## Integrated approaches to reveal genes crucial for tannin degradation in *Aureobasidium melanogenum* T9

Lin-lin Zhang<sup>a, #</sup>, Jie Li<sup>b, #</sup>, Yi-Lin Wang<sup>c</sup>, Song Liu<sup>d</sup>, Zhi-Peng Wang<sup>e, \*</sup>, Xin-Jun Yu<sup>f</sup>

- <sup>a</sup> College of Chemistry & Environmental Engineering, Shandong University of Science & Technology, Qingdao, 266510, China.
- <sup>b</sup> Laboratory for Marine Fisheries and Aquaculture-Qingdao National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
- <sup>c</sup> College of Science, China University of Petroleum, Qingdao, 266580, China.
- <sup>d</sup> Development & Reform Bureau, West Coast New Area, Qingdao 266000, China.
- <sup>e</sup> Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China.
- <sup>f</sup> Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
- \* Correspondence: spirit87@163.com
- <sup>#</sup> The authors contributed equally.

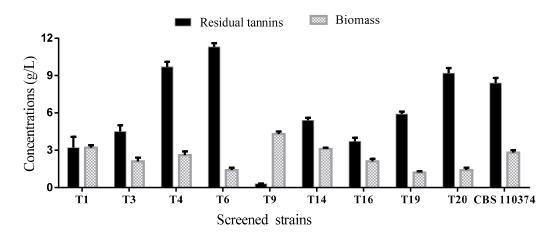



Fig.S1 Tannic acid degradation by different Aureobasidium spp. strains

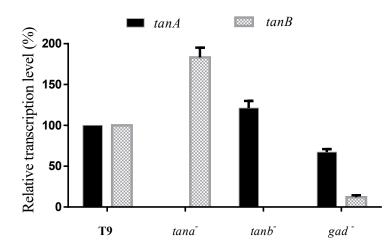



Fig. S2 Transcriptional level analysis of *tanA* and *tanB* genes in different strains