using a single-board computer.

6. Autonomous Locomotion Experiment
6.1. Outdoor Experiment

This experiment was conducted outdoors in an actual paddy field. The experimen-
tally obtained results verify the basic locomotion capabilities of our robot and evalua-
tion of the semantic segmentation accuracy for FOV time-series images obtained by the
onboard camera.

6.1.1. Locomotion among the Rice Plants

Figure 14 depicts images of locomotion of our robot at two dates. The time-series
images in Figure 14a depict the paddy condition two months after rice planting. The rice
plants had grown to approximately 300 mm. As a result of the low rice plant density, the
robot moved easily among the rice plants.

Figure 14b depicts the paddy condition three months after rice planting. Rice plants
grew to approximately 500 mm. The locomotion can be seen slightly through a small gap
in the rice plants. The radius of each bunch of rice plants is approximately 30 mm. The
mean margin was 140 mm wide because the robot was 200 mm wide and the passage was
300 mm wide. This margin width gave rise to the robot being unable to be allowed to
meander slightly. As a result of this experiment, the most common locomotion patterns
were for forward movement. If the robot meandered to the left or right, then the operation
to switch move backward was activated rather than steering the opposite direction to the
proper path.

Despite this situation, we obtained time-series FOV images, as depicted in Figure 15,
using the onboard monocular camera (Raspberry Pi Hight Quality Camera; Raspberry
Pi Foundation) with a CMOS imaging sensor (IMX477R; Sony Corp., Tokyo, Japan). The
maximum image resolution is 4056 × 3040 pixels. As a result of the processing costs and
memory size, we obtained images of 1016 × 760-pixel resolution.
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Figure 14. Robot locomotion on two days.

Figure 15. Time-series FOV images obtained using an onboard monocular camera.

6.1.2. Segmentation Results

Kirillov et al. [56] divided image segmentation tasks into two types: semantic seg-
mentation and instance segmentation. Semantic segmentation treats thing classes as stuff,
which is amorphous and uncountable. Instance segmentation detects each object and its
delineation with a bounding box or segmentation mask. For this study, our segmentation
targets comprise ground, paddy, and other categories that belong to stuff. Numerous
methods have been proposed for semantic segmentation in terms of PSPNet, ICNet, and
PSANet by Zhao et al. [57–59], ESPNet by Mehta et al. [60], MaskLab and DeepLabv3+
by Chen et al. [61,62], AdaptSegNet by Tsai et al. [63], Auto-DeepLab by Liu et al. [64],
Gated-SCNN by Takikawa et al. [65], RandLA-Net by Hu et al. [66], and PolarNet by
Zhang et al. [67]. For this study, we used SegNet [68] for the segmentation of time-series
FOV images because this classical method is well established for the segmentation of road
scene images such as the CamVid Database [69].

Table 2 presents details of the number of images assigned to training, validation, and
testing. We annotated all the pixels of 1160 images. The annotation labels comprise three
types: ground pixels, paddy pixels, and other pixels.

Table 2. Numbers of images assigned to training, validation, and testing [images].

Training Validation Test Total

600 200 360 1160

Figure 16 depicts loss and accuracy curves for the learning processes. Both training
and validation losses converged along with the progression of generations. Similarly, both
training and validation accuracies converged along with the progression of generations.
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Compared with both tendencies, the verification accuracy is higher than the training
accuracy. We consider that this reversal resulted from the ratio of training images to
verification images as denoted in Table 2.

Figure 16. Loss and accuracy curves in the learning processes.

Figure 17 depicts two examples of segmentation results with SegNet. The left, center,
and right panels respectively represent the original images, ground truth (GT) images,
and segmentation images. As a local tendency, the images include several false positive
and false negative pixels, especially near the category boundaries. As an overall tendency,
segmentation images are consistent with the GT images.

Figure 17. Segmentation results with SegNet.

Table 3 presents detailed segmentation results for each category. The accuracies for
the ground pixels, the paddy pixels, and the other pixels are, respectively, 99.1%, 92.4%,
and 44.8%. The mean accuracy is 97.0%. Effects of other pixels on the overall accuracy
were slight because the occupancy of other pixels was merely 1.5% (=110,838/7,257,600) of
the total pixels.

Table 3. Segmentation results [pixels].

Ground Paddy Other Total

Ground 6,144,024 45,346 59,537 6,248,907
Paddy 41,860 824,113 31,882 897,855
Other 14,203 22,376 74,259 110,838
Total 6,200,087 891,835 165,678 7,257,600

6.2. Indoor Experiment

This experiment was conducted on an imitation paddy field indoors. The exper-
imentally obtained results provide evaluation of behavior prediction accuracy in nav-
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igation based on visual processing from FOV time-series images obtained using the
onboard camera.

6.2.1. Experiment Setup

Figure 18 depicts the exterior of the field built in imitation of a paddy field. The
field size is 2.0 m wide and 4.4 m long. White objects are imitations of rice plants created
using plastic bottles covered with white paper. The object intervals in the longitudinal
and lateral are, respectively, 0.6 m and 0.4 m. These lengths are twice as large as those of
actual intervals.

Figure 18. Experiment field resembling a paddy field for obtaining FOV time-series images from
our robot.

Unlike an actual muddy field, this experimental field provided steady locomotion
because of sufficiently high friction between the floor surface and the robot crawlers.
Therefore, the proportion of images annotated as moving forward was increasing. To ensure
the effective number of images annotated at right and left turns, the initial angles were
arranged from the moving direction; then the initial positions were shifted from the
centerline between rice plants.

Regarding the robot speed and the burden for annotation, image sampling was
changed from 60 fps to 10 fps. We manually annotated all images. Table 4 denotes
the number of obtained images and the detailed information of three behavior categories:
move forward (MF), turn right (TR), and turn left (TL).

We obtained 4626 images in total. The data amounts of MF, TR, and TL images are,
respectively, 2419, 1347, and 860 images. The data ratios of MF and TL are, respectively,
52.3% for the maximum and 18.6% for the minimum. At the experimental field terminals,
the robot turned right to change its path to the next path between rice plants. This
locomotion increased the number of TR images compared to that of TL images.

Table 4. Numbers of obtained images and their detailed information of three behavior categories.

MF TR TL Total

Data amount [images] 2419 1347 860 4626
Data ratio [%] 52.3 29.1 18.6 100.0

Table 5 shows the fundamental network parameters of our implementation model com-
bined with a CNN and a long short-term memory (LSTM) [70] network. Figure 19 depicts
a network structure of LSTM. Repeating modules are connected in a series of cascades.
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Figure 19. Network structure of LSTM.

The filter sizes of the first convolutional layer and the second through fifth convolu-
tional layers are, respectively, 5 × 5 and 3 × 3. The pooling widths for the respective layers
are 2 × 2. Herein, the number of hidden layers is a dominant LSTM parameter.

Table 5. Set values of fundamental network parameters (E1).

Layer Number of Units

Input 90 × 160 × 3
Convolution-1 90 × 160 × 32

Pooling-1 45 × 80 × 32
Convolution-2 45 × 80 × 64

Pooling-2 22 × 40 × 64
Convolution-3 22 × 40 × 128

Pooling-3 11 × 20 × 128
Convolution-4 11 × 20 × 128

Pooling-4 6 × 10 × 128
Full-connection-1 6 × 10 × 64
Full-connection-2 6 × 10 × 1

LSTM n × 60
Full-connection-3 3

Letting α and Nbs respectively represent the learning coefficient and the batch size,
and letting nlb be the number of the look-back parameter, then the dimension of the LSTM
as the length of the long-term memory controlled by nlb. For generalization, we employed
the Adam algorithm [71] as a Stochastic Gradient Descent (SGD) method that incorporates
low-order moments. The default values of α, nbs, and nlb were set, respectively, to 0.01,
2 [72], and 50 [73]. The data ratio between training and validation is 80:20.

The parameter values which maximize behavior prediction accuracy vary in datasets.
For this experiment, we attempted the following nine experiments, labeled as E1–E9 below,
with different combinations of parameters and setting values. Regarding the computational
burden and time, we set 100 training epochs as a common value.

E1: Default parameter values are set to the initial network model.

E2: The sampling frame rate is changed from 10 fps to 5 fps.

E3: nbs is changed from 2 to 5.

E4: nlb is changed from 50 to 10.

E5: The input-layer depth is changed from 3 dimensions to 6 dimensions to accommodate
segmentation images with SegNet in addition to the original images.

E6: The additional dropout layer between the first and second convolutional layers invali-
dates 25% of the connection between the two layers.

E7: A new dropout layer that disables 25% of the connections is added to each layer after
the second convolutional layer.

E8: A new pathway is appended to bypass the third and fourth convolution layers.

E9: The pooling width of the pooling layers is changed to 4 × 4.
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6.2.2. Training Results

Figure 20 depicts transitions of the training and validation accuracies. For the training
datasets, the global accuracy improved constantly and steadily. Particularly, the trends of
E1, E2, E4, E5, and E6 show convergence around the 20th epoch. Trends of E3, E7, and E9
all indicate convergence at around the 40th epoch. In contrast, the trend of E8 shows a slow
convergence tendency with a marked drop at around the 60th epoch. The convergence
properties for validation datasets are insufficient compared with those obtained for training
datasets. The characteristic curves for the validation datasets are saturated at around 0.70.

Figure 20. Transitions of the degrees of training and validation accuracies.

6.2.3. Locomotion Prediction Results

Figure 21 presents the prediction results of the respective experiments. The accuracy
of E6 achieved 62.4%, which was the highest. In contrast, the accuracy of E8 was 56.1%,
which was the lowest. The accuracy difference between them was 6.3 percentage points.
The accuracies of E1, E4, E6, and E9 were all greater than the mean accuracy of 59.7%.

Figure 21. Locomotion prediction results for nine experimental conditions.
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Table 6 presents the prediction accuracy obtained for each locomotion pattern. The
accuracy of MF achieved 81.6%, which was the maximum. In contrast, the accuracy of TL
exhibited 25.8%, which was the minimum.

Table 6. Locomotion prediction accuracy.

MF TR TL Mean

Accuracy [%] 81.6 52.7 25.8 59.7

6.2.4. Analysis and Discussion

The uneven number of images is attributable to a limitation in the data collection
method related to the locomotion mechanism of the robot. Figure 22 portrays an example
of a TR path. Although the robot is turning left globally, MF is selected locally and shortly
because the robot must recover to the correct path. The upper-middle panel depicts an
FOV image of the robot moving towards rice plants, annotated as MF instead of TL. The
accumulation of this situation increased the number of images annotated as MF.

Figure 22. Inconsistency between the actual purpose of robot motion and annotated labels.

To predict global locomotion patterns, we consider the necessity of understanding
the scene context [74] as autonomous agents [75]. Moreover, we consider that we can
assign detailed annotation labels in terms of “forward locomotion concomitantly with the
center of a route between rice plants” and “adjusting locomotion to the center of a route”.
However, it is unrealistic to assign such complex labels manually. Therefore, we infer the
implementation of an automatic annotation function that recognizes the scene context.

7. Conclusions

This paper provided a small robot for realization of remote farming. To actualize
highly efficient rice-duck farming, this study presented experimentally obtained results to
verify a useful method to navigate mallards using robot prototypes based on imprinting
and feeding. Experimentally obtained results revealed that baby mallards with imprinting
followed our first prototype. We considered that adult mallards require more than two
days to become accustomed to the robot and the feeder because they have strong wariness
against unknown objects. Although we did not actualize mallard navigation in an actual
field, we found that mallards ate feed in the feeder on our second prototype. Based on this
preliminary result, we developed our third prototype as a fully customized mobile robot for
mallard navigation. We conducted an indoor driving test to assess manual operation and
outdoor evaluation tests to run on an actual paddy field. We developed indoor and outdoor
image datasets using an onboard monocular camera. For the outdoor image datasets, our
segmentation method based on SegNet achieved 97.0% mean segmentation accuracy for
three semantic categories. For the indoor image datasets, our prediction method based on
CNN and LSTM achieved 59.7% mean prediction accuracy for three motion categories.
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As future work, we expect to quantify the imprinting effects of shared time between
the robot and mallards in a breeding process. Moreover, we expect to conduct a navigation
experiment using feed of several types in a paddy field for baby mallards after imprinting.
For autonomous locomotion, we will achieve motor control incorporating a feedback
mechanism. We would like to combine autonomous locomotion and navigation based on
imprinting and feeding. We must statistically analyze the trajectories of baby mallards. To
avoid overfitting caused by overtraining, we can reconsider the loss function to converge
training and validation processes. We intend to improve the segmentation accuracy and
the prediction accuracy for fully autonomous locomotion in actual paddy fields of various
types. Finally, we would like to conduct statistical analyses for experimentally obtained
results based on the concept of ARI.
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