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Abstract: We investigate whether standard evolutionary robotics methods can be extended to support
the evolution of multiple behaviors by forcing the retention of variations that are adaptive with
respect to all required behaviors. This is realized by selecting the individuals located in the first Pareto
fronts of the multidimensional fitness space in the case of a standard evolutionary algorithms and by
computing and using multiple gradients of the expected fitness in the case of a modern evolutionary
strategies that move the population in the direction of the gradient of the fitness. The results collected
on two extended versions of state-of-the-art benchmarking problems indicate that the latter method
permits to evolve robots capable of producing the required multiple behaviors in the majority of the
replications and produces significantly better results than all the other methods considered.

Keywords: evolutionary robotics; multiple behaviors; multi-objective optimization

1. Introduction

Evolutionary robotics [1,2] is an established technique for synthesizing robots’ behav-
iors that are difficult to derive analytically. The large majority of works carried in this area
to date, however, focused on development of a single behavior only.

The capacity to exhibit multiple behaviors constitutes a key aspect of animal behavior
and can play a similar important role for autonomous robots. Indeed, all organisms display
a broad repertoire of behaviors. More precisely, in most of the cases the behavior of natural
organism is organized in functionally specialized subunits governed by switch and decision
points [3].

In this paper we investigate how standard evolutionary robotics methods can be
extended to support the evolution of multiple behaviors.

The evolution of multiple behavior presents difficulties and opportunities. The diffi-
culties originate from the fact that the processes that lead to the development of multiple
behaviors can interfere among themselves. More specifically, the variations that are adap-
tive with respect to one behavior can be counter-adaptive with respect to another behavior.
Consequentially, the retention of variations that are adaptive with respect to one behavior
can reduce the ability to perform another required behavior. The opportunities originate
from the fact that traits supporting the production of a given behavior can be reused to
produce another required behavior [4] and consequently can facilitate the development of
the latter behavior.

A possible way to reduce the problem caused by interferences consists in reducing
the level of pleiotropy by fostering modular solutions. The term pleiotropy refers to traits
that are responsible for multiple functions and or multiple behaviors. The hypothesis
behind this approach is that the level of pleiotropy can be reduced by dividing the neural
network controllers in modules responsible for the production of different behaviors since
the variation affecting a module will tend to alter only the corresponding behavior [5–8].
Clearly, however, the reduction of pleiotropy also reduces the opportunities that can be
gained from the possibility to re-use traits evolved for one behavior for the production of
another required behavior [4]. In addition, neural modularity does not necessarily reduce
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pleiotropy (see for example Calabretta et al. [5]). This can be explained by considering that
the behavior of the robot is not simply a product of the brain of the robot. The behavior of
a robot is a dynamical process that originate from the continuous interaction between the
robot and the environment mediated by the characteristics of the brain and of the body
of the robot. Consequently, there is not necessarily a one-to-one correspondence between
neural modules and functional sub-units of the robot’s behavior.

Several other studies investigate the role of modularity in classification and regression
problems [9–11] and in the context of genetic regulatory networks [12,13]. However,
the results obtained in these domains do not necessarily generalize to the evolution of
embodied agents for the reasons described above.

A second possible strategy that can be used to reduce the problem caused by the
interferences consists in using an incremental approach in which the robot is first encour-
aged to develop a first behavior and only later to develop additional behaviors, one at a
time [14–16]. Eventually, the traits supporting the production of the first behaviors can be
frozen during the development of successive behaviors, to avoid interferences. However,
also this strategy reduces the opportunity for traits reuse. Indeed, the traits supporting the
production of behaviors acquired during later stages cannot be reused for the production
of behavior acquired earlier. Another weakness of this strategy is that it requires the
intervention of the experimenter for the design and implementation of the incremental
training process.

In this paper we explore a third strategy that consists in fostering the retention of
variations that are adaptive with respect to all relevant behaviors. We evaluate this strategy
in the context of standard evolutionary algorithms, that operate on the basis of selective
reproduction and variation, and in the context of modern evolutionary strategies [17].
The latter algorithms operate by estimating the gradient of the expected fitness on the
basis of the fitness collected and the variations received by individuals and by moving
the population in the direction of the gradient. In the former case we foster the selection
of variations adaptive to all behaviors by treating the performance on each behavior as
separate objectives optimized through a multi-objective optimization algorithm [18,19]. In
the latter case, we foster the selection of variations adaptive to all behaviors by calculating
and using multi-objective fitness gradients.

The obtained results demonstrate how the usage of a modern evolutionary strategy
combined with multi-objectives gradients permits to achieve very good results on state-of-
the-art benchmark problems.

The efficacy of multi-objective optimization algorithms was already investigated in evolu-
tionary robotics experiments involving fitness function with multiple components [20,21]. For
example, in the case of robots evolved for the ability to navigate in an environment that are
rewarded for: (i) the ability to move as fast as possible, (ii) the ability to move as straight as
possible, and (iii) the ability to keep the activation of their infrared sensors as low as possi-
ble. Rather than computing the fitness on the basis of the sum of these three components,
the components can be treated as separate objectives optimized through a multi-objective
algorithm. Overall, these studies demonstrate that the usage of multi-objective optimization
permits to evolve a more varied set of behaviors and reduce the probability to converge on
local minima, in the case of experiments with multicomponent fitness functions. In the case of
the first method proposed in this paper, instead, we applied a multi-objective optimization
algorithm to the evolution of robots that should produce multiple behaviors. In our case, the
objectives to be optimized correspond to the alternative fitness functions that are used in the
contexts that require the exhibition of alternative behaviors.

The usage of evolutionary strategies that operate on the basis of multiple gradients
was also investigated in previous studies [20,21]. This technique has been used to combine
a true gradient, that is expensive to compute, with a surrogate gradient that constitute an
approximation of the true gradient but that is easier to compute [21] or to combine the
current gradient with historical estimated gradients [20]. In the case of the second method
proposed in this paper, instead, we apply this method to evolution of multiple behaviors.
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Consequently, we compute and use the gradients calculated with respect to the behaviors
to be produced.

2. Method

To investigate the evolution of multiple behaviors we considered simulated neuro-
robots evolved for the ability to produce two different behaviors in two different envi-
ronmental conditions. We assume that the environmental conditions that indicate the
opportunity to exhibit the first or the second behaviors are well differentiated. This is real-
ized by including in the observation vector an “affordance” pattern that assume different
values during episodes in which the robot should elicit the first or the second behavior. In
the following sections we describe the adaptive problems, the neural network of the robots,
and the evolutionary algorithms.

2.1. The Adaptive Problems

The problems chosen are an extended version of Pybullet locomotor problems [22].
These environments represent a free and more realistic implementation of the MuJoCo
locomotor problems designed by Todorov, Erez and Tassa [23] and constitute a widely
used benchmark for continuous control domains. We choose these problems since they are
challenging and well-studied. The complexity of the problems is important, since the level
of interference between the behaviors correlate with the complexity of the control rules
that support the production of the required behaviors. Previous works involving situated
agents that studied the evolution of multiple behaviors considered the following problems:
(i) pill and ghost eating in a pac-man game [6], (ii) reaching a target position with a 2D
three-segments arm [8,14] (iii) an inverted pendulum, a cart-pole balancing, and a single
legged waling task [4], (iv) walking and navigation in simple multi-segments robots [15],
(v) wheeled robot vacuum-cleaning an indoor environment [7], and (vi) wheeled robots
provided with a 2 DOFs gripper able to find, pick-up and release cylinders [5].

The locomotors involve simulated robots composed by several cylindrical body parts
connected through actuated hinge joints that can be trained for the ability to jump or walk
toward a target destination as fast as possible. In particular, we selected the Hopper and
the Ant problems. The Hopper robot has a single leg formed by a femur, a tibia and a foot
that can jump (Figure 1, left). The Ant robot has a spherical torso and four evenly spaced
legs formed by a femur and a tibia (Figure 1, right).
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Figure 1. The Hopper (left) and the Ant (right). Figure 1. The Hopper (left) and the Ant (right).

In our extended version, the hopper is trained for jumping toward the target as fast as
possible or for jumping vertically as high as possible while remaining in the same position.
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The Ant is trained for the ability to walk 45 degrees left or right with respect to its frontal
orientation.

In the case of the Hopper, this is realized by using the following fitness functions:

f itness1+ =
dt − dt−1

∆t
(1)

f itness2+ = 2
∣∣∣∣ht − ht−1

∆t

∣∣∣∣− 0.5
∣∣∣∣dt − dt−1

∆t

∣∣∣∣ (2)

where fitness1 and fitness2 are the fitness functions used during the evaluation episode
in which the agent should exhibit the first or the second behavior, respectively, d is the
distance with respect to the target, h is the height of the torso with respect to the ground,
and t is time.

In the case of Ant, we use the following fitness functions:

f itness1+ = ∆p cos
(

α− π

4

)
+ 0.01− (gl × 0.1)−

(
a2 × 0.01

)
(3)

f itness2+ = ∆p cos
(

α +
π

4

)
+ 0.01− (gl × 0.1)−

(
a2 × 0.01

)
(4)

where fitness1 and fitness2 are the fitness functions used during the evaluation episode in
which the agent should exhibit the first or the second behavior, ∆p is the Euclidean distance
between the position of the torso on the plane at time t and t-1, α is the angular offset
between the frontal orientation of the Ant and the angle of movement during the current
step, gl is the number of joint currently located on a limit, and a is the action vector (i.e., the
activation of the motor neurons, see the next section). The bonus of 0.01 and the costs for
the number of joints at their limits and for the square of the output torque are secondary
fitness components that facilitates the evolution of walking behaviors (see Pagliuca, Milano
and Nolfi [17]).

2.2. The Neural Network

The controller of the robot is constituted by a feedforward neural network with 17
and 30 sensory neurons (in the case of the Hopper and the Ant, respectively), 50 internal
neurons, and 3 and 8 motor neurons (in the case of the Hopper and the Ant, respectively).
The sensory neurons encode the orientation and the velocity of the robot, the relative
orientation of the target destination, the position and the velocity of the joints, the contact
sensors situated on the foot of the Hopper and on the terminal part of the four legs of
the Ant, and the affordance vector. The affordance vector is set to [0.0 0.5] and to [0.5 0.0]
during evaluation episodes in which the robots are rewarded with the first or the second
fitness function illustrated above, respectively. The motor neurons encode the intensity
and the direction of the torque applied by motors controlling the 3 and 8 actuated joints of
the Hopper and of the Ant, respectively.

The internal and output neurons are updated by using tanh and linear activation
functions, respectively. The state of the motor neurons is perturbed each step with the
addition of Gaussian noise with mean 0.0 and standard deviation 0.01. The connection
weights of the neural networks are encoded in free parameters and evolved. The number of
connection weights is 1053 and 1958, in the case of the Hopper and of the Ant, respectively.

2.3. The Evolutionary Algorithms

We evolved the agents by using two state-of-the-art methods selected among standard
evolutionary algorithms, that operate on the basis of selective reproduction and variation,
and modern evolutionary algorithms, that estimated the gradient of the expected fitness
on the basis of the fitness collected and the variations received by individuals and move
the population in the direction of the gradient. Moreover, we designed and tested a variant
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of each algorithm designed to enable the retention of variations producing progress with
respect to all target behaviors.

The first method is the steady state algorithm (SSA) described in Pagliuca, Milano and
Nolfi [24], see the pseudocode below (left). The procedure starts by creating a population
of vectors that encode the parameters of a corresponding population of neural networks
(line 1). Then, for a certain number of generations, the algorithm evaluates the fitness of the
individuals forming the population (line 3), ranks the individual of the population on the
basis of the average fitness obtained during two episodes evaluated with the two fitness
functions (line 5), and replaces the parameters of the worse half individuals with varied
copies of the best half individuals (lines 7–9). In 80% of the cases, the parameters of the new
individuals are generated by crossing over each best individual with a second individuals
selected randomly among the best half. The crossover is realized by cutting the vectors
of parameters in two randomly selected points. In the remaining 20% of the cases, the
parameters of the new individual are simply a copy of the parameter of the corresponding
best individuals. (line 7). The parameters are then varied by adding a random Gaussian
vector with mean 0.0 and variance 0.02 (line 8).

The variant Algorithm 1 designed for the evolution of multiple behaviors is the multi-
objective steady state algorithm (MO-SSA), see the pseudocode below (right). In this case
the ranking is made by ranking the individuals on the basis of the Pareto fronts to which
they belong. The Pareto fronts are computed on the basis of the fitness obtained during the
production of behavior 1 and 2 (line 5). The MO-SSS algorithm thus retain in the population
the individuals that achieve the best performance with respect to behavior 1 or 2. This
implies that the best individuals with respect to one behavior are retained even if they
perform very poorly on the other behavior.

Algorithm 1: designed for the evolution of multiple behaviors is the multi-objective steady state algorithm (MO-SSA).

SSA MO-SSA

σ = 0.02: mutation variance σ = 0.02: mutation variance
µ = 0.8: crossover rate µ = 0.8: crossover rate
λ = 40: population size λ = 40: population size
θ1−λ: population θ1−λ: population
fn(): fitness function for behavior n fn(): fitness function for behavior n

1 initialize θλ : 1 initialize θλ :
2 for g = 1, 2, . . . do 2 for g = 1, 2, . . . do
3 for j = 1, 2, . . . λ do 3 for j = 1, 2, . . . λ do
4 evaluate score: si ← f12( θi ) 4 evaluate score: si ← f12( θi )
5 rank individuals by average fitness: u = ranks(s) 5 rank individuals by pareto fronts: u = ranks(s)
6 for l = 1, 2, . . . λ

2 do 6 for l = 1, 2, . . . λ
2 do

7 Φ = crossover( θu[l], θu[rand]) or Φ= θu[l] 7 Φ = crossover( θu[l], θu[rand]) or Φ= θu[l]
8 sample mutation vector: ε ~ N(0, I) ∗ σ 8 sample mutation vector: ε ~ N(0, I) ∗ σ
9 θu[ λ2 +l] = Φ + ε 9 θu[ λ2 +l] = Φ + ε

The second method is the natural evolutionary strategy method (ES) proposed by
Salimans et al. [25], see the pseudocode below (left). The algorithm evolves a distribution
over policy parameters centered on a single parent θ composed of λ2 individuals. At each
generation, the algorithm generates the gaussian vectors ε that are used to perturb the
parameters (line 4), and evaluate the offspring (lines 4, 5). To improve the accuracy of the
fitness estimation the algorithm generates mirrored samples [26], i.e., generates λ couples
of offspring receiving opposite perturbations (lines 4, 5). The offspring are evaluated
for two episodes for the ability to produce the two different behaviors (lines 5, 6). The
average fitness values obtained during the two episodes are then ranked and normalized
in the range [−0.5, 0.5] (line 7). This normalization makes the algorithm invariant to the
distribution of fitness values and reduce the effect of outliers. The estimated gradient g is
then computed by summing the dot product of the samples ε and of the normalized fitness
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values (line 8). Finally, the gradient is used to update the parameters of the parent through
the Adam [27] stochastic optimizer (line 9).

The variant Algorithm 2 designed for the evolution of multiple behaviors is the multi-
objective evolutionary strategy (MO-ES), see the pseudocode below (right). In this case
the algorithm compute two gradients (lines 3 and 9) by first evaluating the offspring for
the ability to produce the behavior 1 and then behavior 2 (lines 6–7). The parameters of
the parent are then updated by using the sum of the two gradients (line 10). The MO-ES
algorithm thus moves the population in the directions that maximize the performance on
both behavior 1 and 2, independently from the relative gain in performance that is obtained
with respect to each behavior.

Algorithm 2: The variant designed for the evolution of multiple behaviors is the multi-objective evolutionary strategy
(MO-ES).

ES MO-ES

σ = 0.02: mutation variance σ = 0.02: mutation variance
λ = 20: half population size (total population size = 40) λ = 20: half population size (total population size = 40)
θ: policy parameters θ: policy parameters
fn(): fitness function for behavior n fn(): fitness function for behavior n
optimizer = Adam optimizer = Adam

1 initialize θ0 1 initialize θ0
2 for g = 1, 2, . . . do 2 for g = 1, 2, . . . do

3 for b = 1, 2
3 for i = 1, 2, . . . λ do 4 for i = 1, 2, . . . λ do
4 sample noise vector: εi ~ N(0, I) 5 sample noise vector: εi ~ N(0, I)
5 evaluate score: s+i ← f12(θt−1 + σ ∗ εi) 6 evaluate score: s+i ← fb(θt−1 + σ ∗ εi)
6 evaluate score: s−i ← f12(θt−1 − σ ∗ εi) 7 evaluate score: s−i ← fb(θt−1 − σ ∗ εi)
7 compute normalized ranks: u = ranks(s), ui ∈ [−0.5,0.5] 8 compute normalized ranks: u = ranks(s), ui ∈ [−0.5,0.5]

8 estimate gradient: gt ← 1
λ

λ
∑

i=1
(ui ∗ εi) 9 estimate gradient: gb ← 1

λ

λ
∑

i=1
(ui ∗ εi)

9 θg = θg−1 + optimizer(g) 10 θg = θg−1 + optimizer(g1 + g2)

The evolutionary process is continued until total of 107 evaluation steps are performed.
The episodes last up to 500 steps and are terminated prematurely if the agents fall down.
The initial posture of the agents is varied randomly at the beginning of each evaluation
episode. The evolutionary process of each experimental condition is replicated 16 times.

The state of the actuators is perturbed with the addition of stochastic random noise
with standard deviation 0.01 and average 0.0. The addition of noise makes the simulation
more realistic and facilitates the transfer of solutions evolved in simulation in the real
environment. The new methods proposed in this article do not alter the way in which the
robots are evaluated with respect to standard method. Consequently, they do not alter the
chance that the results obtained in simulation can be transferred in the real environment.

3. Results

Figures 2 and 3 display the average performance of the best agents evolved with the
SSA and MO-SSA algorithms in the case of the Hopper and Ant problems, respectively
(see the left side of the Figures). The video displaying the representative replications of the
experiments are available online (see Section 5). As can be seen, the performance of the
evolved robots is relatively good in the case of the Hopper (Figure 2) but rather poor in the
case of the Ant (Figure 3). The performance obtained with the standard and multi-objective
version of the algorithms, does not differ statistically, both in the case of the Hopper and in
the case of the Ant (Mann–Whitney U test, p-value > 0.05).

To measure the fraction of agents capable to achieve sufficiently good performance
during the exhibition of both behavior we post-evaluated the best evolved agents for
5 episodes on each behavior and we counted the fraction of agents that exceed a minimum
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threshold on both behaviors. The evolved Hopper robots exceed a minimum threshold
of 700 in 5/16 and 2/16 replications in the case of the SSA and MO-SSA algorithms,
respectively (see Table 1). The evolved Ant robots exceed a minimum threshold of 400 in
0/16 and 0/16 replications in the case of the SSA and MO-SSA algorithms, respectively
(see Table 2).
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Figure 2. Performance of the best evolved agents obtained on the Hopper problem in the
experiments performed with the SSA, MO-SSA, ES, and MO-ES algorithms. The blue,
green, and yellow boxes show the fitness on the first behavior, on the second behavior,
and on the two behaviors, respectively, obtained during a post-evaluation test in which
the agents were evaluated for 5 episodes on each behavior. Data average over evaluation
episodes. Boxes represent the inter-quartile range of the data and horizontal lines inside the
boxes mark the median values. The whiskers extend to the most extreme data points within
1.5 times the inter-quartile range from the box. “o” indicates the outliers. See also Table 1.

Robotics 2021, 10, x FOR PEER REVIEW 8 of 15 
 

 

 
Figure 3. Performance of the best evolved agents obtained on the Ant problem in the experiments 
performed with the SSA, MO-SSA, ES and MO-ES algorithms. The blue, green, and yellow boxes 
show the fitness on the first behavior, on the second behavior, and on the two behaviors obtained 
during a post-evaluation test in which the robots were evaluated for 5 episodes on each behavior. 
Data average over evaluation episodes. The whiskers extend to the most extreme data points 
within 1.5 times the inter-quartile range from the box. “o” indicates the outliers. See also Table 2. 

The variation of performance during the evolutionary process is shown in Figures 4 
and 5 (top Figures). 

 
Figure 4. Performance of the best evolved agents during the evolutionary process in the case of the 
Hopper problem. Results obtained with the SSA (top-left), MO-SSA (top-right), ES (bottom-left) 

Figure 3. Performance of the best evolved agents obtained on the Ant problem in the
experiments performed with the SSA, MO-SSA, ES and MO-ES algorithms. The blue,
green, and yellow boxes show the fitness on the first behavior, on the second behavior,
and on the two behaviors obtained during a post-evaluation test in which the robots were
evaluated for 5 episodes on each behavior. Data average over evaluation episodes. The
whiskers extend to the most extreme data points within 1.5 times the inter-quartile range
from the box. “o” indicates the outliers. See also Table 2.
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The variation of performance during the evolutionary process is shown in Figures 4
and 5 (top Figures).
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Figure 4. Performance of the best evolved agents during the evolutionary process in the
case of the Hopper problem. Results obtained with the SSA (top-left), MO-SSA (top-right),
ES (bottom-left) and MO-ES (bottom right) algorithms. Average results of the best agents
of successive generations post-evaluated for four episodes for the ability to produce the
two behaviors. Shadows indicate the standard deviation.
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Figure 5. Performance of the best evolved agents during the evolutionary process in the
case of the Ant problem. Results obtained with the SSA (top-left), MO-SSA (top-right), ES
(bottom-left) and MO-ES (bottom right) algorithms. Average results of the best agents of
successive generations post-evaluated for 4 episodes for the ability to produce the two
behaviors. Shadows indicate the standard deviation.

The videos displaying a representative replication of the experiments are available
online (see Section 5). As can be seen, the performance of the evolved robots is quite good
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both in the case of the Hopper (Figure 2) and the Ant (Figure 3), and is significantly better
than the performance obtained with the SSA and MO-SSA algorithms (Mann-Whitney U
test with Bonferrori correction, p-value < 0.05). The MO-ES algorithm is significantly better
than the ES method (Mann-Whitney U test, p-value < 0.05).

The evolved Hopper robots exceed a minimum threshold of 700 in 10/16 and 11/16
replications in the case of the ES and MO-ES algorithms, respectively (see Table 1). The
evolved Ant robots exceed a minimum threshold of 400 in 1/16 and 10/16 replications in
the case of the ES and MO-ES algorithms, respectively (see Table 2).

The variation of performance during the evolutionary process is shown in Figures 4 and 5
(bottom side). As can be seen, in the case of the Hopper the MO-ES algorithm outperform
the ES algorithm from the beginning of the evolutionary process. In the case of the Ant,
instead, the MO-ES algorithm outperform the ES algorithm during in the second half of
the evolutionary process.

Table 1. Performance of the best evolved agents obtained on the Hopper problem in the experiments
performed with the SSA, MO-SSA, ES and MO-ES algorithms obtained in each replication of the
experiment. The columns show the data obtained in different replications. The top, central and
bottom tables show the average performance during 5 episodes in which the robot should perform
the first behavior, the average performance during 5 episodes in which the robot should perform
the second behavior, and the average performance during 10 episodes in which the robot should
perform the two behaviors. The numbers in bold indicate the replications in which the agents exceed
the threshold of 700 on both behaviors.

Behavior 1

SSA MO-SSA ES MO-ES

S1 1096.72 412.44 1069.40 892.48

S2 737.69 501.08 580.50 701.61

S3 545.12 646.52 1049.04 824.20

S4 421.28 797.60 622.18 871.90

S5 678.52 997.87 935.51 754.43

S6 577.79 640.83 851.71 889.58

S7 499.99 864.03 862.67 1012.49

S8 1217.26 797.76 15.90 974.87

S9 482.29 691.44 1147.98 1050.4

S10 1076.87 499.17 1207.67 722.74

S11 709.25 704.96 893.43 1191.21

S12 944.09 612.05 797.51 891.43

S13 19.34 747.36 756.36 1150.51

S14 519.64 575.41 915.07 965.83

S15 1004.87 570.44 905.41 385.46

S16 648.29 599.08 604.81 1093.81

Avg. 698.69 666.13 825.95 898.31

Std. 298.32 145.32 274.29 192.64
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Table 1. Cont.

Behavior 2

SSA MO-SSA ES MO-ES

S1 1473.99 1230.24 601.06 144.96

S2 173.82 150.34 131.38 1522.57

S3 133.88 994.05 1469.5 1402.38

S4 139.68 1585.82 926.03 1521

S5 139.07 200.96 1260.08 131.02

S6 803.13 1539.3 1360.06 1507.63

S7 1508.83 138.44 1351.32 1496.32

S8 1516.36 532.39 528.31 129.23

S9 130.09 1502.92 1349.72 1489.18

S10 114.10 128.39 1446.06 1525.08

S11 1318.39 130.25 126.32 1480.15

S12 1067.41 128.61 1431.69 504.44

S13 232.47 1605.82 1143.55 1519.1

S14 124.54 948.71 1483.15 1246.8

S15 1430.51 143.40 886.25 149.01

S16 142.74 139.95 1118.33 1547.13

Avg. 653.06 693.72 1037.68 1082.25

Std. 596.89 606.17 447.40 596.43

Behavior 1 and 2

SSA MO-SSA ES MO-ES

S1 1285.36 821.34 835.23 518.72

S2 455.75 325.71 355.94 1112.09

S3 339.50 820.28 1254.27 1113.29

S4 280.48 1191.71 774.27 1196.45

S5 408.80 599.42 1097.80 442.73

S6 690.46 1090.07 1105.88 1198.61

S7 1004.41 501.24 1107.00 1254.40

S8 1366.81 665.08 272.11 552.05

S9 306.19 1097.18 1248.85 1269.79

S10 595.49 313.78 1326.86 1123.91

S11 1013.82 417.61 509.88 1335.68

S12 1005.75 370.33 1114.60 697.94

S13 125.91 1176.59 949.96 1334.81

S14 322.09 762.06 1199.11 1106.31

S15 1217.69 356.92 985.83 267.24

S16 395.52 369.51 861.57 1320.47

Avg. 675.88 679.93 931.81 990.28

Std. 396.25 312.34 310.2 350.41
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Table 2. Performance of the best evolved agents obtained on the Ant problem in the experiments
performed with the SSA, MO-SSA, ES and MO-ES algorithms obtained in each replication of the
experiment. The columns show the data obtained in different replications. The top, central and
bottom tables show the average performance during 5 episodes in which the robot should perform
the first behavior, the average performance during 5 episodes in which the robot should perform
the second behavior, and the average performance during 10 episodes in which the robot should
perform the two behaviors. The numbers in bold indicate the replications in which the agents exceed
the threshold of 400 on both behaviors.

Behavior 1

SSA MO-SSA ES MO-ES

S1 28.13 −60.50 −8.040 540.68

S2 −9.12 25.20 −11.25 623.29

S3 −11.05 −6.78 878.46 420.64

S4 37.99 29.82 −2.91 43.92

S5 −9.52 −23.28 477.99 562.64

S6 37.64 −26.89 952.42 570.57

S7 50.17 −42.53 −12.58 435.61

S8 −33.00 38.87 767.71 703.39

S9 −9.54 −47.19 −9.11 713.02

S10 −11.14 −29.84 −9.95 630.31

S11 50.29 −2.6 650.67 301.46

S12 −11.09 14.83 927.54 567.45

S13 29.16 −1.86 504.61 735.10

S14 −14.75 −49.52 785.75 444.53

S15 19.02 −6.02 464.74 754.73

S16 −0.91 −36.76 −9.36 556.15

Avg. 8.86 −14.07 396.67 537.72

Std. 25.75 29.41 383.36 175.99

Behavior 2

SSA MO-SSA ES MO-ES

S1 30.46 26.63 893.51 29.78

S2 −125.04 −4.91 945.64 422.23

S3 −9.20 10.60 −10.09 530.32

S4 −8.73 18.75 640.8 658.6

S5 −11.68 21.33 −9.82 432.32

S6 −10.25 −30.98 696.7 598.37

S7 −9.86 23.69 522.48 637.71

S8 −49.88 16.13 −10.46 831.25

S9 30.71 21.93 1061.68 70.37

S10 122.43 28.49 808.8 680.71

S11 −10.67 24.41 −9.04 576.28

S12 −34.99 21.61 −9.11 241.57

S13 −33.99 6.95 −10.05 452.29
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Table 2. Cont.

S14 29,47 30.28 −6.35 545.87

S15 −10.82 12.31 −21.73 510.67

S16 −8.31 −8.10 905.97 357.41

Avg. −6.90 13.70 399.31 473.48

Std. 48.91 15.75 426.73 209.10

Behavior 1 and 2

SSA MO-SSA ES MO-ES

S1 29.29 −16.94 442.74 285.23

S2 −67.08 10.14 467.20 522.76

S3 −10.12 1.91 434.19 475.48

S4 14.63 24.28 318.95 351.26

S5 −10.60 −0.98 234.08 497.48

S6 13.70 −28.94 824.56 584.47

S7 20.16 −9.42 254.95 536.66

S8 −41.44 27.5 378.62 767.32

S9 10.59 −12.63 526.28 391.69

S10 55.65 −0.68 399.43 655.51

S11 19.81 10.91 320.82 438.87

S12 −23.34 18.22 459.22 404.51

S13 −2.42 2.52 247.28 593.69

S14 7.36 −9.62 389.7 495.2

S15 4.10 3.15 221.31 632.7

S16 −4.61 −22.43 488.31 456.78

Avg. 0.98 −0.19 397.99 505.6

Std. 27.76 15.59 142.88 118.81

4. Discussion

We investigated how standard evolutionary robotics methods can be extended to
support the evolution of multiple behaviors. More specifically we investigated whether
forcing the retention of variations that are adaptive with respect to all required behaviors
facilitate the concurrent development of multiple behavioral skills.

We considered both standard evolutionary algorithms, in which the population is
formed by varied copies of selected individuals, and modern evolutionary strategies, in
which the population is distributed around a single parent and in which the parameters of
the parent are moved in the direction of the gradient of the expected fitness. The retention
of variations adaptive with respect to all behaviors should be realized in a different way
depending on the algorithm used. In the case of standard evolutionary algorithms, it
can be realized by using a multi-objective optimization technique, i.e., by selecting the
individuals located in the first Pareto fronts of the multidimensional space of the fitness
of multiple behaviors. In the case of modern evolutionary strategies, it can be realized by
computing multiple gradients and by moving the center of the population in the directions
corresponding to the vector sum of the gradients. This method to pursue multi-objective
optimization in evolutionary strategies is original, as far as we know.

We evaluated the efficacy of the two methods on two extended versions of the Hopper
and Ant Pybullet locomotor problems in which the Hopper is evolved for the ability to
jump toward a target destination as fast as possible or to jump on the place as high as
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possible and in which the Ant is evolved for the ability to walk 45 degrees left or right with
respect to its current orientation.

The obtained results indicate that Salimans et al. [25] evolutionary strategy extended
with multiple gradients calculation permits to obtain close to optimal performance for both
problems. The performance obtained are statistically better than the control condition that rely
on a single gradient and statistically better than the results obtained with the other algorithm
considered. Moreover, the analysis of the evolved robots demonstrate that they manage to
display sufficiently good performance on both behaviors in most of the replications.

In the case of the standard algorithm, instead, the selection of the individuals located
on the first Pareto fronts does not produce better performance with respect to the control
condition in which the robots are selected on the basis of the average performance obtained
during the production of the two behaviors. The analysis of the evolved robots indicate
that they are able to achieve sufficiently good performance on both behaviors only in a
minority of the replications in the base of the Hopper and in none of the replications in the
case of the Ant.

5. Conclusions

We introduced a variation of a state-of-the-art evolutionary strategy [25] that support
the evolution of multiple behaviors in evolving robots. The new MO-ES algorithm moves
the population by using the vector sum of the gradients of the expected fitness computed
with respect to each behavior. The obtained results demonstrated that the method is
effective and produce significantly better results than the standard ES algorithm. This new
method also outperforms significantly the other two algorithms considered: a standard
steady state algorithm (SSA) and a multi-objective steady state algorithm (MO-SSA) that
operates by selecting the individuals located on the first pareto-fronts of the objectives of
the behaviors.

The relative efficacy of the algorithm proposed with respect to alternative methods
remain to be investigated in future works. Carrying out a quantitative comparison can
result difficult, due to the specificity of the requirements imposed by each method, but can
provide valuable insights.

A second aspects that deserves future investigation is the scalability of the method
proposed with respect to the number of behaviors and to the complexity of the behaviors.

6. Online Resources

The videos displaying the behaviors of the best robots evolved in each condition are
available from the following links:

Problem Algorithm Video

Hopper

SSA https://youtu.be/uOFX266aurA
MO-SSA https://youtu.be/fsyybqX7XUM

ES https://youtu.be/B-xgwY2aC6g
MO-ES https://youtu.be/6Z8jElYOYYY

Ant

SSA https://youtu.be/thaD5x2aKH8
MO-SSA https://youtu.be/g8Un3LLXgVc

ES https://youtu.be/-j2Sy6jHSNM
MO-ES https://youtu.be/ptxbcPDdxiE
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