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Abstract: The development of robotic systems to operate in forest environments is of great relevance
for the public and private sectors. In this sense, this article reviews several scientific papers, research
projects and commercial products related to robotic applications for environmental preservation,
monitoring, wildfire firefighting, inventory operations, planting, pruning and harvesting. After
conducting critical analysis, the main characteristics observed were: (a) the locomotion system is
directly affected by the type of environmental monitoring to be performed; (b) different reasons for
pruning result in different locomotion and cutting systems; (c) each type of forest, in each season and
each type of soil can directly interfere with the navigation technique used; and (d) the integration
of the concept of swarm of robots with robots of different types of locomotion systems (land, air or
sea) can compensate for the time of executing tasks in unstructured environments. Two major areas
are proposed for future research works: Internet of Things (IoT)-based smart forest and navigation
systems. It is expected that, with the various characteristics exposed in this paper, the current robotic
forest systems will be improved, so that forest exploitation becomes more efficient and sustainable.

Keywords: forest 4.0; forest robotics; forest navigation

1. Introduction

Forest environments are part of the daily lives of many people around the world.
According to the Food and Agriculture Organization (FAO), forests have about 4.06 billion
hectares, an area equivalent to 31% of the global land area, generating around 86 million
green jobs and, of the people living in extreme poverty, more than 90% depend on forests
for at least part of their livelihoods such as food, fodder, shelter, energy and medicine [1].
In addition, according to the FAO, there are about 391,000 species of plants, 5000 amphibian
species, 7500 bird species and more than 3700 different mammals. The formal forest
market generates an income of more than $580 billion per year when considering direct,
indirect and induced employment [2]. These numbers represent not only the richness
of forest regions in fauna and flora but also their great economic potential, capable of
generating employment and income. The global urbanization process is transforming the
means of production and labor, not only farmers, but also forestry workers, biologists and
environmentalists. The relevant problem generated by accelerated urbanization is the lack
of control, monitoring and preservation of forest regions, generating conflicts between
loggers and indigenous people, deforestation [3], burning (being that, between 2019 and
2020, about 5.8 million hectares of temperate forest in Australia were burned [4]) and
extinction of species of fauna and flora (butterfly coloration affected by forest deforestation
activities [5]). According to CRED [6], between 1998 and 2017, about 3.5% of global disasters
were related to wildfires, affecting the lives of 6.2 million people, with 2398 deaths, in
addition to causing economic losses of $68 billion.
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To overcome the aforementioned challenges and improve the execution of the various
forestry tasks, the concept of Forest 4.0 emerges, as shown in Figure 1.

Forest 4.0

Robotics

Internet of
Things

Artificial
Intelligence

Figure 1. Forest 4.0 composition model.

As shown in Figure 1, the Forest 4.0 concept is similar to the Smart Cities concept [7,8].
Forest 4.0 has gained prominence with the use of robotic systems and electronic devices
in forestry tasks such as environmental monitoring, fire prevention, inventory, planting,
pruning and harvesting [9].

2. Materials and Methods

The entire process of selection of works and/or projects of robotic systems applied
in performing forestry tasks was based on the most recurrent themes found in the main
works and/or projects around the world. The following data platforms were used as search
methods for scientific information: Google Scholar, Science Direct, IEEE Xplorer, Wiley,
SpringerLink and Web of Science. Thus, scientific content was prioritized, such as articles
published in journals and conferences. However, in the case of robotic systems that are
already in the commercial phase, the search for elements of a technical nature took place
on their respective commercial sites. At the end of the information search process, about
37 works/projects of robotic systems applied in the forest area were counted.

This review article is focused on the latest developments in forest robotic systems;
however, previous works of great relevance are also described, such as the MECANT
robot developed in the 1990s (described in Section 3.4). Unlike agricultural robots, which
have hundreds of applications developed around the world, there are a small number
of forest robot applications. This reduced number of applications can be understood
by the fact that the forest environment is generally more complex than an agricultural
environment, which makes it difficult to develop robust robotic systems due to variations
in temperature, humidity and strongly unstructured and steep slope terrains. Since there is
no pre-installed communication network infrastructure, remote communication routines
are strongly impacted by the excessive number of trees acting as obstacles between the
robot and the supervisor agent. Soils with a high content of stony elements, usually loose,
with obstacles and/or cavities, can cause the robot to slip and/or cloak. Another difficulty
found in the development of forest robots is that, unlike agricultural robots that have
barns and/or human shelters to protect themselves in stormy situations, forest robots, in
addition to needing specific communication and locomotion systems to operate in these
environments, need to be able to remain in full operation even after an eventual storm.
Although we are in 2021, there is still a high financial cost to develop robust multitasking
robotic systems, making major technological developments focus only on great research
and development centers. In this sense, although there are more works of forest robots, it is
at a very low level of development so that works involving the use of didactic kits and/or
robots that do not have practical applications of the concept were discarded.
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3. Robotic Applications in Forest

Robotic applications in the forestry area are divided into the following subsections:
environmental preservation and monitoring; wildfire firefighting; inventory operations;
and forest planting, pruning and harvesting. Therefore, the following sections address the
various types of robotic system applications in forest environments individually.

3.1. Robotic Applications for Environmental Preservation and Monitoring of Forests

Designed to operate in the interior of the Amazon, the Environmental Hybrid Robot
(EHR) Chico Mendes is a remotely operated vehicle developed to carry out monitoring
missions for the Brazilian Oil Company Petrobras S.A. between the cities of Coari and
Manaus, that is, about 400 km of gas pipeline along the forest. Chico Mendes is a wheel-
legged amphibious robot with active reconfiguration, capable of walking on gas pipelines,
land, water, swamps and sand, as shown in Figure 2a. To control the robot’s distance from
the ground along with its orientation, the distance to the ground along with its gradient
stability margin and traction indices, the robot has an optimal multi-objective control
approach. With this approach, the robot increased the maximum tilt angle from 35◦ to
44.8◦, an improvement of 28%. The robot also has a robotic arm with sensors for water
quality and gas, Red, Green and Blue (RGB) camera and sampling support located on the
final actuator, to monitor possible gas leaks and water pollution, in addition to checking
out dengue outbreaks [10,11].

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 2. Examples of robotic applications used for environmental preservation and monitoring tasks
in forests: (a) Chico Mendes [10], (b) Legged robot [12], (c) SlothBot [13], (d) Ranger and Scout [14],
(e) Romu [15], (f) Unmanned Aerial Vehicle (UAV) robot 1 [16], (g) UAV robot 2 [17], (h) UAV robot
3 [18], (i) UAV robot 4 [19] and (j) UAV robot 5 [20].

In [12], a legged robot, as shown in Figure 2b, was used to carry out environmental
monitoring activities in the Amazon. This type of locomotion system was adopted because
the Amazon rainforest is characterized by being an unstructured and difficult to access
environment: in addition to being a wild environment, it is a dangerous environment for
human beings. In addition to allowing locomotion that adapts to the terrain slope, the
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robot is equipped with a Light Detection And Ranging (LiDAR) that maps the environment
around it to perform autonomous navigation through the Simultaneous Localization
and Mapping (SLAM) algorithm. The robot is part of the Providence project, sponsored
by the Mamirauá Institute, which, in addition to the robot, develops several intelligent
environmental monitoring devices that communicate through a wireless sensors network.

Eliminating the high irregularities of the soil and the dependence on wind conditions,
the SlothBot robot makes its locomotion along wires trapped between the trees, as shown
in Figure 2c. As a direct advantage, the system allows long-term environmental monitoring
through low energy consumption. Through a mesh of planar wires, connecting different
regions of interest, the SlothBot moves from the initial position to the desired one collecting
sensory data of temperature and luminosity. It has an exclusive C-shaped mechanical
system to change direction in bifurcation situations [13].

The SEMFIRE environmental preservation and forest fire prevention project was
developed to reduce the accumulation of organic material in forests. Unfortunately, in
the year 2020 alone, several forests suffered wild fires of extraordinary dimensions. One
way to prevent the proliferation of forest fires is to reduce potential combustible materials.
Thus, a multi-robot system was developed to perform the detection of regions with an
accumulation of combustible material and then perform its removal. The recognition task
is carried out through a swarm of Scouts, small UAV with Collective SLAM. The Scouts
(Figure 2d) are looking for new Regions Of Interest (ROI) for the Ranger robot (a robot that
cuts and grinds the vegetation, transforming it into mulch) to define a region of operation
to perform cleaning task planning [14].

The concept of a swarm of robots was also addressed by Melenbrink and Werfel [15]
who developed autonomous sheet pile driving robots for soil stabilization. To reduce
hydraulic erosion activities in natural environments, they developed the Romu robot
(Figure 2e) which has four wheels mounted on vertical linear actuators to assist in the
task of fixing steel piles to the ground. By means of a vibratory hammer system and the
reduction of the height of the robot, the system was able to fix the piles in sandy soils
to a depth of 6–8 cm. Based on a computer simulation, where several piles were fixed
in sandy terrain, when simulating a stream of water going down the sandy terrain, 50%
of the soil that would be lost was retained by the barrier, indicating its great application
potential [15]. Although this application is not in a forest, the challenges are similar, since
the dunes environment is non-structured. In this sense, the sandy soil, the steep slope, the
dust winds and changes in ambient lighting and temperature impose challenges for the
development of locomotion systems, navigation algorithms and protective structures for
the robot’s electronic components.

Aerial mapping of forests affected by pathogens using UAV (Figure 2f), hyperspectral
sensors and machine learning algorithms were studied by Sandino et al. [16]. To detect the
case of myrtle rust on paperbark tea trees, they used Normalized Difference Vegetation
Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI), the Soil-Adjusted
Vegetation Index (SAVI) and the Second Modified Adjusted Vegetation Index (MSAVI2),
filtered by 2D smoothing kernels, in the feature extraction stage. Using the eXtreme Gradi-
ent Boosting (XGBoost) classifier, to classify the data into healthy, affected, background,
soil and stems classes, the system achieved an individual detection rate of 95% for healthy
trees, 97% for deteriorated trees and 97% for global multiclass detection [16].

Another application involving forest monitoring by UAV (Figure 2g) was described
by Fujimoto et al. [17]. In this case, the methodology used by the authors was: perform
individual tree detection, estimate the tree structure and simulate the carbon dynamics.
The process of detecting individual trees was done by estimating the Canopy Height Model
(CHM) and the extraction of individual trees was done by detecting the top of the tree
and segmenting the tree canopy. The tree structure was estimated by species classification
and Diameter at Breast Height (DBH) estimation. This approach achieved an individual
tree detection rate of 93.4%, resulting in an accuracy of 83.6% using Convolutional Neural
Network (CNN) [17].
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Forest monitoring can also be carried out by distributing Internet of Things (IoT) sen-
sors (temperature, humidity and gas concentration sensors with a wireless communication
interface) throughout the forest. The distribution of these sensors can be done by a UAV
in different ways. According to Farinha et al. [18], a UAV equipped with the aerial sensor
placement method based on impulsive launching, was used to launch the sensors into
trees, in cluttered environments, such as under the forest canopy. The impulsive launching
consists of a spring that stores the energy needed to launch the sensors to their target.
In this case, the UAV (Figure 2h) was able to launch sensors to 4 m with an accuracy of
±10 cm. On the other hand, a UAV can be used to simply launch the sensors in a free fall.
As described in [19], in order not to damage the sensor device at the time of the collision
with the ground, the shape of the sensor device is inspired by Samara seeds (Figure 2i),
which perform a helical movement during the free fall. Therefore, whether by the method
of sensor launching or by dropping, the use of UAV is essential for displacement along the
forest during the performance of forest monitoring tasks.

In [20], a UAV equipped with thermal and RGB cameras (Figure 2j) was used to carry
out the monitoring and preservation activities of a group of koalas on the Sunshine Coast,
Australia, as shown in Figure 3. To detect koalas through Forward-Looking InfraRed (FLIR)
thermal and RGB cameras, the researchers used two distinct algorithms: Pixel Intensity
Threshold (PIT) and Template Matching Binary Mask (TMBM). PIT can differentiate ani-
mals from background vegetation through the thermal signature of living beings, but it
is not able to differentiate between species. To solve this problem, they developed the
TMBM algorithm, which, through testing in a real scenario, was able to detect koalas in
their natural environment at different altitudes (20–30 m) with different average detection
times (1.3–1.6 s).

(a) (b)

Figure 3. (a) RGB and (b) thermal images of a koala in its natural habitat captured at 60 m by a UAV,
described in detail in [20].

Table 1 summarizes the main characteristics of the robots mentioned above.

Table 1. Comparison of the analyzed robotic applications for environmental preservation and monitoring.

Robot Final
Application

Locomotion
System

Localization
Sensors

Sensors Used to
Perform the Task

Chico Mendes [10] Preservation and
monitoring

Wheel-Legged Global Positioning System
(GPS)

Water probe, gas sensor
and 3D camera

Legged robot [12] Monitoring Legged Light Detection and
Ranging (LiDAR) RGB camera

SlothBot [13] Monitoring Wire traversing – Temperature and
luminosity

Ranger and Scout [14] Preservation and
monitoring

Caterpillar
and Unmanned Aerial

Vehicle (UAV)

Global Navigation
Satellite System (GNSS)

and LiDAR

Stereo, multispectral
and infrared cameras

Romu [15] Preservation Four-wheel drive (4WD) – –
UAV robot 1 [16] Monitoring UAV GPS Hyperspectral camera
UAV robot 2 [17] Monitoring UAV GPS RGB camera
UAV robot 3 [18] Monitoring UAV – RGB camera
UAV robot 4 [19] Monitoring UAV – Temperature, humidity

and pressure
UAV robot 5 [20] Preservation and

monitoring
UAV GPS and Inertial

Measurement Unit (IMU) Thermal and RGB cameras
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Regarding the information presented in Table 1, the following observations can
be made:

• Monitoring: The Chico Mendes robot monitors possible gas leaks in the interior
of the Amazon and the SlothBot monitors the ambient temperature and luminosity.
Therefore, the locomotion system is directly affected by the type of environmental
monitoring to be performed.

• Swarm: Forest are unstructured environments. This characteristic directly affects
the time of travel and the execution of any tasks to be performed. Therefore, the
integration of the concept of swarm of robots with robots of different types of loco-
motion systems (land, air or sea) can compensate for the time of executing tasks in
such environments.

• Artificial intelligence: Artificial intelligence was used in conjunction with robotic sys-
tems in identification processes, using natural environment characteristics (vegetation
indexes) and CNN.

3.2. Robotic Applications for Wildfire Fighting

Unlike the monitoring of forest activities, wildfire fighting activities require direct
intervention (traditionally through firefighting trucks and planes) in the forest environment
so that there is a minimum of damage not only to the fauna and flora but also to the
populations that live in such locations. Although forest monitoring via satellites is of
paramount importance in the fight against illegal deforestation, when there are forest
fires they do not contribute to the extinction of the fire. In this case, this function is
entirely dependent on the replenishment of several teams of firefighters, water trucks and
firefighters aircraft. The robotic applications for wildfire fighting can contribute to faster,
safer and more efficient action of spraying water or retarding agents in forest regions.
The design of firefighting robots has requirements such as having a mechanical structure
resistant to high temperatures and concentrations of gases and dust, high payload capacity
and a locomotion system designed to transport large payloads through rough terrain and
be used for multitasking.

A Six-Wheel Drive (6WD) autonomous ground vehicle, developed by military product
manufacturer Lockheed Martin, was adapted to perform firefighting operations. The Fire
Ox robot can be integrated with an existing infrastructure or used individually, as it has a
tank with a capacity of 250 gallons and an electrical generator of up to 1000 W. This robot
can be operated using a remote control and RGB and Infrared (IR) cameras [21].

Another company in the military sector, Milrem Robotics, has developed two versions
of robots to firefighting operations, one to extinguish the fire and the other to assist in the
transportation of hoses in hostile and difficult to access environments. Figure 4a exhibits
the Multiscope Rescue with Hydra, a firefighting robot equipped with a modular foam
and/or water monitor with a flow rate of 3000 L/min, which can rotate 360◦ and disperse
liquids (foam and/or water) at a distance up to 62 m [22]. The robot has two sprinklers
located on its front that serve as a protection system. To increase the system autonomy, the
robot is powered in a hybrid way (diesel engine and battery pack) reaching a maximum
autonomy of 12 h.
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(a) (b) (c)

Figure 4. Examples of robotic applications used for wildfire fighting: (a) Multiscope Rescue with
Hydra [22], (b) Multiscope Rescue Hose Cartridge [23] and (c) Colossus [24].

The version of the robot capable of transporting hoses, as shown in Figure 4b and
entitled Multiscope Rescue Hose Cartridge, has the same locomotion system as the hydra
version, but it has a hose cartridge specially designed to streamline the process unloading.
Through a control system by teleoperation or waypoint navigation, hoses can be quickly
redirected to other locations without exposing firefighters to risky situations [23].

Unlike previous fire fighting robots, the AirCore TAF35 has a liquid jet system for
nebulizing large amounts of water without using high pressure. The AirCore TAF35
includes a caterpillar system, since the unmanned vehicle weighs about 3900 kg and is
powered by a diesel engine with 71 HP which has a maximum autonomy of up to 7 h. Due
to its special spray system, the robot generates a sound noise of up to 84 dB. With a speed
of 9 km/h and a maximum water flow capacity of up to 4700 L/min, this robot is capable
of efficiently extinguishing large-scale wildfires. The system has a water jet that can reach a
distance of up to 80 m and can be controlled by remote control at a distance of up to 300 m,
allowing a human operator to carry out his activities safely [25].

Thermite RS1 and Thermite RS3 robots have a water propulsion system that resembles
Multiscope Rescue with Hydra and AirCore TAF35 robots, respectively. Thermite RS3 is a
larger, faster version with a higher water flow than the Thermite RS1 [26]. Thermite RS3
has a Positive Pressure Ventilation (PPV) ventilator system, similar to the AirCore TAF35,
capable of delivering up to 2500 gpm, about 9464 L/min.

Created in 2017 by Shark Robotics, the French robot Colossus (Figure 4c) was designed
to assist the work of firefighters, not to replace them. In this sense, in addition to having
a water sprayer to firefighting, the robot can be used to carry a payload of up to 500 kg
(equipment and/or injured people/animals). The robot’s chassis is made of Aluminum-
welded aeronautical steel, a light and resistant material capable of withstanding thermal
waves of up to 900 ◦C, with a total weight of 500 kg. The Colossus is capable of moving
at a maximum speed of 4.5 km/h, on terrain with a slope of up to 40◦ and overcoming
obstacles of up to 30 cm [24].

Table 2 summarizes the main characteristics of the robots mentioned above.

Table 2. Comparison between the analyzed robotic applications for wildfire fighting.

Robot Locomotion
System

Weight
(kg)

Payload
Weight

(kg)
Water Flow

(L/min)
Velocity
(km/h)

Autonomy
(h)

Grade
Slope

(◦)

Side
Slope

(◦)

Fire Ox [21] Six-wheel drive
(6WD) – – – – – 30 –

Multiscope Rescue
with Hydra [22] Caterpillar 1630 1200 3000 20 12 30 –

Multiscope Rescue
Hose Cartridge [23] Caterpillar 1630 1200 – 20 15 30 –

Magirus AirCore
TAF35 [25] Caterpillar 3900 – 4700 9 7 30 15

Thermite RS1 [26] Caterpillar 725 – 4732 9.65 20 26.57 19.29
Thermite RS3 [26] Caterpillar 1588 – 9464 12.87 20 26.57 19.29

Colossus [24] Caterpillar 500 500 – 4.5 12 40 35
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Regarding the information presented in Table 2, the following observations can
be made:

• Weight and Payload: To transport more equipment and/or injured people with less
environmental impact (less soil compaction), the robotic system should be light and
capable of transporting large payloads. Therefore, the robot + payload set must have
a low center of gravity to avoid falls during firefighting activities.

• Water Flow: To reduce the spread of fires is desirable to apply a large water flow, since
water reduces the temperature existing in place, removing the existing heat of reaction,
putting out the fire. Therefore, the greater is the water flow (9464 L/min for Thermite
RS3), the faster the fire will go out and the more forest areas will be preserved.

• Velocity: Although the water flow helps the firefighting, to control large-scale fires
with a limited number of robots, the faster the robot travels the more areas can be
covered. In this sense, robotic systems must be agile and easy to move around in
hostile and difficult to access terrains.

• Autonomy: The firefighting activity requires time to remove all the heat from the place,
and, in the case of a forest fire, delays in the firefighting can mean the extinguishment
of species of fauna and flora. Therefore, the greater is the autonomy of the robot, the
longer is the period in which the robot will remain firefighting and, consequently,
more species of fauna and flora can be saved.

• Grade and side slope: Although all the robots analyzed are capable of operating on
types of surfaces commonly found in urban and rural areas, such as concrete and clay
soil, each robot in Table 2 has a different maximum grade and side slope. In this sense,
the higher are these values, the greater is its ability to operate in rugged environments.

3.3. Robotic Applications in Forest for Inventory Operations

A group of researchers assessed the performance of SLAM-aided stem mapping for
forest inventory with a small-footprint mobile LiDAR. Using the FGI ROAMER R2 vehicle
(Figure 5a) moving at 4 km/h, between open and dense forest regions, they compared
three forms of navigation: only by Global Navigation Satellite System (GNSS), using GNSS
+ IMU and adopting SLAM + IMU. The proposed SLAM algorithm was the Improved
Maximum Likelihood Estimation (IMLE). For the open forest regions, the SLAM algorithm
was shown not to be feasible, as in this region there are few detection characteristics
available and the GNSS signals have greater availability. On the other hand, in regions of
dense forest, the precision of the SLAM + IMU technique was 38% higher than the use of
GNSS + IMU [27].

A location algorithm based on the LiDAR Odometry and Mapping (LOAM) in real-
time approach was used in a forwarder unit (Komatsu Forest 931.1, as depicted in Figure 5b)
to perform the mapping of trees during autonomous navigation in a heavy canopy forest
region. The idea was to build a unique 2D topological graph from the map’s point cloud
and find an optimal relationship between the global and local topology. The detection of
trunks was done by clustering the data of the point cloud for a given predetermined value.
The correspondence between the local and global maps was carried out by searching for
triangles based on dissimilarity and calculating pairs of corresponding vertices. As a result,
the work obtained a location accuracy about 0.3 m with 12 cm of standard deviation and
with the processing of data in real time for speeds of up to 0.5 m/s [9].
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 5. Examples of robotic applications used in forests for inventory operations: (a) FGI ROAMER
R2 [27], (b) Komatsu Forest 931.1 [9], (c) AgRob V18 [28], (d) Forest robot 1 [29], (e) Forest robot 2 [30],
(f) Superdroid [31] and (g) Husky A200 [32].

The AgRob V18 forest robot (Figure 5c) was developed to collect forest biomass [28].
The robot has a modular sensor tower, used to detect the fauna and flora around it. Be-
cause the locomotion system is of the Caterpillar type powered by a diesel engine, the
IMU data are severely affected by the robot’s vibration. For this reason, the researchers
studied several approaches to perform autonomous robot localization and navigation,
such as LOAM (recommended for structured environments), Advanced implementation
of LOAM (A-LOAM) implemented in C++ to improve the speed of algorithm execution
and Lightweight and Ground-Optimized LiDAR Odometry and Mapping (LeGO-LOAM).
Among the three approaches, the SLAM technique that achieved the best performance was
LeGO-LOAM [33].

According to Giusti et al. [34], an UAV (ARDrone) was used to perform visual-based
navigation in a forest environment by extracting images from three different points of
view (front and left and right side views) and using Deep Neural Networks (DNN) to
classify the images received and estimate the direction of the trajectory to be followed. This
type of application can assist in carrying out inventory operations, as described in [29].
Chen et al. [29] developed a UAV (Figure 5d) with an end-to-end pipeline for tree diameter
estimation based on Semantic LOAM (S-LOAM), to increase robustness, scalability and
performance in forest environments. The pipeline consists of: 3D point cloud labeling
with virtual reality, range image segmentation with a Fully Convolutional Neural Network
(FCNN), landmark instance detection with trellis graphs and S-LOAM [29]. When carrying
out practical tests, the UAV was able to detect 29 trees (out of a total of 35) with an average
error of 0.67 in.

Another method of estimating biomass in forest areas has been used in mangrove
forests, in the northeast of Hainan Island, China [30]. In this case, Wang et al. [30] performed
an estimate of above ground biomass using an upscaling method from field plots, UAV
(Figure 5e) LiDAR data and Sentinel-2 imagery based on a point-line-polygon framework.
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Pierzchała et al. [31] used the Superdroid 4WD IG52 DB robot (Figure 5f) in a Norwe-
gian forest, characterized by having a semi-structured flat terrain with little undergrowth.
They used a 3D graph-SLAM approach, Random Sample Consensus (RANSAC), to identify
the soil and Signed Distance (SD) to represent the standard height of measurements for
the estimation of DBH. Due to the chosen environment (Figure 6a) having few obstacles,
the proposed method obtained a mean estimation error of DHB of 2 cm, and, for tree
positioning accuracy, the mean error was 0.0476 m.

(a) (b)

Figure 6. Tree detection during navigation activities: (a) results obtained by [31] and (b) results
obtained by [32].

In a similar work, Tremblay et al. [32] analyzed several methods of automatic three-
dimensional mapping for tree diameter measurements in inventory operations. After
considering a cylinder fitting for DBH estimation, different combinations of methods
for determining circles were tested. All methods were combined using a median voting
system. To evaluate the performance of the methods (Figure 6b), the researchers used the
Clearpath Husky A200 robot (Figure 5g), containing a Velodyne LiDAR, an IMU, wheel
encoders for odometry and a RGB camera. The robot was used in different types of forests
(young, mixed, mature and maple) since each species of tree has a type of texture, which
can directly affect the performance of DBH estimation. After performing several tests,
the DBH estimation method that obtained the best performance was the vertical Axis +
nonlinear least-squares cylinder, while Axis linear least-squares obtained the worst. The
environment that obtained the best performance was mature, with well-spaced trees and
visible trunks [32].

The Warthog robot, also from Clearpath, was used to move in subarctic and arctic
environments based on the Iterative-Closest Point (ICP) algorithm. In an environment
with snow and ice, due to its large moment of inertia, even after completing a curve, the
robot remains slightly rotating. According to Baril et al. [35], for this type of scenario,
angular displacement is the main characteristic that interferes with odometry systems.
Thus, when performing inventory operations in environments with ice and snow, it is
necessary to evaluate the kinematic model (ideal differential-drive, extended differential-
drive, radius-of-curvature-based and full linear) that best adapts to the type of terrain
chosen [35].

In [36], a self-supervised detection method for forest land surfaces based on the
Support Vector Machine (SVM) machine learning algorithm is implemented in the Pioneer
3-AT robot. Delaunay Triangulation was used to model the ground plane. Even under major
changes in lighting and ground cover (with and without snow), the self-supervised learning
method achieved an average accuracy of 81.46%, while the method using morphological
operators reached 95.21% and the classical supervised classifier obtained 74.27% [36]. This
type of application may assist in reducing unwanted regions in the mapping activity of
trees in forest inventory operations.

Table 3 summarizes the main characteristics of the robots mentioned above.
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Table 3. Comparison of the analyzed robotic applications for inventory operations.

Robot Locomotion
System Used Sensors Computer Vision

Algorithm

FGI ROAMER R2 [27] 4WD GNSS, IMU, LiDAR SLAM + IMU

Komatsu Forest 931.1 [9] 4WD RTK GNSS, LiDAR LOAM

AgRob V18 [28] Caterpillar GNSS, LiDAR, thermal

and RGB cameras
LeGO-LOAM

ARDrone [34] UAV RGB and grayscale
cameras DNN

Forest robot 1 [29] UAV LiDAR SLOAM

Forest robot 2 [30] UAV LiDAR G-LiDAR-S2 model

Superdroid [31] 4WD GPS, LiDAR, IMU

and stereo camera
3D graph-SLAM

Husky A200 [32] 4WD LiDAR, IMU, encoders

and RGB camera
DBH estimation

Warthog [35] 4WD LiDAR, IMU and
encoders ICP algorithm

Pioneer 3-AT [36] 4WD XB3 camera and LiDAR LIDAR/camera-based

Considering the information presented in Table 3, the following analysis can be done:

• Used Sensors: Although in forest environments the signals from GNSS devices are
severely impaired, some applications use such devices, while in others the navigation
was accomplished exclusively by LiDAR sensors.

• SLAM: Several types of SLAM were used since, although all applications are in forest
environments, each type of forest (tropical, temperate), in each season and each type
of soil can directly interfere with the navigation technique used. For example, the
LOAM technique discarded by Reis et al. [28] was used by Li et al. [9] and obtained
satisfactory results.

3.4. Robotic Applications in Forest for Planting, Pruning and Harvesting

To develop technological solutions that positively impact the environment, Birch and
Rhodes [37] developed the TreeRover tree planter prototype, as depicted in Figure 7a.
Guided by a GNSS system, the 4WD robot is capable of planting up to 10 tree seedlings. It
has an exclusive system that pierces the earth, deposits the seedling with a compressed air
system and finally covers the hole by pressing the local terrain [37].

The Multiscope Forester Planter (Figure 7b) is already a commercial planter robot,
with a payload with a capacity of 380 seedlings. With a modular structure mounted on a
Caterpillar system, the robot can reach up to 20 km/h, with a planting speed of 6.5 h/ha in
temperate forest environments and has two control systems: teleoperation or waypoint
navigation [38]. Built on the same locomotion system as the Multiscope Forester Planter,
the Multiscope Forester Brushcutter (Figure 7c) has a brush cutting tool and a hydraulic
power unit, instead of the planting payload, to be used in forest mowing applications [39].
Due to the modular structure of both robots, both tasks can be performed during the
execution of forestry activities.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7. Examples of robotic applications used in forests for planting, pruning and harvesting tasks:
(a) TreeRover [37], (b) Multiscope Forester Planter [38], (c) Multiscope Forester Brushcutter [39],
(d) Pruning robot 1 [40], (e) Pruning robot 2 [41], (f) Pruning robot 3 [42], (g) Walking harvester [43],
(h) Harvester CTL [44] and (i) Harvesting robot [45].

Robots used in tree pruning tasks must be able to climb trees, prune and descend.
However, as described in [40], this task has several challenges, such as cutting the branches
without letting the cutting tool be grabbed and pruning the tree without damaging the
trunk, in addition to saving energy. To solve these problems, Ishigure et al. [40] developed
a pruning robot (as shown climbing a tree in Figure 7d) with a movable bar mounted on
the guide bar of the chainsaw so that it can move even if a branch is stuck in the chainsaw.
To prevent the robot from damaging the tree trunk, it has a control system that always
keeps the chainsaw parallel to the tree trunk. To save energy, the robot has a system
for measuring the electric current consumed by the chainsaw; in this way, only when
it detects a high consumption of electric current will it supply a higher voltage to the
chainsaw, otherwise the voltage will remain low, resulting in a 34% reduction in energy
consumption [40]. The pruning of trees located close to electric power transmission lines,
unlike the aforementioned work, besides being dangerous, the way pruning depends on
where the electric power transmission line is passing relative to the tree, that is, on the side,
above or through the tree. In [41], the authors described a UAV that has a circular saw and
two claws attached to its body so that, after flying to the position where the branch to be
removed is, it hangs on the branch and performs a circular cutting movement around the
branch (as shown hanging from a branch in Figures 7e and 8). The system, despite being in
an initial testing phase, proved to be capable of pruning branches while being remotely
controlled by a human [41].
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Figure 8. Circular saw, as described in detail in [41].

Unlike the types of locomotion commonly used in forests, the robot developed by
Scion has a tree to tree locomotion system, using fixing claws (Figure 7f). The complete
system has nine Degrees of Freedom (DoF) and can remain fixed only in one tree and
move from one tree to the other with a minimum distance of 1 m and a maximum distance
of 2.2 m. The tree localization is done through the application of the Hough Transform
(HT) under RGB images. The method was evaluated under different lighting conditions
and it was still possible to detect the trunks. The system’s path planning is based on
the K-Means algorithm, which prioritizes the search for paths that visit a larger number
of trees [42]. This type of robot was developed to perform tasks of measuring tree girth,
location and mainly for pruning, as this locomotion system eliminates the need for a human
to place/remove the pruning robot from the tree.

Developed in the 1990s, the fully independent hydraulic six-legged walking machine
(MECANT robot) was one of the first legged robots built to be used in unstructured
environments. Despite the technological limits of that time, MECANT was built using the
off-the-shelf concept. Although the robot is guided by a human being, the architecture
of the leg control system (3-DoF) and body position and orientation (6-DoF) is complex,
separated into the following tasks: body path planner, gait planner, foothold planner,
transfer and support trajectory planner and support force planner [46]. Legged robots
do not need constant contact with the ground to get around and can adjust their posture
according to the terrain slope [47]. This robot was the precursor to the walking forest
harvester (Plustech Oy), illustrated in Figure 7g, which did not get a good acceptance from
the forest machine market [43].

Unlike the walking forest harvester, the harvester machine based on the Cut-To-Length
(CTL) method depicted in Figure 7h has wheels and performs log harvesting intelligently
in boreal forest. The harvester CTL has a robotic arm that, in addition to slaughtering and
stripping, measures the base and diameter of each harvested trunk and compares both with
the averages of specific species and with the harvest history. Using an algorithm based
on the data of each trunk, the harvester CTL optimizes each trunk to achieve the highest
possible processing value. To reduce impacts on the environment, during harvesting, the
CTL harvester covers its tracks with branches and tree debris to reduce damage to forest
soil [44].

Even today, rubber extraction is considered a manual task. Using LiDAR sensors and
low-cost gyroscopes, Zhang et al. [45] clustered the cloud of tree trunk points and extracted
the central point of the trunks based on the Gauss–Newton method to create navigation
lines for the robot itself to move around the environment using a Fuzzy control system.
With this technique, the robotic platform (Figure 7i) moved by a caterpillar system obtained
a Root Mean Square (RMS) side error less than 10.32 cm, making it possible to carry out
the rubber harvest in an automated way.

Table 4 summarizes the most relevant data for the robots mentioned above.
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Table 4. Comparison of the analyzed robotic applications in forest for planting, pruning and harvesting.

Final
Application Robot Locomotion

System Sensors Actuators

Planting

TreeRover [37] 4WD GNSS Compressed air machine

Multiscope Forester
Planter [38] Caterpillar – Forester planter

Multiscope Forester

Brushcutter [39]
Caterpillar – Forester brushcutter

Pruning

Pruning robot 1 [40] 4WS Posture sensor Chainsaw

Pruning robot 2 [41] UAV Back-electromotive

force module
Circular saw

Pruning robot 3 [42] Legged robot LiDAR and

RGB camera
–

Harvesting

MECANT [46] Legged robot – –

Walking forest
harvester [43] Legged robot – Chainsaw on a robotic

arm

Harvester CTL [44] Legged robot – Chainsaw on a robotic
arm

Harvesting robot [45] Caterpillar LiDAR and

gyroscope
Gauss-Newton

Regarding the information presented in Table 4, the following observations can
be made:

• Used Sensors: As most applications were teleoperated, few sensors were used and,
therefore, this strategy enhances cost reduction.

• Used Actuators: Different reasons for pruning result in different locomotion and
cutting systems. Thus, periodic pruning tasks were performed using UAV (with mini
saws), whereas daily log harvesting tasks were performed by legged robots (with
chain saws).

• Locomotion Systems: The reasons for using certain types of locomotion must not
only be well defined, but they must also exhibit results that satisfy the forest machine
market.

4. Discussion

As done for the work related to the development of robotic systems applied in agricul-
tural environments [48], the collection of several data in common for the different types of
robotic systems applications in forest environments was carried out, the results of which
are shown in Figure 9.
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Figure 9. Summary of analyzed forest robots’ characteristics.

After analyzing the various graphs shown in Figure 9, the data reveal that most of the
forest robots analyzed have caterpillars (Figure 9a), do not have robotic arms (Figure 9b)
and are related to the execution of inventory operations (Figure 9c). Although most robots
use LiDAR and RGB cameras (28.57%, according to Figure 9d), most of the studies (40%,
according to Figure 9e) do not include or report computer vision algorithms. The data also
reveal that most robotic systems developed to perform forestry tasks of environmental
preservation, monitoring, wildfire firefighting, inventory operations, planting, pruning
and harvesting were developed by companies/researchers from the United States (17.50%,
as shown in Figure 9f); however, 42.50% of all work was carried out in countries on the
European continent and 77.78% are still in the research phase, as shown in Figure 9g,h,
respectively. Among the reviewed works, the United States was the country that stood out,
with 17.50% of the total analyzed works. To understand the reason, the FAO data were
analyzed [49]. In this case, the percentage of the total forest area of each country involved
with the articles/companies/projects reviewed is depicted in Figure 10.
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Figure 10. Total forest area of all countries related to the development of robotic forest systems
covered in this article, according to FAO data [49].

According to Figure 10, Finland, Japan and Brazil are the three countries with the
highest percentages of total forest area, in relation to the reviewed works. During the
twenty years of monitoring (1997–2017), Finland maintained the same preservation values,
while Brazil presented a reduction of 7.11% in forest area. However, 58.8% of 8,358,140 km2

(land area of Brazil) is equivalent to 4,914,586.32 km2 and 73.1% of 303,910 km2 (land area
of Finland) is equivalent to 222,158.21 km2, that is, the forest land area of Brazil is about
22.12 times larger than the forest land area of Finland [50]. In this sense, despite the remote
sensing carried out by satellites being able to monitor large forest areas, it is not able to
act directly in the fight against illegal logging and forest fires. Thus, the great importance
of investing in mobile, robust and agile robotic systems, capable of sensing and acting
under the surrounding environment and remotely communicating with other robots, is
noted, contributing to better preservation of extensive forest areas. Based on FAO [1], the
reviewed papers are distributed in four types of forest zones: boreal, temperate, subtropical
and tropical. As shown in Figure 9i, about 50% of the works were applied to temperate
forest zones and, due to the little documentation found of works developed in the African
continent, as well as in the other countries of Oceania and Latin America, only 5% of the
works were applied in tropical zones.

4.1. Unsolved Issues

After analyzing the various existing works, as described above, to improve the preci-
sion and time of execution of the several robotic applications in forest for environmental
preservation, monitoring, wildfire firefighting, inventory operations, planting, pruning
and harvesting, in the authors’ opinion two main areas need improvements: IoT-based
smart forest and navigation systems.

4.1.1. IoT-Based Smart Forest

A characteristic commonly observed when analyzing the works [14,15,18,19] is the
ability to use wireless communication technologies to exchange information between
different robotic systems (aerial and terrestrial robots) and smart devices, sensors that
detect the forest fires and monitor the quality of air, soil, water and vegetation indexes.
In this sense, it is proposed as a future research work to integrate intelligent sensors
(temperature, humidity, gas and luminosity) with forest robotic systems, since through
the fusion of such technologies it will be possible to carry out forest preservation and
monitoring activities of large portions of Earth with high spatial and temporal resolution.
Since a forest is an unstructured environment, the concept of the swarm of robots needs to
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be applied not only in UAV but also in other locomotion systems to enable the execution of
forestry tasks, such as planting, pruning and harvesting, in a faster and more efficient way
to reduce environmental damage.

4.1.2. Navigation Systems

The most recurrent problem with mobile robot applications in forest environments
is that of the navigation system [51–53]. In this sense, several SLAM techniques have
been used, such as SLAM + IMU [27], LOAM [9], A-LOAM [28], LeGO-LOAM [33],
S-LOAM [29] and 3D graph-SLAM [31]. Thus, future research must assess the proposed
systems’ complexity to ensure that the trade offs between low-cost and high precision and
between simplicity and efficiency have the results necessary to carry out their respective
activities, contributing to the improvement of localization and navigation tasks. Another
proposal for improving navigation systems would be to use Ground Penetration Radar
(GPR) type sensors [28,54] together with the use of artificial intelligence algorithms. GPR
sensors map the soil at different depth levels, revealing the contents of the subsoil. In
this way, a computer vision system using GPR would eliminate all problems of variation
of natural lighting and interference of the seasons, as in this case the system would be
analyzing the soil in search of natural landmarks, as a way of locating and navigating along
the plantation.

5. Conclusions

The development of robotic systems to operate in forest environments is of great
relevance for the public (preservation of fauna and flora) and private (income generation)
sectors. In this sense, this article reviews several scientific articles, research projects and
commercial products related to robotic applications for environmental preservation, moni-
toring, wildfire firefighting, inventory operations, planting, pruning and harvesting. After
conducting a critical analysis, it was observed that: 32% of the robots have caterpillars,
91.89% do not have robotic arms, 32% of the works address the use of robots in inventory
operations, 28.57% use LiDAR and RGB cameras, 40% do not include or report computer
vision algorithms, 17.50% were developed by companies/researchers from the United
States, 77.78% remain in the research phase, 42.50% were carried out on the European
continent and 50% were applied in temperate forests. The main characteristics observed
were: (a) the locomotion system is directly affected by the type of environmental mon-
itoring to be performed; (b) different reasons for pruning result in different locomotion
and cutting systems; (c) each type of forest (tropical or temperate), in each season and
each type of soil can directly interfere with the navigation technique used; and (d) the
integration of the concept of swarm of robots with robots of different types of locomotion
systems (land, air or sea) can compensate for the time of executing tasks in unstructured
environments. Two major areas are proposed by the paper authors for future research
works: IoT-based smart forest and navigation systems. In addition, due to the existence of
few studies developed in tropical forest areas, it is proposed to develop future research
works in tropical regions, such as those found in Latin America and on the African and
Oceania continents. Therefore, it is expected that, with the various characteristics exposed
in this article, the current robotic forest systems are improved, so that forest exploitation
becomes more efficient and sustainable.
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