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Abstract: The reduced workspace in endonasal endoscopic surgery (EES) hinders the execution of
complex surgical tasks such as suturing. Typically, surgeons need to manipulate non-dexterous long
surgical instruments with an endoscopic view that makes it difficult to estimate the distances and
angles required for precise suturing motion. Recently, robot-assisted surgical systems have been used
in laparoscopic surgery with promising results. Although robotic systems can provide enhanced
dexterity, robot-assisted suturing is still highly challenging. In this paper, we propose a robot-assisted
stitching method based on an online optimization-based trajectory generation for curved needle
stitching and a constrained motion planning framework to ensure safe surgical instrument motion.
The needle trajectory is generated online by using a sequential convex optimization algorithm subject
to stitching kinematic constraints. The constrained motion planner is designed to reduce surrounding
damages to the nasal cavity by setting a remote center of motion over the nostril. A dual concurrent
inverse kinematics (IK) solver is proposed to achieve convergence of the solution and optimal time
execution, in which two constrained IK methods are performed simultaneously; a task-priority based
IK and a nonlinear optimization-based IK. We evaluate the performance of the proposed method in a
stitching experiment with our surgical robotic system in a robot-assisted mode and an autonomous
mode in comparison to the use of a conventional surgical tool. Our results demonstrate a noticeable
improvement in the stitching success ratio in the robot-assisted mode and the shortest completion
time for the autonomous mode. In addition, the force interaction with the tissue was highly reduced
when using the robotic system.

Keywords: robot-assisted suturing; optimization-based trajectory generation; remote center of
motion; endoscopic endonasal surgery; stitching

1. Introduction

Endoscopic endonasal surgery (EES) is a common procedure for treating pituitary
lesions and has proven to be effective in reducing tissue trauma and speeding up the
recovery time. However, due to the reduced workspace and the lack of direct visualization,
much dexterity is required for the execution of complex surgical tasks with increased sur-
geon’s work effort. Suturing is considered one of the most challenging and time-consuming
tasks in minimally invasive surgery [1], and is a common procedure in EES to secure the
reconstructed dura after an endonasal tumor resection (see Figure 1). Inadequate suture
can lead to cerebrospinal fluid leakage, which is a common postoperative complication
in EES. The limited degrees of freedom (DOFs) in conventional surgical tools reduce the
range of motion for needle manipulation. Furthermore, the two-dimensional endoscopic
view makes it difficult to recognize the relative position of the tissue from the surgical
instruments, resulting in multiple attempts and increased tissue trauma to achieve a proper
suture [2].
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Recently, there has been an increasing interest on the development of robotic surgical
systems to perform complex tasks such as suturing in a limited workspace with reduced
trauma, by autonomous procedures with higher dexterity [3]. Robotic systems can also help
to reduce the steep learning curve for surgeons associated with minimally invasive suturing.
However, the development of commercial robotic surgical systems for EES is still limited.
For example, the da Vinci Surgical System (Intuitive Surgical, Sunnyvale, CA, USA) has
been used successfully in urological, gynecological, and gastrointestinal surgery. The use of
their high-dexterity endo-wrist technology facilitates the manipulation of surgical needles
on a limited workspace. However, the size of the current surgical instruments (5–8 mm
in shaft diameter), the large required workspace, and complex preoperational setup still
prevent the use of the da Vinci Surgical System in EES.

In our previous work [4], we have focused on the development of a human–robot
interface for controlling multi-DOF articulated forceps in EES. This paper expands our
prior work with a robot-assisted stitching framework based on optimal needle trajectory
generation subject to the stitching kinematic constraints, and a dual concurrent constrained
control algorithm to track the generated trajectory. The proposed approach restrains and
guides the motion of the robot during the needle insertion and extraction through the
tissue, while preserving a remote center of motion (RCM) placed over the nostril to reduce
additional tissue damage.

The rest of this paper is organized as follows. Section 1.1 introduces the related work
in robot-assisted suturing. Section 2 first describes the problem setup. Then, we present the
proposed needle trajectory optimization algorithm and the constrained motion planning
method. The experimental setup and the performance results discussion is presented in
Section 3. Section 4 concludes the paper.

Figure 1. (a) Endoscopic endonasal surgery. (b) Dura suturing in endonasal endoscopic surgery (EES) performed in a head
model phantom. (c) An example of an endoscopic view of the suturing task in the head model.

1.1. Related Work

A suturing task comprises several steps: (s0) selection of suitable entry and exit
points; (s1) needle grasping, placement, and reorientation over the entry point; (s2) needle
insertion and extraction; (s3) create a suture loop for knot tying; and (s4) tighten and secure
the knot [5]. In minimally invasive surgery, suturing is a frequent, repetitive, and yet
time-consuming task. Previous studies have focused on the automation of one or some of
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the above-mentioned steps in the suturing task in order to reduce surgeon’s fatigue and
operation time.

Learning-by-demonstration techniques have been proposed for autonomous knot-
tying tasks (s3–s4). Knoll et al. [6] introduced a skill transfer approach from human
demonstrations based on knot-tying primitives decomposition, feature extraction, and task
generalization using the da Vinci robot. However, the implementation was not suitable for
online planning because of the significant computational cost. In [7], Osa et al. use a set of
demonstrated trajectories under various environmental conditions to learn the knot-tying
process, and proposed an online trajectory regeneration for adapting over changes of
the dynamic surgical environment. On the other hand, Van der Berg et al. [8] proposed
the use of iterative learning control to determine a task trajectory without the need of
the task description. Different approaches have been proposed to perform autonomous
surgical tasks without learning. Multi-step sequential trajectory specifically designed
for knot-tying was proposed in [9]. Chow et al. [10] proposed a knot-tying automated
path generation based on a binary-star search method over objective metrics defined for
candidate motion patterns.

Autonomous stitching (s0–s2) has also been studied, mainly focused on the generation
of an optimal needle trajectory, and can be divided into two types: constant curvature
paths and adjustable curvature paths. In the case of a constant curvature path, the needle
rotates around its center to reduce trauma when puncturing the tissue. Nageotte et al. [11]
presented a kinematic analysis of the stitching task, and used an A*-based method to find
the optimal needle path given the desired entry and exit points. Liu et al. [12] introduced
an offline optimization framework for optimal entry port selection and needle grasping
pose. However, the exhaustive search methods require a high computational cost and is not
suitable for real-time implementation. Staub et al. [13] proposed a visual-servoing control
to position the needle over a desired point marked by a laser pointer and performs a circular
needle motion to pierce the tissue. D’Ettore et al. [14] also applied a vision based control for
autonomous needle grasping, but did not consider additional requirements for subsequents
suturing steps. Iyer et al. [15] proposed a visual-servoing control for autonomous stitching,
which provides smooth needle steering by calculating the needle optimal center point
of rotation. Pedram et al. [16] used a nonlinear optimization algorithm to generate a
needle constant curvature path subject to the tissue geometry, desired entry/exit points
and kinematic constraints.

Notice that the use of a constant curvature paths could fail to meet the suturing
requirements, e.g., depth and length, or conflict with the robot kinematic constraints.
As a result, capability of exerting forces required for tissue penetration could be reduced.
Therefore, subsequent studies have considered adjustable curvature paths, where needle
orientation adjustments are allowed. Sen et al. [17] proposed a sequential non-convex
optimization framework to find the optimal trajectory, subject to kinematic constraints,
bounded needle reorientation, minimum trajectory length, and orthogonal needle poses
to reduce tissue trauma. It also includes a mechanical needle guide to reduce needle
pose uncertainty. Jackson et al. [18] developed a needle trajectory plan based on the best
practices of manual suturing that allows needle reorientation and ensures suture depth
and needle handling. Autonomous needle extraction was proposed in [19], in which the
visual feedback is used to control two teleoperated robot arms with a single user interface.

Additional studies explored the automation of other surgical sub-tasks: optimal port
placement [20], surgical debridement [21], surgical cutting [22,23], and real-time thread
tracking [24,25]. Fully autonomous suturing is still considered a high-risk procedure
because of the variability in human anatomy and uncertainties in environment modeling
(tissue, needle pose, and thread). They also rely on time-consuming complex calibration
setups that need frequent readjustments and low operational speeds that extend the
operation time.

Cooperative human–robot suturing with shared control between the operator and
robot has been also explored as an alternative to autonomous suturing. Here, the robot
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can guide or restrict the surgeon’s command, or execute automated surgical sub-tasks.
In [26], the surgeon commands the robot in subtasks where environment interactions are
involved, such as grasping or needle insertion, and automatic execution of pre-learned
subtasks are executed sequentially after the manual subtasks. Reed et al. [27] developed a
robot-assisted steering system for bevel-tip steerable needles by integrating a stochastic
roadmap-based planer, a planar controller, and a torsion compensator. During the surgical
procedure, the surgeon can either only pause the insertion to verify the needle location or
abort the procedure by retracting the needle.

Virtual constraints are often used to guide or constrain the surgeon’s commanding
motion. Kapoor et al. [5] proposed a guidance virtual fixture to assist the surgeon move
towards the entry point and along the desired trajectory defined for a stitching task.
The constrained motions is formulated as a quadratic programming minimization problem.
The surgeon commands the robot through a force-based control, and needle reorientation
is allowed to reduce the error between the desired entry/exit points. An impedance virtual
fixture framework for needle passing and knot tying was introduced in [28] by constraining
the tool tip within a plane, and reducing needle pose uncertainty through a 3D printed
needle holder. Selvaggio et al. [29] presented an optimization-based haptic shared control
for needle grasping that takes into consideration the robot joint limits and singularities.
Marinho et al. [30] developed a looping guidance virtual fixture and a trajectory guidance
cylinder based on constrained optimization and haptic feedback to assist the surgeon
during a teleoperated knot-tying task. In [31], multiple control strategies for a stitching
task were compared: telemanipulation, autonomous, shared control with orientation free,
and shared control with orientation constrained.

In this work, we propose an optimization-based needle trajectory planning for a
stitching task considering the suturing restrictions for an EES. The contributions of this
paper can be summarized as follows.

1. An online optimization-based needle trajectory generation method that is used as a
reference for a smooth guidance virtual fixture.

2. Constrained motion planning based on dual concurrent inverse kinematics (IK) solver
that integrates a task-priority based IK and a nonlinear optimization based IK.

3. Experimental comparison between the proposed method in a robot-assisted mode
and an autonomous mode with the use of a conventional surgical tool.

2. Materials and Methods
2.1. System Overview
2.1.1. Robotic Surgical System

The proposed method is implemented on the system we have developed in [4] (see
Figure 2a) composed of two 6-DOF industrial robot arms (VS-050, DENSO Corporation,
Aichi, Japan), 4-DOF articulated forceps developed in [32], and user interfaces attached
to the robot arms [4]. Each robotic unit has a total of 10-DOF, where 6-DOF are provided
by the robot arm and 4-DOF are the contribution from the articulated forceps. The 4-DOF
articulated forceps (see Figure 2b) comprises a shaft (diameter: 3.5 mm and length: 233 mm),
a triangular-shaped gripper (length: 4 mm), and elastic elements to provide 3-DOF tip
movement (bending in two directions and rotation around the axis) and the grasping
function. The 4-DOF forceps tip motion is controlled by five DC motors (four motors for
bending and grasping, and one motor for the rotation around the axis). The user interface
comprises a vertical handle attached to a 6-axis force/torque sensor and an articulated
serial link interface with a gripper handle (see Figure 2c). The vertical handle is used
during the initial positioning and insertion/extraction of the articulated forceps, and the
serial link interface is used for controlling the 4-DOF forceps and the robot arm during
the suturing task. The gripper handle contains two push-buttons: one above the handle
(up-button), and the second one placed inside the gripper (gripper-button) (see Figure 2d).
The upper push-button enables the free motion control of the forceps tip and the gripper
push-button activates the robot-assisted stitching mode.
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Figure 2. (a) SmartArm robot for endoscopic endonasal surgery (EES) [4]. (b) 4-DOF articulated forceps. (c) Human–robot
user interface. (d) Push-buttons used to alternate between robot-assisted modes.

2.1.2. Description of the Stitching Workspace Frames

The coordinate frames for the robotic system are defined as shown in Figure 3, where Fb
represents the robot arm base frame, Fee is the forceps tip frame, Fntip is the needle tip frame,
Fngrasp is the frame associated to the needle grasping point, and Ftissue corresponds to the
tissue frame with the z-axis aligned to the tissue surface normal vector. We define relative
coordinate frames as aRb where b refers to the local frame and a refers to the reference
frame. For notational convenience, a full pose (including position and orientation) in the
frame a is denoted by aX as a combination of a position vector a p and a rotation matrix aR.
When no reference frame is specified, it is assumed to be expressed in the base frame Fb.

Figure 3. Definition of the coordinate frames used to represent the stitching task.
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2.1.3. Algorithm Overview

The high-level schematic overview of the proposed algorithm is shown in Figure 4.
The proposed algorithm assumes that the forceps have been inserted into the nasal cavity
through a remote center of motion (RCM) placed over the patient’s nostril [4], which is
kept fixed by the constrained motion planner during the entire execution of the stitching
task. First, the surgeon can command the forceps tip pose through the user interface (see
Figure 2c) in a teleoperation mode. An initial calibration procedure can be performed to
define the desired entry and exit points, and to determine the orientation plane of the
tissue surface, by positioning the forceps tip over the desired points and recording them
in a YAML file. The calibration file can be either generated online or retrieved from the
previously recorded ones at any time during the trajectory generation process. During the
teleoperation mode, the needle pose can be freely controlled. The surgeon places the
needle in a suitable initial position and activates the robot-assisted stitching sequence by
pressing the gripper-button located in the user interface handle. The robotic system will
automatically generate an optimal trajectory to be followed by the needle tip during the
stitching task. The generated trajectory is stored as a CSV file that is synchronized with
a simulator for trajectory visualization. The optimal trajectory defines the desired initial
needle tip pose close to the entry point over the tissue. The robot reorients the needle
and approaches to the desired initial needle pose following the trajectory defined by a
linear interpolation for the translational motion and a spherical linear interpolation for the
rotational motion. When the needle is expected to be in an initial contact with the tissue,
the robot stops and the stitching guided mode is activated. Now the robotic system follows
a shared control scheme, in which the robot ensures that the needle tip pose (position and
orientation) follows the optimal trajectory generated by the proposed algorithm, while
the surgeon is in charge of the control of the insertion speed and direction of the motion.
In this way, the optimal trajectory works as a virtual guidance constraint for the surgeon’s
command. In case of changes in the trajectory generation parameters while performing
the stitching sequence (e.g., changes on the desired entry or exit positions), the needle can
be retracted along the optimal trajectory until full extraction, and a new trajectory can
be generated with the updated parameters. Moreover, the surgeon can return to the free
needle motion at any time by pressing the up-button located in the user interface handle.
Then, the guidance virtual constraint is disabled and the surgeon can freely manipulate the
needle pose.

Figure 4. High-level schematic overview of the proposed robot-assisted stitching.
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2.2. Online Optimization-Based Trajectory Generation

Schulman et al. [33] proposed a non-convex sequential optimization for bevel-tip
needle steering based on a curvature-constrained kinematic model. Sen et al. [17] extended
this concept for curved needles. Building on this model, we formulate the stitching needle
trajectory generation problem as a non-convex constrained optimization problem to be
solved by `1 penalized trust-region based sequential optimizations. The notation used in
this paper is listed in Table 1.

Table 1. The list of notation used in this paper.

Notation Description

µ(k) k-iteration penalty
δ(k) k-iteration trust region size
u(k) k-iteration control variable
ηr step rejection threshold
ηa step acceptance threshold
γs trust region shrinkage factor
γe trust region expansion factor
µs penalty scaling factor
εm convergence threshold for merit
εu convergence threshold for control variable
εc constraint satisfaction threshold
Ct needle pose at step t
N number of trajectory steps
b needle insertion distance at each step
ξt twist applied at step t
ζt needle deviation at step t
ζ̄ max. needle deviation
lg needle length free for grasping
ln needle length
κn needle natural curvature

εentry entry position tolerance
εexit exit position tolerance

2.2.1. Sequential Convex Programming

The goal of a general nonlinear programming problem (NLP) is to find an optimal set
of parameters (u ∈ Rn) that minimizes a given cost function ( f(u)), while satisfying a set
of equality (h(u)) and inequality (g(u)) constraints as

arg min
u

f(u)

subject to

hi(u) = 0 i = 0, · · · , neq

gj(u) ≤ 0 j = 0, · · · , nineq.

(1)

In general, NLPs are difficult to solve, but one of the most effective methods is the use
of Sequential Convex Programming (SCP). The SCP method approximates a given NLP
into convex subproblems (convex cost function, convex inequality constraints, and affine
equality constraints) and sequentially update the solution estimation by solving the convex
subproblem. NLP convexification can be performed by representing the cost function and
constraints through Taylor series expansions around the current iteration u as

f̃(∆u) = f(u) +∇ f>(u)∆u +
1
2

∆u>∇2 f(u)∆u

h̃i(∆u)
= hi(u) +∇h>i(u)∆u

g̃j(∆u)
= gj(u) +∇g>j(u)∆u.

(2)
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The solution of the subproblem generates a step ∆u to update the current solution
towards the optimal solution. However, infeasibility is a common problem during an
SCP that can be caused by a poor convexification or initial solution guess. One possible
solution is to move the infeasible constraints into the objective function as penalties,
which will converge to zero and ensure feasibility. Compared with other common penalty
functions, the use of `1 penalty provides an exact representation of the deviation from the
constraint and numerical stability [34]. To avoid complications because of its non-smooth
characteristic, it is common to implement `1 penalties by using slack variables (v, w and t
in Equation (3)) that do not modify the convexity of the original problem [35].

A trust-region method is also used to ensure global convergence. It is represented as a
step boundary constraint ‖∆u‖p ≤ δ, where δ is the trust region radius and p represents
the p-norm used for the boundary conditions. The minimization problem is reformulated
for a positive penalty µ as

arg min
∆u,v,w,t

f̃(∆u) + µ

[ neq

∑
i=1

(vi + wi) +

nineq

∑
j=1

tj

]
subject to

h̃i(∆u)
= vi − wi , i = 0, · · · , neq

g̃j(∆u)
≤ ti , j = 0, · · · , nineq

v, w, t ≥ 0

‖∆u‖∞ ≤ δ.

(3)

To determine the acceptance of the current step, the SCP method uses the actual-to-
predicted cost reduction ratio ρ, defined by

ρ =
φ1(u,µ)

− φ1(u+∆u,µ)

q(0) − q(∆u)
(4)

where the `1 merit function φ1(u,µ)
is given as

φ1(u,µ)
= f(u) + µ

[ neq

∑
i=0
|hi(u) |+

nineq

∑
j=0

[gj(u) ]
+

]
(5)

and the approximation of the objective function q(∆u,µ) is given as

q(∆u,µ) = f(u) +∇ f>(u)∆u +
1
2

∆u>H(u)∆u+

µ

[ neq

∑
i=0
|hi(u) +∇h>i(u)∆u|+

nineq

∑
j=0

[gj(u) +∇g>j(u)∆u]+
] (6)

where H(u) represents a numerical approximation of the Hessian of the cost function
∇2 f(u), and [y]+ = max(y, 0). If q(∆u,µ) is an accurate representation of the `1 merit
function (ρ ≥ ηa), the trust region δ is expanded by a factor of γe and the control variable
∆u is updated. On the hand, if δ is rejected (ρ ≤ ηr), δ is shrunk by a factor of γs.
The sequential iteration stops when the convergence criteria are satisfied or the maximum
number of iterations is exceeded. The outline of `1 penalized trust region-based sequential
optimization algorithm is shown in Algorithm 1.
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Algorithm 1: `1 penalty trust region based sequential optimization.
Input: ηr,ηa,γs, γe, µs, εm, εu,εc, f , g, h
Set initial values for: µ(0), δ(0), u(0), H = ∇2 f
for l = 0, · · · , lmax do

for k = 0, · · · , kmax do
Define local approximated cost and constraint functions:

f̃ (k)
(∆u) = f(u(k)) +∇ f>

(u(k))
∆u + 1

2 ∆u>H(k)∆u

g̃(k)
(∆u) = g(u(k)) +∇g>

(u(k))
∆u

h̃(k)
(∆u) = h(u(k)) +∇h>

(u(k))
∆u

for m = 0, · · · , mmax do
Formulate smooth quadratic programming problem including slack
variables

∆u← arg min
∆u,v,w,t

f̃ (k)
(∆u) + µ(l)

[
∑

neq
i=1(vi + wi) + ∑

nineq
j=1 tj

]
s. t.

h̃(k)i(∆u)
= vi − wi , i = 0, · · · , neq

g̃(k)j(∆u)
≤ ti , j = 0, · · · , nineq

v, w, t ≥ 0
‖∆u‖ ≤ δ(m)

Determine the actual-to-predicted cost ratio:

ρ =
φ
(k)
1(u,µ)

−φ
(k)
1(u+∆u,µ)

q(k)
(0)−q(k)

(∆u)

Determine step acceptance and update trust region radius
if ρ ≤ ηr then

δ(m+1) = γsδ(m) shrink trust region
else if ηr ≤ ρ ≤ ηa then

u(k+1) = u(k) + ∆u
break

else
u(k+1) = u(k) + ∆u
δ(m+1) = γeδ(m) expand trust region
break

end
if δ(m+1) ≤ εu then

break
end

if φ
(k)
1(u,µ)
− φ

(k+1)
1(u,µ)

≤ εm then
break

end
Verify largest constraint violation and update
if max([g(u(k+1))]

+, |h(u(k+1))|) then
uoptimal ← u(k+1)

break
else

u(l+1) = µsu(l)

end
end

2.2.2. Problem Definition

The stitching needle trajectory is discretized into N time intervals and represented as
a set of needle tip poses at each time step C : {C0, C1, ..., CN−1}, where each pose is defined
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as a homogeneous transformation matrix Ct =

[
Rt pt
0 1

]
∈ SE(3). The stitching trajectory

planning problem can be defined as follows.
Input: The desired entry and exit points pentry, pexit ∈ R3 are given by the surgeon

during the calibration process. The needle size and shape (ln, κn), the suture depth zdepth,
and the maximum needle curvature allowed ζ̄ are also provided.

Output: The set of desired needle tip poses Cd : {Cd0 , Cd1 , · · · , CdN−1}.
Assumptions: It is assumed that the gripper holds the needle firmly so that needle

deviations during the stitching task do not occur. We consider a flexible tissue where the
friction forces produced during the tissue penetration can be neglected.

2.2.3. Optimization Model

The stitching needle trajectory generation problem is formulated as a constrained
optimization problem as

arg min
∆u

α1CostL + α2CostOentry + α3CostOexit (7)

subject to

log
(

Ct+1(exp(ξt)Ct)
−1
)∨

= 06 (8)

(p0 − pentry)
>(p0 − pentry) ≤ ε2

entry (9)

(pN−1 − pexit)
>(pN−1 − pexit) ≤ ε2

exit (10)

Nb + lg ≤ ln (11)

CN/2 ≤ zdepth (12)

ζt − ζ̄ ≤ 0 , t = 0, · · · , N − 1 (13)

− ζt − ζ̄ ≤ 0 , t = 0, · · · , N − 1 (14)

ζ2
t+1 − ζ2

t ≤ 0 , t = 0, · · · , N − 2 (15)

Costs (Equation (7)):

The objective of CostL penalizes longer trajectories to reduce tissue trauma. Addition-
ally, needle deviation from an orthogonal pose with respect to the tissue surface is also
penalized during the needle insertion with CostOentry and extraction CostOexit to facilitate
tissue penetration. The concrete forms of these cost functions are given as

CostL := Nb (16)

CostOentry := (log(R0R>entry)
∨)> log(R0R>entry)

∨ (17)

CostOexit
:= (log(RN−1R>exit)

∨)> log(RN−1R>exit)
∨. (18)

Stitching kinematic constraints (Equation (8)):

We use the curvature constrained kinematic model proposed by Sen et al. [17] for
curved needles. At each time step, the needle is inserted following a fixed length b with
a curvature κn + ζt, where κn is the needle natural curvature and ζt are local curvature
changes applied for needle reorientation at the time step t. The transformation between
consecutive needle poses can be represented as a twist ntip ξt := [0, 0, b,−b(κn + ζt), 0, 0],
composed of a translational motion b along the needle tip tangent vector, and a rotational
motion −b(κn + ζt) along the normal vector to the needle’s plane. The corresponding twist



Robotics 2021, 10, 27 11 of 24

in the base frame can then be computed as ξt = Adntip
ntip ξt, with the adjoint matrix defined

as Adntip =

[
Rntip [pntip ]×Rntip

0 Rntip

]
.

The lie algebra exponential and logarithmic mapping in SE(3) [36] are used to repre-
sent the kinematic constraint Ct+1 = exp(ξt)Ct at each time step.

Desired Entry/Exit Port Constraints (Equations (9) and (10)):

The generated trajectory entry/exit points should be within a tolerance εentry, εexit
from the desired entry/exit point, respectively.

Needle Constraints (Equation (11)):

The total trajectory length including the distance for the forceps to hold the needle
Nb + lg should be less than the needle length ln.

Suture depth constraint (Equation (12)):

The trajectory should have a minimum depth zdepth to ensure a proper tissue penetration.

Needle reorientation constraints (Equations (13)–(15)):

Small curvature changes ζt are allowed from the needle natural curvature κn , but are
bounded by ζ̄ and limited to be monotonically decreasing.

2.3. Constrained Motion Planning

EES constrains the motion of the surgical tools along the nostril and nasal cavity.
It is important to ensure safe tool manipulation by implementing a remote center of
motion constraint over the nostril. We propose a constrained motion planning based on a
guidance virtual fixture along the optimally generated needle trajectory, and a concurrent
constrained inverse kinematic solver implementation based on a task-priority IK method
and a nonlinear programming IK method. Figure 5 depicts a block diagram of the proposed
constrained motion control. Given a surgeon’s pose command through the serial-link
interface Xh, the scaled desired end-effector pose Xdes is computed. A guidance virtual
fixture constrains the needle tip motion along a continuous optimal trajectory and generates
the constrained end-effector pose Xc. Then, a concurrent IK solver performs a simultaneous
prioritized Jacobian-based inverse kinematics and a constrained nonlinear optimization
inverse kinematics. The task-priority IK can find a solution faster, but joint limits and
higher priority tasks may produce convergence failures. On the other hand, nonlinear
optimization takes longer to compute, but can better handle joint limits and additional
constraints. When one of them finds an acceptable solution, the other IK solver is stopped,
and the computed joint command qd is distributed between the robot arm (qdarm ) and the
articulated forceps (qd f orceps

).
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Figure 5. Block diagram of the proposed constrained motion planning.

2.3.1. Guidance Virtual Fixture

A continuous and differentiable position and orientation trajectory c(s) = {cp(s) , co(s)}
is generated by cubic b-spline interpolation of the control points from the optimal stitching
needle trajectory obtained in Section 2.2 (see Figure 6) as

cp(s) = pd0 +
N−1

∑
i=0

(pdi
− pd0)Bi,k+1(s) , s ∈ [0, 1]

co(s) = exp

(
N−1

∑
i=0

log(Rdi
R>d0

)∨Bi,k+1(s)

)
Rd0 , s ∈ [0, 1]

(19)

Bi,1(s) =

{
1 λi ≤ t < λi+1

0 otherwise

Bi,k+1(s) =
s− λi

λi+k − λi
Bi,k(s) +

λi+k+1 − s
λi+k+1 − λi+1

Bi+1,k(s)

(20)

where Bi,k+1(s) are the b-spline basis functions and λi ∈ [0, 1] are the uniformly dis-
tributed knots.

The continuous trajectory c(s) is then used as reference curve for a hard virtual
fixture [37]. The desired position pdes obtained from the user interface command is

projected onto the normalized tangent direction of the reference curve uc(st)
=

δc(st)
‖δc(st)

‖

with δc(st)
= d

ds cp(s) |s=st , and scaled by Kc to update the interpolation parameter st as

st+1 = st + Kc∆pdes
>uc(st)

. (21)

The constrained pose Xc is then computed by evaluating c(st+1)
.
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Figure 6. Guidance virtual fixture.

2.3.2. Task-Priority Inverse Kinematics

The RCM constraint can be defined as a higher priority task in a hierarchical null-space
projection method [38]. Based on this, Azimian et al. [39] proposed an RCM implemen-
tation by projecting the end-effector tracking task over the null space of the RCM task.
Sandoval et al. [40] proposed a similar RCM implementation for torque-controlled redun-
dant manipulator, but based on the RCM distance to a trocar that does not depend on the
insertion velocity. We define the RCM constraint problem also using a prioritized Jacobian
method but defining the RCM position as the nostril projection onto the forceps shaft.

Figure 7 depicts the variables used in the RCM Jacobian computation. The unit
vector p̂s = ps

‖ps‖ with ps = pj8 − pj7 represents the direction of the forceps shaft and
pr = pnostril − pj7 is the vector between the nostril and the base of the forceps shaft. We can
compute the RCM position by

prcm = pj7 + p>r p̂s p̂s. (22)

Then we can differentiate prcm:

∂prcm

∂q
= Jj7 + p̂s

∂p>r p̂s

∂q
+ p>r p̂s

∂ p̂s

∂q
. (23)

By matrix differentiation, we obtain the RCM Jacobian Jrcm as

Jrcm =
∂prcm

∂q
=
(

I− p̂s p̂s
>
)

Jj7 +
(

p̂s p>r + p>r p̂sI
)∂ p̂s

∂q
(24)

where
∂ p̂s

∂q
=

1
‖ps‖

(
I− p̂s p̂s

>
)(

Jj8 − Jj7
)
. (25)

We assume the constrained motion planning is initialized with the forceps shaft over
the nostril, so that the RCM Jacobian velocity must be zero ṗrcm = 0. By projecting the
end-effector tracking task over the null space of the RCM task we can compute the joint
velocity command as

q̇ =
(

I− J†
rcm Jrcm

)
J†
ee ėee (26)
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Figure 7. Remote center of motion characterization.

2.3.3. Nonlinear Optimization Inverse Kinematics

The previous prioritized Jacobian-based IK can be susceptible to convergence failure
when close to joint limits. Beeson et al. [41] proposed a concurrent inverse kinematics
library for generic inverse kinematic (TRAC-IK) that addresses the convergence problem
by simultaneously executing a nonlinear optimization based IK solver. In a similar way,
we propose a constrained nonlinear optimization problem to be executed simultaneously
with our previous task-priority IK solver.

We define the constrained nonlinear optimization problem as

arg min
∆q

β1e>p ep + β2e>o eo + β3e>rcmercm + β4∆q>∆q

s.t. q ≤ q + ∆q ≤ q̄
(27)

where βn are the positive coefficients, ep(∆q) = pdes − p(∆q) is the Cartesian position end-

effector error, eo(∆q) = log
(

RdesR>(∆q)

)∨
is the orientation error expressed using the logarith-

mic mapping, and ercm(∆q) = pnostril − prcm(∆q) is the RCM position error. By increasing the
value of β3 over the other coefficients, we can prioritize the minimization of an RCM error.

3. Experiments and Discussion
3.1. Implementation Details

The proposed methodology is implemented on a 2.4 GHz Core i7 CONTEC computer
running Linux (Ubuntu 16.04, Canonical) with real-time patches (RT-PREEMPT) and the
Robot Operating System (ROS) framework on top of it. The control loop runs at a rate
of 125 Hz in synchronous mode with the industrial robot arm controller. In each cycle,
the current robot pose is updated, and then the target robot pose is computed and sent to
the robot arm and the articulated forceps controllers [4]. The rigid body kinematic is imple-
mented by using the template library Pinocchio [42], and the optimization framework is
built on CasADi [43], which allows C-code generation to speed up the optimization process.
The quadratic programming solver used for the stitching needle trajectory generation is
the Gurobi Optimizer [44]. For the nonlinear optimization based IK, we use the IPOPT
solver [45].
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3.2. Simulation Environment

To evaluate the performance of our proposed scheme, we initially validate the trajec-
tory generation and constrained motion control in a simulation environment developed
on CoppeliaSim EDU V4.1 [46], in which we model the nostril constraint and simulate
the robot kinematics. Figure 8a shows the simulation environment created for system
implementation. In Figure 8b, the desired entry point and exit points are represented with
a blue and red sphere, respectively, with a 1.5 mm tolerance radius. An initial needle
trajectory is provided as half-turn trajectory that follows the natural needle curvature and
is shown as a red curve. The blue curve corresponds to the optimal trajectory obtained
from the sequential convex optimization, and the green curve corresponds to the forceps
tip reference trajectory. In simulation conditions, the stitching needle trajectory generation
takes approximately 500 ms and the maximum RCM deviation is 1 mm.

Figure 8. (a) CoppeliaSim simulation environment. (b) Trajectory generated in simulation.

3.3. Stitching Experiments

We conduct a stitching experiment to validate the performance our system in a physi-
cally realistic environment, and compare three stitching modes:

• Manual: by using conventional forceps for endoscopic endonasal surgery.
• Robot-assisted: by using the proposed method. The system generates the optimal

trajectory and constrains the needle pose.
• Autonomous: the robot starts in a fixed initial pose and executes the stitching task

without human assistance.

The experimental setup is presented in Figure 9. It comprises a 3D printed nose model
and an acrylic platform for the stitching testbed. A six-axis force/torque sensor (Nano17,
ATI Industrial Automation, North Carolina, USA) is placed behind the elastic tissue to
measure the compression and shear forces applied to the tissue during the stitching task
(see Figure 9b). We assumed the compression forces to be perpendicular to the tissue
surface and aligned to the z-axis of the force sensor, whereas the shear forces are tangential
to the tissue surface. For the force analysis, we use the root sum square (RSS) of the resulting
forces given by the square root of the sum of squares of the forces in each direction measured
by the force sensor (Equation (28)). The forces are sampled at a frequency of 1 kHz and the
testbed’s weight related forces are subtracted.

RSS Force =
√

f 2
x + f 2

y + f 2
z (28)

A magnetic motion capture system (Aurora, Northern Digital Inc., Ontario, Canada)
is used to record the motions of the surgical instrument for both the manual and robot
operation. A rigid endoscope (30◦, 2.7 mm diameter) is used for visualization and targeting
the area of interest.
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The participants were asked to perform a stitching task. The task consisted of grasping
a 6-0 surgical needle and puncture an elastic tissue, on which the desired entry/exit
point were marked (see Figure 9d). In the manual stitching mode, the participants were
asked to follow a three-step procedure: (1) puncture the right tissue from the marked
point, (2) penetrate the right tissue until the needle tip is placed under the left tissue,
and (3) puncture the left tissue from underneath. In the robot-assisted stitching mode,
the participants were asked to position the needle in a suitable initial position and command
the needle insertion speed (0–0.5 mm/s) and direction through the user interface, while
the robot constrained the needle pose along the reference trajectory and kept the RCM
constraints. In both cases, assistance from the surgical tool on the left hand was also
allowed to tighten the left tissue, but no needle manipulation assistance was allowed.
The autonomous stitching mode was performed without human assistance, and the needle
insertion speed was set at the maximum allowed (0.5 mm/s). In all the stitching modes,
the trial starts with the needle grasped by the surgical tool and placed about 2 cm above
the center frame of the tissue.

Figure 9. (a) Experiment setup. (b) Force sensor placed behind the stitching testbed. (c) 3D printed nose model. (d) Stitch-
ing testbed.

Seven subjects between the ages of 25 and 35 who had no previous surgical training
took part in this experiment. Before the experiment, each participant was instructed
about the procedure and practiced for up to 10 min until they were familiarized with the
operation. All subjects were given informed consent before they participated in the study.
This study was approved by the Ethical Research Committee of Nagoya University.

We evaluate participants’ performance using the following metrics:

• Task completion time (s): the total time in which participants performed the task.

Completion Time := tend − tstart (29)

• Success ratio (%): the percentage of succeed stitching from the total number of attempts.

Success ratio :=
number of success insertions

number of attempts
(30)
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• Entry point error (mm): the Euclidean distance between the desired entry point and
the actual entry point.

Entry point error := ‖pentrydes
− pentryact

‖ (31)

• Exit point error (mm): the Euclidean distance between the desired exit point and the
actual exit point.

Exit point error := ‖pexitdes − pexitact‖ (32)

• Maximum RCM error (mm): the maximum Euclidean distance between the RCM
position and the center of the nostril.

Max. RCM error := max(‖prcm − pnostril‖) (33)

• Maximum RSS force (N): the maximum RSS force applied on the tissue.

Maximum RSS force := max(| f |) (34)

• Distribution of RSS force samples: graphical representation of the number of RSS
force measurements within equally distributed force intervals with respect to the total
number of RSS force samples obtained during the stitching task.

Figure 10 summarizes the results obtained for the three stitching modes (manual,
robot-assisted, and autonomous). The number of trials and success ratio per subject are
presented in Tables 2–4. Note that the task completion time, entry point error, and exit point
error are computed only for the successful trials. Figure 10a depicts the task completion
time. The reliability of using the robotic system is evident as the standard deviation is
greatly reduced compared with the manual operation. The median time for the robot-
assisted is about 25% longer than that of the autonomous mode. However, there was
no significant improvement with respect to the manual operation. Figure 10b shows the
success ratio of the stitching task, where the robot-assisted mode achieved the success ratio
of 65.3%, much higher than that of the autonomous mode (43.8%) and the manual operation
(25.4%). Needle–tissue interaction forces arising at the needle tip may induce undesired
changes in the needle orientation, which could result in a failed attempt to penetrate the
tissue. Unlike the autonomous mode where the speed is fixed, the robot-assisted mode
allows the user to freely control the insertion speed and reduce the effect of such interaction
forces. Moreover, in the robot-assisted mode, the user can also retract the needle along the
optimal trajectory if proper penetration is not achieved (e.g., because of tissue deformation).
The needle can be pulled back and reinserted without the need of recomputing the optimal
trajectory as long as the needle orientation with respect to the forceps tip has not changed.
As a consequence, the robot-assisted mode can require additional time to complete the task
compared with the autonomous method. Therefore, a trade-off exists between assuring
proper tissue penetration and the stitching completion time. Figure 10c,d depicts the
entry/exit point error. The autonomous mode showed the smaller entry point error among
the three cases, but no improvement in exit point error can be observed when using the
robotic system. This is expected, as the stitching trajectory generation algorithm will try
to keep the changes in the curvature bounded to facilitate tissue penetration and reduce
tissue deformation, which can produce a larger deviation from the desired exit point.
By increasing the allowed range of curvature changes, the exit error is expected to be
reduced, but higher forces might be generated.
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Figure 10. Experimental results of the stitching task. (a) Task completion time of successful trials.
(b) Success ratio. (c,d) Distance between the desired entry/exit point and the actual entry/exit point.

Table 2. Success ratio for manual operation.

Subject # of Trials # of Success Success Ratio (%)

1 12 4 33.3
2 15 4 26.7
3 12 4 33.3
4 8 2 25.0
5 15 2 13.3
6 12 1 8.3
7 8 3 37.5

Total 82 20
Mean Success Ratio (%) 25.4

Table 3. Success ratio for robot-assisted operation.

Subject # of Trials # of Success Success Ratio (%)

1 12 5 41.7
2 10 5 50.0
3 8 5 62.5
4 8 5 62.5
5 7 4 57.1
6 6 6 100.0
7 6 5 83.3

Total 57 35
Mean Success Ratio (%) 65.3
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Table 4. Success ratio for autonomous operation.

# of Trials # of Success Success Ratio (%)

16 7 43.8

We evaluate the constrained motion planning performance by the maximum RCM
error defined as the minimum distance between the nostril and forceps shaft. The RCM
constraint implemented for the robotic operation (including robot-assisted and autonomous
modes) was able to keep the maximum RCM error below 4.2 mm as shown in Figure 11a.
Figure 11b illustrates an example of the forceps displacement from the center of the nostril
during task execution by one of the participants. The blue line represents the position of
the forceps shaft intersection with the nostril plane for the manual operation, and the red
line represents the intersection trajectory obtained when using the robotic system.

Manual Robot
0

2

4

6

8

10

12

Maximum RCM error

E
rr

o
r 

(m
m

)

RCM error

0 5 10

Manual

Robot

Figure 11. Comparison of the constrained motion planning performance. (a) Maximum RCM error
for manual and robotic operation (including robot-assisted and autonomous modes). (b) An example
of the trajectories followed by the forceps shaft intersection with the nostril plane during the task
execution by one participant.

We also measured the forces applied during the stitching task to evaluate the possibil-
ity of potential tissue trauma. Table 5 summarizes the maximum RSS force applied. The use
of the robotic system demonstrates a reduction of approximately 70% of the maximum
force compared with manual operation. During the manual operation, frequent undesired
collision of the forceps on the tissue occurred because of the lack of the depth information
by the 2D endoscopic visualization. Figure 12 shows the distribution of the RSS force
samples contained within the force intervals of 0.005 N. The larger the number of bins
close to 0 N, the smaller amount of continuous force applied to the tissue (less potential
damage). With the use of the robot system (robot-assisted and autonomous modes), ap-
proximately 90% of the RSS force samples are within the range of [0, 0.05] N, while for
the manual operation, the 90% of the samples are found within the range of [0, 0.15] N.
The use of the robotic system reduced effectively the range of forces applied over the tissue
in approximately 66%.
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Figure 12. Distribution of RSS force samples. In robot operation (robot-assisted and autonomous
modes), approximately 90% of the RSS force samples are within the range of [0, 0.05] N. For the
manual operation, the 90% of the samples are within the range of [0, 0.15] N.

Table 5. Maximum RSS force measured during the stitching task.

Mean (N) SD (N)

Manual operation 0.349 0.178
Robotic system 0.096 0.046

Figure 13a depicts the needle positioned into the stitching workspace. An example
of the complete stitching sequence achieved with the robot-assisted mode is shown in
Figure 13b–g, with a total duration of 58 s. The user initially placed the needle close to
the entry point (t = 0, Figure 13b) and activates the robot-assisted stitching sequence.
An optimal trajectory is generated with an initial needle tip pose. The robot reorients the
needle (Figure 13c) and approaches to the entry point located over the tissue (Figure 13d).
Under the user control, the needle penetrates the right tissue (Figure 13e), commands the
needle under the tissue toward the exit point (Figure 13f), and finally penetrates the left
tissue from underneath (Figure 13g).
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Figure 13. (a) Needle grasped by the 4-DOF forceps before starting the stitching task. (b–g) Robot-
assisted stitching task sequence. (b) Initial needle positioning about 2cm over the tissue. (c) Needle
reorientation. (d) Needle approach to the tissue. (e) Right tissue penetration. (f) Needle insertion.
(g) Left tissue penetration from underneath.

4. Conclusions

In this paper, we have proposed an optimization-based trajectory generation method
for robot-assisted stitching based on a sequential convex optimization to find the optimal
needle trajectory and a dual concurrent IK solver to constrain the surgical tool around the
nostril. The trajectory generation algorithm was capable of generating optimal trajectory
subject to the suturing requirements. The surgeon can regenerate the trajectory online
through the user interface. Integrating two constrained IK methods allowed us to achieve
the convergence of the solution and meet time constraints. We compared the performance
of our system with a manual stitching operation and an autonomous operation. The results
showed a noticeable improvement in the stitching success ratio and reduction of the force
interaction with the tissue. In the robot-assisted mode, the surgeon can control the initial
positioning and insertion speed, which avoids potential rotations in the needle and ensure
a proper initial tissue penetration. However, the task completion time did not significantly
improve compared with the manual mode. Although the robot task completion time could
be reduced by increasing the maximum speed allowed for the needle, it might reduce the
insertion success. In addition, the interaction force distribution showed that the use of
robot reduced about 70% of the forces showed in a manual stitching task. This is important
to avoid any potential tissue trauma. The results also showed that the proposed system
could safely constrain the motion of the articulated multi-DOF forceps for an endoscopic
endonasal surgical stitching. Future work will focus on the use of visual feedback for
dynamic generation of virtual constraints and extend the proposed method into other
surgical tasks such as knot tying.
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