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Abstract: During development, growth cones are essential for axon pathfinding by sensing numerous
guidance cues in their environment. Retinoic acid, the metabolite of vitamin A, is important for neurite
outgrowth during vertebrate development, but may also play a role in axon guidance, though little is
known of the cellular mechanisms involved. Our previous studies showed that retinoid-induced
growth cone turning of invertebrate motorneurons requires local protein synthesis and calcium influx.
However, the signalling pathways that link calcium influx to cytoskeletal dynamics involved in
retinoid-mediated growth cone turning are not currently known. The Rho GTPases, Cdc42 and Rac,
are known regulators of the growth cone cytoskeleton. Here, we demonstrated that inhibition of Cdc42
or Rac not only prevented growth cone turning toward retinoic acid but could also induce a switch
in growth cone responsiveness to chemorepulsion or growth cone collapse. However, the effects of
Cdc42 or Rac inhibition on growth cone responsiveness differed, depending on whether the turning
was induced by the all-trans or 9-cis retinoid isomer. The effects also differed depending on whether
the growth cones maintained communication with the cell body. These data strongly suggest that
Cdc42 and Rac are downstream effectors of retinoic acid during growth cone guidance.
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1. Introduction

Retinoic acid has been implicated in the development [1,2] and regeneration [3,4] of various organ
systems in several species. This includes the nervous system [5], where it can exert trophic effects
to initiate and maintain neurite outgrowth [6–9]. Many effects of retinoic acid occur as a result of
binding to nuclear receptors, the retinoic acid receptors (RARs) and retinoid X receptors (RXRs), which
then regulate gene transcription. However, in addition to its transcriptional activity, retinoic acid can
also exert non-genomic actions, either through retinoid receptors localized in non-nuclear cellular
domains [10], or by binding directly to intracellular signalling molecules [11,12]. Examples of fast,
non-genomic retinoid actions include the regulation of homeostatic plasticity in the hippocampus [10,13],
modulation of cell firing and intracellular calcium [14,15] as well as chemotropic effects inducing
growth cone turning of regenerating neurites [16].

The ability of retinoic acid to exert chemotropic effects was first demonstrated in developing
neurites of chick embryonic neural tube cells [17], and later in regenerating newt spinal cord explants [8],
where neurites grew toward the source of retinoic acid (chemoattraction). However, it was using
regenerating cultured motorneurons from the mollusc Lymnaea stagnalis that it was determined that
the chemoattractant effects of retinoic acid were non-genomic in nature [16]. The growth cones of
regenerating molluscan neurons can be physically transected from the cell bodies and continue to
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grow for many hours. Importantly, these isolated growth cones retain their chemoattractive response
to retinoic acid. Consistent with the findings of many other locally acting guidance molecules, the
growth cone turning mediated by retinoic acid also requires local protein synthesis [16]. However, the
identities of locally synthesized proteins are not yet known. Growth cone calcium levels are often an
important determinant in growth cone responses to various guidance cues, and the same appears to be
true for retinoic acid. In the presence of the calcium channel blocker cadmium, growth cone turning
toward retinoic acid is significantly reduced or abolished [16]. However, the downstream signalling
cascades which might link calcium influx to regulation of the cytoskeleton are not currently known,
but potential candidates include Rho GTPases.

Rho GTPases are well known to mediate growth cone responses to various guidance cues,
including netrin [18] and brain-derived neurotrophic factor (BDNF) [19]. They are a family of small
guanosine triphosphate (GTP)-binding proteins that include cell division control protein 42 (Cdc42),
Ras-related C3 (Rac) and Ras homolog (Rho). These binding proteins act as molecular switches to
control signal transduction in the growth cone by cycling between a GDP-bound inactive form and a
GTP-bound active form. Their activity is also tightly regulated by guanine nucleotide exchange factors
(GEFs), GTPase-activating proteins (GAPs) and guanine nucleotide dissociation inhibitors (GDIs).
Whereas Rho activation is often involved in repulsive turning responses or growth cone collapse [20],
activation of Cdc42 and Rac is often required during chemoattractive growth cone responses. For
example, Rac mediates growth cone attraction to netrin in rat embryonic spinal cord explants [18] and
perturbing Cdc42 activity in cultured Xenopus spinal neurons abolishes chemoattraction induced by
BDNF [19].

These Rho GTPases can be temporally and/or spatially regulated within the growth cone and
can thus contribute to signalling pathways that link changes in growth cone calcium levels to the
regulation of cytoskeletal dynamics required for directional changes [21]. As such, we hypothesize
that they will play an important role in mediating the chemoattractive effects of retinoic acid. The aim
of this study was to pharmacologically inhibit the Rho GTPases, Cdc42 and Rac, in order to determine
their role in the chemoattractive growth cone responses of regenerating Lymnaea motorneurons to
applied retinoids. We examined both biologically active retinoid isomers, all-trans retinoic acid (atRA)
and 9-cis retinoic acid (9-cis RA), as both exist in the Lymnaea CNS, but very little is known of the
role of 9-cis RA in neurite outgrowth or pathfinding. We performed the growth cone turning assays
on both intact regenerating neurites, as well as growth cones isolated from the cell body (in order to
determine any localized effects). We provide evidence that Cdc42 and Rac inhibition not only inhibited
chemoattraction, but also induced a chemorepulsive response. However, the effects of Cdc42 or Rac
inhibition differed, depending on the retinoid isomer applied, as well as whether the growth cone
maintained communication with the cell body.

2. Materials and Methods

2.1. Animals

Lymnaea stagnalis were reared and housed in open air tanks containing aerated filtered water.
Water was supplemented with Instant Ocean Sea Salt at a concentration of 0.6 g/L. Animal nutrition
consisted of romaine lettuce, Spirulina fish food and carrot shavings. All animals used for cell culture
experiments ranged from 16 to 20 mm in length.

2.2. Cell Culture Procedures

Animals were anaesthetized (25% Listerine® in saline) and their CNS removed. The CNS were
passed through a series of three, 10 min antibiotic saline (ABS) washes. Next, the CNS were treated
with trypsin (Sigma-Aldrich; 6 mg in 3 mL Defined Medium (DM; comprised of 50% Leibowitz’s L-15
media and additional salts)) for 19.5 to 22 min, followed by a trypsin inhibitor (Sigma-Aldrich; 6 mg in
3 mL DM) for 10 min. The CNS were then pinned out in high osmolarity DM (800 µL of 1 M glucose
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in 30 mL DM) and the outer connective tissue and inner sheath surrounding the left and right Pedal
ganglia were removed.

Individual Pedal A (PeA) motorneurons were chosen for these studies as they have been shown to
generate extensive neurite outgrowth in cell culture [16,22], and have been used in previous growth cone
studies examining the effects of retinoic acid in Lymnaea [23,24]. The PeA cells were removed from the
left and right Pedal ganglia using a fire-polished glass pipette coated with Sigmacote (Sigma-Aldrich)
to prevent cell adhesion. Suction was applied using a micrometer syringe to remove individual cell
bodies from the ganglia and these cells were then plated into poly-l-lysine coated culture dishes
containing 2.5 mL of Conditioned Medium (CM) and 0.5 mL of DM. Lymnaea CM contains unidentified
trophic factors that are required for generating outgrowth in vitro [25]. AtRA was added to the culture
dishes at the end of cell plating (10−7 M; final bath concentration) to promote neurite outgrowth.
Extensive outgrowth was observed within 16 to 18 h following plating.

2.3. Chemicals

AtRA and 9-cis RA were obtained from Sigma-Aldrich and were prepared in ethanol (EtOH) and
diluted using DM to a concentration of 10−5 M (0.1% final EtOH concentration) in the pipette. Vehicle
control experiments used a concentration of 0.1% EtOH in the pipette. A selective, small-molecule
inhibitor of Cdc42, ML141 (Sigma-Aldrich), (also known as CID2950007) [26] was prepared in
dimethyl sulfoxide (DMSO; occasionally with Tween-80) and diluted using DM to produce a final bath
concentration of 10−5 M [27] (0.1% final DMSO concentration). It has previously been shown (using a
fibroblast cell line) that the inhibitory effects of 10−5 M ML141 were selective toward Cdc42 (with no
inhibition of Rac) [26]. The vehicle was prepared in the exact same manner, in the absence of ML141.
NSC23766 (Sigma-Aldrich), a selective, small-molecule inhibitor of Rac [28], was prepared in sterile
distilled water and diluted using DM to produce a final bath concentration of 10−4 M [29].

2.4. Growth Cone Turning Assays

All growth cone assays were conducted in a similar manner as previously described [16,23,24].
Only active growth cones exhibiting a steady growth trajectory were used for growth cone turning
assays. A retinoic acid isomer (atRA or 9-cis RA), or vehicle (EtOH), was pressure-applied (3–10 hPa)
to one side of the growth cone via a pipette (up to ~6 µm in diameter), using an Eppendorf–Femtojet.
The pipette was placed between 50 and 175 µm from the growth cone (depending on the size of the
pipette), and the pressure applied was adjusted accordingly. A holding pressure of 1–2 hPa was used
to prevent backflow into the pipette between applications. To examine the role of the Rho GTPases,
Cdc42 and Rac, in retinoic acid-mediated growth cone turning, a pharmacological inhibitor of either
Cdc42 (ML141) or Rac (NSC23766) was bath applied at least 1 h prior to growth cone turning assays. A
gradient of retinoid (atRA or 9-cis RA) or vehicle, was then applied to growth cones that continued to
actively grow in the presence of the inhibitor.

In order to examine the role of Cdc42 and Rac in isolated growth cone responses, the neurites were
transected from the cell body using a sharp glass electrode. The isolated growth cones were monitored
and only those with sustained activity fifteen min after transection were used for growth cone turning
assays. A gradient of retinoic acid (or vehicle) was applied in a similar manner as described previously
for intact growth cones. The transected neurites were monitored throughout the entire experiment to
ensure no contact was re-established with the cell body (or any adjacent neurites attached to the cell
body).

It should be noted that variability in individual growth cone responses to application of the
retinoid and vehicle (seen previously and in this study) are common and likely due to differences in
susceptibility to pressure application (artifact), differences in the size and motility of individual growth
cones, as well as slight variations in experimental conditions across experiments (size and location
of pipette). Additional factors which might have affected isolated growth cone responses include
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the extent of membrane, cytoplasm and/or organelles remaining in the isolated neurite to contribute
to growth.

2.5. Growth Cone Measurements

All images were captured using a Zeiss Axiovert 200 inverted microscope and Retiga Exi camera
with QCapture Suite 2.90.1 software (Quantitative Imaging Corporation). Individual growth cone
turning angles were determined by measuring the angle between the growth cone’s initial trajectory
and the final trajectory of that growth cone following application of a retinoid (or vehicle). These angles
were determined by an individual blind to the condition of the experiment. An attractive turning
response consisted of the growth cone turning toward the pipette and is indicated by a positive angle.
Growth cone turning away from the pipette is indicated by a negative angle.

When examining the effect of the Rho GTPase, Rac, in response to atRA, the length of neurite
extension was also measured using Northern Eclipse imaging software (Empix imaging, ON). Growth
cone advancement was measured as the distance travelled by the tip of the growth cone at the beginning
of the assay to its final location at the end of the experiment (a period of 50 to 60 min). An increase
in the length of the neurite by the end of the experiment produced a positive value whereas neurite
retraction produced a negative value.

2.6. Data and Statistical Analysis

Statistical analyses were preformed using SigmaStat software and graphs were generated using
Graphpad Prism, Version 8.0 for Mac OS X. A one-way analysis of variance (ANOVA) was performed
on growth cone data sets, followed by a Tukey-Kramer post hoc test. Data were expressed as mean ±
standard error of mean (SEM) and were deemed significant when p < 0.05.

3. Results

3.1. The Inhibition of Cdc42 Induces a Switch in Growth Cone Responsiveness to AtRA, but not to 9-cis RA

It has previously been shown that calcium influx is required for retinoid-induced growth cone
turning [16]. As Rho GTPases are known downstream effectors of calcium and are involved in growth
cone turning responses to other guidance cues [30,31], we first investigated the role of the Rho GTPase,
Cdc42, in retinoid-mediated growth cone turning.

A local gradient of atRA (10−5 M in pipette) was first applied to the growth cones of regenerating
motorneurons. Focal application of atRA produced attractive growth cone turning of regenerating
neurites (mean turning angle: +33.2◦ ± 4.3; n = 10). A representative example of a PeA growth cone
responding to atRA is shown in Figure 1A. In contrast, application of the vehicle alone (control) failed
to induce growth cone turning toward the pipette, producing a mean turning angle of −5.2◦ ± 4.5
(n = 8; data not shown), consistent with previous findings [9,32]. In the presence of the Cdc42 inhibitor,
ML141 (10−5 M; final bath concentration), the growth cones failed to turn toward the source of atRA
(mean turning angle: −41.7◦ ± 5.6; n = 10) and a representative example is shown in Figure 1B. The
Cdc42 inhibitor used in these studies was dissolved in DMSO (0.1%; final bath concentration), but in
the presence of the vehicle alone, growth cones continued to turn toward the focally applied atRA
(mean turning angle: +38.5◦ ± 5.3; n = 10; Figure 1C).
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Figure 1. Inhibiting Cdc42 switches the atRA, but not 9-cis RA-induced growth cone response from 
attraction to repulsion. The first image of each data set (A–Fi) illustrates the growth cone prior to 
application of the retinoid/vehicle (t = 0), whereas the second image of each data set (A–Fii) represents 
the growth cone response. The approximate location of the pipette containing either retinoid or 
vehicle is shown to the right of an image (A–Fii) and times (t) of growth cone responses are given in 
minutes. Application of atRA induced attractive growth cone turning in normal conditions (Ai–ii; n 
= 10; t = 53), as well as in the presence of the vehicle in the bath (Ci–ii; n = 10; t = 24). This attractive 
growth cone turn was abolished and converted to a repulsive turn (away from pipette) in the presence 
of the Cdc42 inhibitor, ML141 (Bi–ii; n = 10; t = 50). Vehicle (applied via pipette) in the presence of 
ML141 did not induce significant turning responses (Di–ii; n = 10; t = 31). Application of 9-cis RA also 
induced attractive growth cone turning (Ei–ii; n = 10; t = 12) which was blocked in the presence of 
ML141 (Fi–ii; n = 10; t = 21). Scale bars: 15 μM. (G) Graph depicting the mean turning angles of growth 
cones in response to retinoid (or vehicle) in the presence or absence of the Cdc42 inhibitor, ML141 (*** 
p < 0.001). 

Figure 1. Inhibiting Cdc42 switches the atRA, but not 9-cis RA-induced growth cone response from
attraction to repulsion. The first image of each data set (A–Fi) illustrates the growth cone prior to
application of the retinoid/vehicle (t = 0), whereas the second image of each data set (A–Fii) represents
the growth cone response. The approximate location of the pipette containing either retinoid or vehicle
is shown to the right of an image (A–Fii) and times (t) of growth cone responses are given in minutes.
Application of atRA induced attractive growth cone turning in normal conditions (Ai–ii; n = 10; t = 53),
as well as in the presence of the vehicle in the bath (Ci–ii; n = 10; t = 24). This attractive growth cone
turn was abolished and converted to a repulsive turn (away from pipette) in the presence of the Cdc42
inhibitor, ML141 (Bi–ii; n = 10; t = 50). Vehicle (applied via pipette) in the presence of ML141 did
not induce significant turning responses (Di–ii; n = 10; t = 31). Application of 9-cis RA also induced
attractive growth cone turning (Ei–ii; n = 10; t = 12) which was blocked in the presence of ML141 (Fi–ii;
n = 10; t = 21). Scale bars: 15 µM. (G) Graph depicting the mean turning angles of growth cones in
response to retinoid (or vehicle) in the presence or absence of the Cdc42 inhibitor, ML141 (*** p < 0.001).

Interestingly, the inhibition of Cdc42 not only prevented growth cone turning toward atRA, but
also appeared to convert the atRA-induced attractive response to a repulsive response. A switch in
response from attraction to repulsion may enable growth cones to respond differently to the same
guidance molecule at different stages during nervous system development. It is however possible
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that this switch in responsiveness was not cue-specific, but rather that the Cdc42 inhibitor increased
growth cone susceptibility to the pressure of chemical application from the pipette. Further control
experiments were thus performed in which only the vehicle (EtOH) was applied to growth cones in
the presence of the Cdc42 inhibitor, ML141. Growth cones failed to turn toward the source of the
vehicle (as expected), and only a slightly negative turning angle was observed in response to the
vehicle in the presence of the Cdc42 inhibitor (mean turning angle: −3.1◦ ± 3.3; n = 10; Figure 1D). The
mean turning angles in each condition are summarized in Figure 1G. A one-way ANOVA revealed a
significant effect (F(5,54) = 30.119, p < 0.001), and a Tukey Kramer post-hoc test determined there was
a significant reduction in positive growth cone turning toward atRA in the presence of the Cdc42
inhibitor, compared to in its absence (p < 0.001). The negative turning angle elicited by atRA in ML141
was also significantly different from that produced by application of EtOH (vehicle) in the presence of
ML141 (p < 0.001), indicating that the switch in responsiveness to repulsive growth cone turning was
likely a specific response to atRA.

We next tested the growth cone responsiveness to the isomer 9-cis RA, as very little is currently
known about the role of 9-cis RA in either neuronal regeneration or growth cone guidance. Both
retinoid isomers were previously shown to exert similar chemoattractive effects on Lymnaea growth
cones [9,32], though isomer-dependent effects can also occur [14,15]. As expected, 9-cis RA elicited
growth cone attraction (mean turning angle: +38.5◦ ± 7.7; n = 10; Figure 1E), which was similar to that
produced by atRA (Figure 1A,G). In the presence of the Cdc42 inhibitor, ML141, this attractive turning
response was completely abolished (mean turning angle: −16.3◦ ± 8.8; n = 10; Figure 1F). However,
this negative turning angle produced by 9-cis RA in ML141 was not significantly greater than that
produced by application of the vehicle (EtOH) alone in the presence of ML141 (p = 0.654), and so we
cannot conclude that 9-cis RA induced a switch in responsiveness following Cdc42 inhibition.

Overall, these data showed that inhibition of Cdc42 abolished growth cone attraction to the
retinoid isomers. Inhibition of Cdc42 also induced a switch in growth cone responsiveness to atRA
(but not 9-cis RA), from an attractive turning response to a repulsive growth cone turning response.

3.2. The Cdc42 Inhibitor Blocks Retinoic Acid-Induced Growth Cone Turning of Isolated Growth Cones
An advantage of using cultured Lymnaea neurons is that neurites can survive transection and

growth cones isolated from the cell body continue to grow for many hours. We have previously shown
that retinoic acid-induced growth cone turning is transcriptionally independent and relies on local
protein synthesis. That is, growth cones physically isolated from the cell body continue to show attractive
responses to retinoic acid, which are blocked in the presence of a protein synthesis inhibitor [16].
Accordingly, our next aim was to use isolated growth cones to examine the involvement of Cdc42 in
localized signalling mechanisms within the growth cone that are independent of communication with
the cell body.

Growth cones were completely isolated from the cell body and given at least 15 min to recover
from injury. The turning responses of isolated growth cones to atRA (10−5 M in pipette) were first
tested and as expected, isolated growth cones responded and turned toward atRA (+36.6◦ ± 5.6;
n = 14). In the presence of the vehicle (DMSO), isolated growth cones also continued to turn toward
the focally applied atRA with a mean turning angle of +27.3◦ ± 4.8 (n = 8; Figure 2A). However, in
the presence of the Cdc42 inhibitor, isolated growth cones failed to initiate a turn toward the focally
applied atRA (mean turning angle: −26.0◦ ± 6.3; n = 10; Figure 2B). In order to determine whether this
was again, a switch in responsiveness of the growth cone, we applied the vehicle (EtOH) alone to the
growth cone in the presence of ML141, and growth cones failed to turn toward the vehicle as expected,
producing a mean turning angle of −9.8◦ ± 7.4 (n = 10; Figure 2C). However, there was no significant
difference between the turning angle to atRA and to the vehicle in ML141 (p = 0.286; Figure 2D). Thus,
even though it was clear that inhibition of Cdc42 by ML141 blocked attractive growth cone turning
induced by atRA, it was more difficult to determine whether a switch in responsiveness occurred in
isolated growth cones following inhibition of Cdc42. However, it should be noted that despite the
smaller negative turning angle of isolated growth cones (compared to intact growth cones) in ML141,
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8 of 8 isolated growth cones turned toward atRA in the absence of ML141, whereas 10 of 10 turned
away from atRA in the presence of ML141. Overall, these data indicate a requirement for Cdc42 in
retinoid-mediated growth cone attraction of both intact and isolated growth cones.Biomolecules 2019, 9, 8 of 19 

 
Figure 2. Isolated growth cones fail to turn toward atRA in the presence of the Cdc42 inhibitor. 
Representative images depicting the turning response of isolated growth cones to atRA in the 
presence of the vehicle (Ai–ii; n = 8; t = 24), and the failure to turn toward atRA in the presence of the 
Cdc42 inhibitor, ML141 (Bi–ii; n = 10; t = 29). The isolated growth cone response to focal application 
of the vehicle alone in the presence of ML141 is also shown (Ci–ii; n = 10; t = 20). The approximate 
location of the pipette containing either atRA or vehicle is shown to the right of an image (A–Cii) and 
times (t) of growth cone responses are provided in minutes. Scale bars: 15 μM. (D) Graph depicting 
the mean turning angles of isolated growth cones in each condition. Data were expressed as the mean 
± SEM and analyzed using a one-way ANOVA (F(3,38) = 23.959, p < 0.001) followed by a Tukey Kramer 

Figure 2. Isolated growth cones fail to turn toward atRA in the presence of the Cdc42 inhibitor.
Representative images depicting the turning response of isolated growth cones to atRA in the presence
of the vehicle (Ai–ii; n = 8; t = 24), and the failure to turn toward atRA in the presence of the Cdc42
inhibitor, ML141 (Bi–ii; n = 10; t = 29). The isolated growth cone response to focal application of the
vehicle alone in the presence of ML141 is also shown (Ci–ii; n = 10; t = 20). The approximate location of
the pipette containing either atRA or vehicle is shown to the right of an image (A–Cii) and times (t) of
growth cone responses are provided in minutes. Scale bars: 15 µM. (D) Graph depicting the mean
turning angles of isolated growth cones in each condition. Data were expressed as the mean ± SEM and
analyzed using a one-way ANOVA (F(3,38) = 23.959, p < 0.001) followed by a Tukey Kramer post-hoc
test. The mean turning angle of isolated growth cones to atRA is significantly different in the presence
of ML141 compared to in the presence of the vehicle (*** p < 0.001). The mean turning angle produced
by atRA in ML141 was not significantly different (n.s.d.) than the mean turning angle produced by the
vehicle in ML141.
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3.3. The Rac Inhibitor Induced a Switch in Growth Cone Responsiveness to AtRA, but not to 9-cis RA

We next sought to investigate the requirement for Rac in retinoid-induced growth cone turning.
As previously indicated (in Figure 1), a local gradient of either atRA or 9-cis RA produced attractive
growth cone turning with a mean turning angle of +33.2◦ ± 4.3 (n = 10) or +38.5◦ ± 7.7 (n = 10),
respectively (examples shown in Figure 3A,B). The growth cone turning responses toward atRA
or 9-cis RA were next examined in the presence of the Rac inhibitor, NSC23766 (10−4 M; final bath
concentration). In contrast to the Cdc42 inhibitor used in this study, the Rac inhibitor was dissolved in
sterile water, thus additional bath control (vehicle) experiments were not required.Biomolecules 2019, 9, 10 of 19 

 
Figure 3. Growth cone turning mediated by retinoids is blocked by the inhibition of Rac. Application 
of atRA (Ai–ii; n = 10; t = 23) and 9-cis RA (Bi–ii; n = 10; t = 19) induced attractive growth cone turning. 
In the presence of the Rac inhibitor, NSC23766, growth cones failed to turn toward either atRA (Ci–
ii; n = 10; t = 30) or 9-cis RA (Di–ii; n = 8; t = 14). Scale bars: 15 μM. (E) Graph depicting the mean 
turning angle of growth cones in response to application of atRA or 9-cis RA, both in the presence and 
absence of NSC23766. The turning response to the vehicle in NSC23766 is also given. NSC23766 
significantly reduced the mean turning angle of growth cones in response to each retinoid (*** p < 
0.001). NSC23766 did not however induce significant differences in growth cone turning responses to 
retinoid application compared to vehicle application. 

To further confirm that the growth cone collapse was induced only in the presence of the Rac 
inhibitor, we determined the response to atRA of the same growth cone, first in the absence and then 
presence of the Rac inhibitor. Figure 4C illustrates the typical positive growth cone turning response 
and growth advancement initially obtained in response to atRA (in the absence of the inhibitor) 
followed by the pronounced growth cone collapse and retraction that occurred in response to atRA 
in the presence of the Rac inhibitor (Figure 4D). These data strongly suggest that the Rac inhibitor 
did indeed cause a switch in growth cone response from attraction to growth cone collapse and 
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Figure 3. Growth cone turning mediated by retinoids is blocked by the inhibition of Rac. Application
of atRA (Ai–ii; n = 10; t = 23) and 9-cis RA (Bi–ii; n = 10; t = 19) induced attractive growth cone turning.
In the presence of the Rac inhibitor, NSC23766, growth cones failed to turn toward either atRA (Ci–ii;
n = 10; t = 30) or 9-cis RA (Di–ii; n = 8; t = 14). Scale bars: 15 µM. (E) Graph depicting the mean turning
angle of growth cones in response to application of atRA or 9-cis RA, both in the presence and absence
of NSC23766. The turning response to the vehicle in NSC23766 is also given. NSC23766 significantly
reduced the mean turning angle of growth cones in response to each retinoid (*** p < 0.001). NSC23766
did not however induce significant differences in growth cone turning responses to retinoid application
compared to vehicle application.



Biomolecules 2019, 9, 460 9 of 17

In the presence of the Rac inhibitor (NSC23766), growth cones failed to turn toward atRA exhibiting
a mean turning angle of −8.8◦ ± 3.7 (n = 10). The inhibition of growth cone turning toward atRA is
clearly depicted by the representative images shown in Figure 3C. Moreover, in the presence of the
Rac inhibitor, growth cones also failed to turn toward 9-cis RA, producing a mean turning angle of
−18.8◦ ± 5.5 (n = 8; Figure 3D). A summary of the mean growth cone responses to atRA and 9-cis RA
in the presence and absence of NSC23766 are shown in Figure 3E. Statistical analysis was performed
using a one-way ANOVA and revealed a significant effect (F(4,43) = 24.334, p < 0.001). A Tukey Kramer
post-hoc test showed that there was a significant reduction in growth cone turning toward atRA in the
presence of the Rac inhibitor, compared to in its absence (p < 0.001). Furthermore, the growth cone
turning angle in response to 9-cis RA was significantly different in the presence of the Rac inhibitor as
compared to its absence (p < 0.001). Overall, these findings indicate that Rac may have an important
role in mediating growth cone turning toward retinoids.

In addition to preventing the chemoattractive response to atRA, the Rac inhibitor also appeared
to induce a switch in the growth cone responsiveness to atRA, though in this instance, not by causing a
significant repulsive turning angle, but by inducing growth cone collapse and in particular, neurite
retraction. Growth cones showed a collapsed morphology and neurites retracted during the application
of atRA, a behaviour indicative of an avoidance response to a chemorepulsive guidance cue. When we
determined the extent of movement of growth cones in the presence (Figure 3C) or absence (Figure 3A)
of the Rac inhibitor, NSC23766, we found that growth cones exposed to atRA in NSC23766, showed
an overall mean retraction of −6.7 ± 6.0 µm (n = 10), whereas in the absence of NSC23766, growth
cones continued to advance over a mean distance of +22.1 ± 3.9 µm (n = 10) over the same time period
(Figure 4A). It is also possible, however, that the presence of the Rac inhibitor may have sensitized
the growth cones to the pressure of chemical application and that the growth cone collapse observed
was not a switch in responsiveness to atRA. In order to rule out this possibility, control experiments
were performed, in which the vehicle (EtOH) alone was applied to the advancing growth cones in
the presence of NSC23766. Though the growth cones did not exhibit any turning response to the
vehicle, as expected (mean turning angle: +1.2 ± 3.1◦; n = 10), the growth cones continued to actively
advance over a distance of +22.2 ± 5.1 µm (n = 10; Figure 4B) and did not demonstrate any growth cone
collapse or retraction following application of the vehicle solution alone. These data suggest that the
growth cone collapse in response to atRA in the presence of NSC23766 was not merely due to increased
sensitivity to pressure (Figure 4B). A summary comparing the distance of growth cone advancement in
response to atRA, in the presence or absence of the Rac inhibitor, (as well as in response to the vehicle)
is shown in Figure 4A. A one-way ANOVA revealed a significant effect (F(2,27) = 10.751; p < 0.001)
and a Tukey Kramer post-hoc test confirmed a significant reduction in growth cone advancement in
response to atRA in the presence of the Rac inhibitor, compared to in its absence (p = 0.001).

To further confirm that the growth cone collapse was induced only in the presence of the Rac
inhibitor, we determined the response to atRA of the same growth cone, first in the absence and then
presence of the Rac inhibitor. Figure 4C illustrates the typical positive growth cone turning response
and growth advancement initially obtained in response to atRA (in the absence of the inhibitor)
followed by the pronounced growth cone collapse and retraction that occurred in response to atRA in
the presence of the Rac inhibitor (Figure 4D). These data strongly suggest that the Rac inhibitor did
indeed cause a switch in growth cone response from attraction to growth cone collapse and neurite
retraction in response to atRA. However, this same neurite retraction was not observed in any growth
cones in response to 9-cis RA. It should be noted that even though 7 of 8 growth cones turned away
from 9-cis RA following Rac inhibition (as opposed to 10 of 10 turning toward 9-cis RA with no
Rac inhibitor), the mean repulsive turning angle was not significantly different from that produced
following application of the vehicle alone in the Rac inhibitor (Figure 3E). As such, we cannot conclude
that 9-cis RA induced a switch in responsiveness to mediate repulsion, despite most growth cones
showing some turning away from the retinoid source.
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In summary, these data indicate that Rac is required for attractive growth cone turning toward
both retinoid isomers, as this was abolished in the presence of the Rac inhibitor. The Rac inhibitor also
induced a switch in growth cone responsiveness to atRA (but not 9-cis RA), from chemoattraction to
growth cone retraction.

Biomolecules 2019, 9, 11 of 19 

growth cones in response to 9-cis RA. It should be noted that even though 7 of 8 growth cones turned 
away from 9-cis RA following Rac inhibition (as opposed to 10 of 10 turning toward 9-cis RA with no 
Rac inhibitor), the mean repulsive turning angle was not significantly different from that produced 
following application of the vehicle alone in the Rac inhibitor (Figure 3E). As such, we cannot 
conclude that 9-cis RA induced a switch in responsiveness to mediate repulsion, despite most growth 
cones showing some turning away from the retinoid source. 

In summary, these data indicate that Rac is required for attractive growth cone turning toward 
both retinoid isomers, as this was abolished in the presence of the Rac inhibitor. The Rac inhibitor 
also induced a switch in growth cone responsiveness to atRA (but not 9-cis RA), from chemoattraction 
to growth cone retraction. 

 
Figure 4. Inhibiting Rac switches the atRA-induced growth cone attraction to collapse and retraction.
(A) Graph depicting the length of growth cone advancement in response to atRA (or vehicle) in the
presence or absence of the Rac inhibitor, NSC23766. In the presence of the Rac inhibitor, growth
cone advancement following application of atRA was inhibited, compared to all other experimental
conditions (** p < 0.01). In response to application of vehicle in the presence of NSC23766, growth
cones did not turn, but continued to advance (Bi–ii; n = 10; t = 40). (C–D) Example of an individual
growth cone that first produced attractive growth cone turning to atRA (Ci–ii; t = 60), but following
application of NSC23766 to the bath, later collapsed and retracted in response to atRA (Di–ii; t = 55).
Scale bars: 15 µM.



Biomolecules 2019, 9, 460 11 of 17

3.4. Isolated Growth Cones Continue to Turn Toward Retinoids Following Rac Inhibition
Similar to our studies with the Cdc42 inhibitor, we next examined whether the isolated growth

cone responses to atRA (Figure 5A) or 9-cis RA (Figure 5C) would also be abolished following Rac
inhibition. The responses of isolated growth cones to atRA (10−5 M in pipette) were thus tested
again in the presence of the Rac inhibitor, NSC23766, and interestingly, these isolated growth cones
continued to turn and advance toward the focally applied atRA (Figure 5B), with a mean turning
angle of +24.9◦ ± 3.8 (n = 15). Because this isolated growth cone response to atRA was very different
from that obtained from the intact neurites, we also next determined whether the isolated growth
cone turning changed in response to the other retinoid isomer, 9-cis RA. Indeed, the isolated growth
cones also continued to turn toward 9-cis RA in the presence of the Rac inhibitor (+42.3◦ ± 6.1; n = 9;
Figure 5D). These turning angles are summarized in Figure 5E and a one-way ANOVA revealed no
significant differences in the turning angles of isolated growth cones, either in the absence or presence
of NSC23766 (F(3,44) = 2.709; p = 0.057).Biomolecules 2019, 9, 13 of 19 
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Figure 5. Isolated growth cones continue to turn toward retinoids in the presence of the Rac inhibitor.
Representative images depicting the turning response of isolated growth cones to atRA (Ai–ii; n = 14;
t = 30) or 9-cis RA (Ci–ii; n = 10; t = 18) in the absence of the Rac inhibitor, NSC23766. In the presence
of NSC23766, isolated growth cones continued to turn toward both atRA (Bi–ii; n = 15; t = 40) and 9-cis
RA (Di–ii; n = 9; t = 15). Scale bars: 15 µM. (E) Graph depicting the mean turning angles of isolated
growth cones in response to atRA or 9-cis RA, in the presence or absence of NSC23766.
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Taken together, these studies have shown that Rac inhibition induces a switch in growth cone
response (of intact growth cones) to atRA from chemoattraction to retraction, but did not induce the
same effects on growth cone responses to the 9-cis RA isomer. Moreover, the Rac inhibitor did not
significantly inhibit growth cone turning of isolated growth cones toward either atRA or 9-cis RA.
These data suggest that the involvement of Rac in growth cone turning differs depending on whether
the turning is induced by the atRA or 9-cis RA isomer, but also, more importantly, depends on whether
the growth cones have maintained communication with the cell body.

Overall, we have provided evidence for a role of Rho GTPases in retinoid-induced growth cone
guidance. Evidence has been provided that the inhibition of Cdc42 or Rac prevents growth cone turning
toward retinoic acid. Interestingly, the inhibition of Cdc42 and Rac not only blocked growth cone
turning toward atRA, but also induced a switch in growth cone responsiveness from chemoattraction
to chemorepulsion in intact growth cones. Moreover, the inhibition of Rac did not inhibit growth cone
turning of isolated growth cones, suggesting its involvement depends on whether the growth cones
have maintained communication with the cell body. These results therefore strongly suggest that the
signal transduction pathways underlying retinoic acid-mediated growth cone guidance involve the
Rho GTPases, Cdc42 and Rac.

4. Discussion

Retinoic acid is a molecule that has been implicated in several developmental and regenerative
processes, including its actions as a chemoattractant to guide neurites in vertebrates [8,17] and
invertebrates such as Lymnaea stagnalis [9,32]. Similar to many other guidance cues, we have previously
shown that retinoid-induced growth cone attraction requires both local protein synthesis and calcium
influx [16]. However, the signalling cascades which might link calcium influx to the regulation of
cytoskeletal dynamics involved in retinoid-mediated chemoattraction have not previously been studied.
Rho GTPases are known downstream effectors of calcium and have emerged as important regulators
of the actin cytoskeleton. Here, we now provide evidence for the role of the Rho GTPases, Cdc42 and
Rac, in retinoid-mediated growth cone attraction.

Cdc42 and Rac have been previously associated with promoting neurite outgrowth and inducing
positive growth cone turning responses [33,34] and their disruption can lead to axon pathfinding
defects [34]. For example, disruption of Rac was found to result in growth cone pathfinding defects
of Drosophila embryonic motor axons [30]. Interestingly, expression of either constitutively active or
dominant-negative forms of Rho GTPases both cause guidance errors, indicating that very precise
regulation of Rho GTPases is crucial for appropriate growth cone behaviour and navigation [35–37].

In this study, we showed that inhibiting both Cdc42 and Rac blocked growth cone turning toward
a gradient of retinoic acid, suggesting a role for both Rho GTPases in this chemoattractive response. The
attractive guidance cue BDNF similarly activates both Cdc42 and Rac [19], and it has been proposed
that these GTPases share common up or downstream effectors. Importantly, the inhibition of Cdc42
and Rac in this study not only blocked retinoic acid-induced growth cone attraction, but induced a
switch in responsiveness from chemoattraction to chemorepulsion, at least for atRA. Similarly, findings
in C. elegans indicated that lowering levels of the Rac homolog, ced-10, led to a switch in Semaphorin-1
responsiveness of migrating cells from attraction to repulsion [38].

Numerous studies indicate that whether a cue is attractive or repulsive can be modulated by
various factors and that a switch in responsiveness may allow growth cones to respond differently to the
same guidance molecule at different stages of development or regeneration. Studies in Xenopus growth
cones have shown that inhibition of cyclic adenosine monophosphate (cAMP) or cAMP-dependent
kinases (such as PKA), causes a switch from attraction to repulsion in response to either netrin [39,40] or
BDNF [19,41]. As there is evidence that Rac activation can be controlled by cAMP/PKA signalling [42], it
is possible that the switch in response to atRA observed here may also result from an interaction between
Rac and cAMP levels within the growth cone. It is thought that cAMP facilitates bidirectional growth
cone responses by the modulation of calcium channel activity, which in turn, allows for differential
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activation of calcium-dependent effector proteins [40,43]. It is likely that numerous calcium-dependent
effector proteins act upstream of Rho GTPases and these may include calcium-calmodulin-dependent
protein kinase II (CaMKII) and/or protein kinase C (PKC). Signal transduction from calcium to Cdc42
in netrin-induced growth cone guidance in Xenopus spinal neurons is mediated by PKC and requires
basal activity of CaMKII [21]. It is therefore conceivable that CaMKII and PKC may act upstream of
Cdc42 to control the direction of growth cone turning induced by retinoic acid.

Notably, following inhibition of Cdc42 or Rac, only the atRA isomer (not 9-cis RA) induced a switch
in growth cone responsiveness to produce repulsive turning or growth cone retraction. AtRA and
9-cis RA are both biologically active isomers of retinoic acid which have been detected in the Lymnaea
CNS at relatively similar concentrations [32]. However, despite both inducing similar chemoattractive
effects in Lymnaea neurons, they can also exert different effects on the firing properties of Lymnaea
motorneurons [14]. Furthermore, atRA significantly reduces the voltage-gated calcium current [44]
and intracellular calcium levels of cultured Lymnaea somata [15], whereas 9-cis RA does not. As the
microdomain concentration and localization of calcium is an important determinant of growth cone
responses to many guidance cues [43,45], it is possible that the switch in growth cone responsiveness to
atRA during Cdc42 and Rac inhibition, is a result of changes in growth cone calcium signalling and/or
differential activation of calcium-dependent proteins in response to atRA, but not to 9-cis RA (or at
least, not to the same extent). Finally, it should be noted that not only do the Rho GTPases function
downstream of calcium to mediate growth cone turning, but can themselves also influence calcium
dynamics [21].

An interesting finding from this study was that either the involvement of Rac, or the actions of
the inhibitor, differed depending on whether the growth cones maintained their communication with
the cell body. That is, retinoid-induced chemoattraction of intact growth cones was blocked by Rac
inhibition, but the isolated growth cones continued to respond to both retinoid isomers in the presence
of the Rac inhibitor. GEFs promote the conversion of GDP to GTP to enhance Rac activation [33]. The
Rac inhibitor used in our experiments, NSC23766, binds to Rac and has been shown to competitively
inhibit the interaction between Rac and a subset of its GEFs, Tiam1 and Trio, thus preventing their
interaction and preventing activation of Rac. However, there are other GEFs that have been shown
to activate Rac [46] and one of these (Vav) is described as a promiscuous GEF that can bind to Rac
using an alternative mechanism [28]. It is thus possible that alternative GEFs, perhaps upregulated
or activated following neurite transection, allowed the activity of Rac to persist. As NSC23766 is a
competitive inhibitor of Rac, it can be displaced and its inhibitory actions reduced when the levels of
GEFs are increased [28]. Though we consider this unlikely, it is possible that GEF levels may have
increased sufficiently to displace NSC23766 in the transected neurites.

It is also plausible that neurite transection might have impeded the effects of the Rac inhibitor by
preventing the transport of certain signalling ligands or regulatory proteins (such as GEFs). The known
abundance and diversity of the many GEFs suggests a complex regulatory network [33]. Indeed, it
has been shown in bipolar C. elegans neurons that various GEFs can antagonize the effects of others in
different neurite processes [47]. This might suggest that disruption of communication with the cell
body, or even with other neurites, may have disrupted the regulatory interactions between various
GEFs in the transected Lymnaea neurites.

Another plausible explanation is that neurite transection may have triggered a compensatory
mechanism, either to activate Rac, or even different proteins/signalling pathways not normally involved
in retinoic acid-mediated chemoattraction. In Xenopus neurons, BDNF appears to activate an alternative
pathway which is less dependent on Cdc42 under certain pharmacological inhibitory conditions [19].
This alternate pathway appeared only when the activity of the more dominant Cdc42, as well as RhoA
pathways were blocked, indicating that the balance of Rho GTPase activity could potentially unmask
different signalling pathways. Furthermore, it has been shown that when the downstream target of Rac1,
actin related protein 2/3 complex (Arp2/3) was partially inhibited resulting in growth cone collapse,
feedback activation of Rac1 occurred, allowing growth cone recovery, even during persistent inhibition
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of Arp2/3 [48]. This suggests that feedback regulatory mechanisms likely exist in these signalling
pathways that, under certain conditions (such as pharmacological inhibition), may become active,
possibly reactivating the pathway (or even alternate pathways). Though it is well known that there is
crosstalk between the individual Rho GTPases, extensive crosstalk between the regulatory proteins
(as mentioned above for GEFs), has also been proposed. It is thus feasible that neurite transection
triggers activation of different signalling pathways during Rac inhibition (than when neurites are
intact), allowing the retinoid-induced chemoattraction to persist. As neurite transection also induces a
large influx of calcium [49], it is also possible that activation of alternate signalling pathways results
from this injury-induced spike in calcium levels. In summary, either reduced communication with the
cell body, or an injury response from neurite transection, might have resulted in activation of a different
or parallel mechanism to permit growth cone turning during Rac inhibition. Interestingly, when Cdc42
was inhibited, isolated growth cones failed to turn toward retinoic acid, perhaps suggesting the absolute
requirement for Cdc42 in this retinoid-induced chemoattractive response. However, it should be noted
that unlike the Rac inhibitor (NSC23766), the Cdc42 inhibitor, ML141, is an allosteric, non-competitive
inhibitor [26] that displaces nucleotides from Cdc42. As such, if neurite transection increased GEF levels
or induced alternate GEF activity, this would not have prevented the inhibitory action of ML141 in the
same manner as it might have for NSC23766 [28]. Finally, it is not yet known what the downstream
effectors of either Cdc42 or Rac are in this retinoid-mediated chemoattractive response, but potential
effectors may include invertebrate homologues of WASP proteins (which promote actin formation [50]),
or p21-acitvated kinases, whose substrates include cytoskeletal regulators [51].

The atRA and 9-cis RA-induced chemoattraction has previously been shown to be mimicked by
many retinoid receptors agonists [23,52]. As this is also the case for transected neurites [23], it indicates
a non-genomic role for retinoid receptors in growth cone turning. However, we cannot rule out the
possibility that the chemoattractive effects of retinoic acid may not always involve the RXR and RAR.
For example, there is evidence from other studies that retinoic acid directly modulates PKC, which
possesses a retinoic acid-binding site [11,12]. There is also evidence that retinoic acid can activate the
cAMP response element binding protein (CREB), independently of either RXR or RAR (at least in
tracheobronchial epithelial cells) [53].

In Lymnaea, both the RXR and RAR have been cloned [23,24] and are present in the neurites and
growth cones of these PeA motorneurons. It is proposed that attractive growth cone turning entails the
accumulation of functional membrane receptors and cytoskeletal components on the side of the growth
cone closest to the chemoattractant [54]. However, the retinoid receptors have been detected in both
membrane and cytoplasmic compartments in Lymnaea neurons [23,24] and as retinoic acid can diffuse
across neuronal membranes, the activation of receptors in this case, may occur internally in the growth
cone, rather than in the membrane. It will thus be of interest to determine whether either of these
retinoid receptors become asymmetrically distributed during attractive growth cone turning, and if so,
whether the Rho GTPases are involved in facilitating their transport through cytoskeletal-dependent
vesicle transport.

The process of growth cone guidance is one that is multifaceted, involving extracellular guidance
cues, intracellular signalling cascades and cytoskeletal rearrangements. While progress has been made
in the identification of numerous guidance molecules and their receptors, gaps still remain in the
understanding of intracellular signalling pathways that regulate growth cone dynamics. Although
much is known about the ability of retinoids to mediate neurite outgrowth during nervous system
development, the cellular and molecular mechanisms underlying growth cone pathfinding by retinoids
remain largely unknown. We have provided further evidence that many of the same signalling
processes (such as local protein synthesis, calcium, and now Rho GTPases) utilized by traditional
proteinaceous guidance cues, are also utilized by retinoic acid.

Overall, these studies have revealed a mechanism in which Cdc42 and Rac are downstream
effectors of retinoic acid and regulate growth cone guidance. We demonstrated that the inhibition of
Cdc42 and Rac not only blocked growth cone turning toward atRA and 9-cis RA, but in the case of
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atRA, also induced a switch in growth cone responsiveness from attraction to repulsion or collapse.
Furthermore, we showed that the inhibition of Rac produced differing effects on intact or isolated
growth cones, with isolated growth cones maintaining their response to retinoids. In conclusion, our
findings indicate that the Rho GTPases, Cdc42 and Rac, control the directional motility of growth cones
in response to retinoic acid.
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