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Abstract: MicroRNAs (miRNAs), the post-transcriptional gene regulators, are known to play an
important role in plant development. The identification of differentially expressed miRNAs could
better help us understand the post-transcriptional regulation that occurs during maize internode
elongation. Accordingly, we compared the expression of MIRNAs between fixed internode and
elongation internode samples and classified six differentially expressed MIRNAs as internode
elongation-responsive miRNAs including zma-MIR160c, zma-MIR164b, zma-MIR164c, zma-MIR168a,
zma-MIR396f, and zma-MIR398b, which target mRNAs supported by transcriptome sequencing.
Functional enrichment analysis for predictive target genes showed that these miRNAs were
involved in the development of internode elongation by regulating the genes respond to hormone
signaling. To further reveal how miRNA affects internode elongation by affecting target genes, the
miRNA–mRNA–PPI (protein and protein interaction) network was constructed to summarize the
interaction of miRNAs and these target genes. Our results indicate that miRNAs regulate internode
elongation in maize by targeting genes related to cell expansion, cell wall synthesis, transcription,
and regulatory factors.
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1. Introduction

The greatest improvements of maize (Zea mays L.) grain yield have been largely related to plant
density and nitrogen fertilizer application [1,2]. However, excessive N fertilizer application and high
planting density cause poor lodging resistance by forming weak basal internodes and increasing the
height of the stem center of gravity [3,4]. Grain crop lodging includes stalk lodging and root lodging [5].
Stalk lodging is caused by bending or breaking of the lower internodes, while root lodging results
from a failure in root soil integrity [6,7]. Plant height is an important character that determines the
resistance of plants to stalk lodging [8]. Biologically, average internode length and internode number
are the two main contributors of plant height and ear height, with average internode length being an
important component of these traits [9]. In maize, stalk lodging positively correlates with the length
of basal internodes [10,11]. Stalk lodging due to bending or breaking occurs most frequently at the
third to fifth basal elongation internodes above ground, which is the seventh to ninth internodes
of maize [12–14]. Therefore, it is of great significance to study the elongation mechanism of maize
internodes, especially the seventh to ninth elongation internodes, for maize plant height regulation
and lodging resistance cultivation.

Developmental stages of specific organs have been associated with different expression trends [15,16],
epigenetic modifications [17], and posttranscriptional modification [18] at the molecular level. Numerous
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studies have shown that internode elongation can be altered by modifying the expression of a transcription
factors that activate downstream target genes. Transcription factors related to internode elongation mainly
include ERFs, WRKYs, and TCPs. Ethylene-response AP2/ERF factor OsEATB and WRKY transcription
factor OsWRKY78 regulate internode elongation by downregulating a gibberellin biosynthetic gene [19,20].
In addition, the ERF11 transcription factor promotes internode elongation by activating gibberellin
biosynthesis and signaling [21]. AtTCP14 and AtTCP15 influence internode length by promoting cell
division in Arabidopsis [22]. MicroRNAs are approximately 21-nucleotide noncoding RNAs, which
function through heterochromatin modification, post-transcriptional gene silencing, or translational
inhibition, especially in epigenetic gene regulation [23]. miRNAs are widely found throughout the plant
kingdom and highly conserved among plant species, including monocotyledons and dicotyledons [24].
Functional genomic studies have shown that mRNA cleavage and translational inhibition triggered by
homology-mediated pairing of plant miRNAs with their mRNA targets are involved in a wide range
of developmental processes [25–28]. In the past few years, knowledge about the roles of miRNAs
in regulating stem development has increased significantly. Recent studies found that the defective
expression of miR159 can also cause a decrease in plant height in rice [29]. The stunting and abnormal
internode elongation of Paulownia were related to the expression level of MIR164 [30]. miR166 mediated
ATHB15 mRNA cleavage is a principal mechanism for the regulation of vascular development in
Arabidopsis inflorescence stems [31]. In rice, the expression of OsMIR396d affects cell elongation and
division, thereby affecting internode elongation [32]. Furthermore, zma-miR169 and zma-miR396 play
important roles in cell division and expansion in the internodes caused by hormone signals [32–34].
Moreover, OsmiR397 regulates its target gene, OsLAC, which is involved in the brassinosteroid sensitivity
of the plants, leading to increases in internode length [35].

In summary, all these studies indicated that certain miRNAs play important regulatory roles in
internode elongation. Although miRNAs associated with internode elongation have been extensively
investigated in several plant species, to our knowledge, little information has been available to form
a systematic view of miRNAs in maize internode elongation. Furthermore, stem lodging due to
internode bending or rupture between seventh and ninth node causes 5%–25% of the annual loss
of maize yield [12–14]. Therefore, it is essential to explore the molecular mechanisms of miRNAs
involved in the regulation of basal internode elongation in maize. The main purposes of this
study were to investigate the roles of miRNAs involved in the elongation of basal internodes above
ground and to analyze the relationships of miRNAs and their target genes related to internode
elongation. In this study, we generated and sequenced six maize RNA libraries from the seventh
fixed and ninth elongating internodes on the third, fourth, or sixth day after the ninth spreading leaf.
A whole-genome-wide identification of miRNAs was performed based on Solexa high-throughput
sequencing technology for comprehensively understanding the changes of miRNAs expression patterns
in the six samples and obtaining miRNAs related to internode elongation. Subsequently, we also
analyzed the co-expression patterns between the expression profiles of miRNAs and their targets
and constructed the miRNA–mRNA–PPI (protein–protein interaction) network to summarize the
interaction of miRNAs and these targeted genes. Our studies contribute to understanding the possible
roles of miRNAs and their targets in internode elongation of maize.

2. Materials and Methods

2.1. Plant Material, Growth Conditions, and Phenotypic Evaluation

The elite inbred line, ‘B73′ was used as the material in this study. Corn was grown in a glass
greenhouse using soil culture. The growth conditions were 25 ◦C day temperature and 18 ◦C night
temperature, accompanied by 16 h light and 8 h darkness. The materials were divided into two
groups, one group was used for evaluating the length of seventh and ninth internode below the ear in
four biological replicates. The internode length was measured from the ninth unrolled leaf for eight
consecutive days. The other group was used as material for RNA deep sequencing. The sampling sites
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for seventh (seventh fixed node) and ninth (ninth elongating node) are respectively 4 mm in the 1 cm
region at the top of the node, FR_7, and 4 mm in the 1–2 cm (elongation) region at the base, denoted as
ER_9. Each part was sampled and repeated three times on the third, fourth, and sixth days after the
ninth leaf was unrolled.

2.2. RNA Sequencing

Total RNA was purified from the 3, 4, and 6 d internode samples using Trizol reagent (Invitrogen)
according to the manufacturer’s protocols. The concentration of RNA was measuring by Nanodrop2000
(NanoDrop Technologies) and the quality of RNA was determined by a 2100 Bioanalyzer (Agilent).
When the quality of RNA was high (OD260/280 = 1.8~2.2, OD260/230 ≥ 2.0), the libraries were built.
The samples of two internodes were selected for library construction, and 20 µg of total RNAs from
each internode was supplied for Solexa deep sequencing. Libraries were sequenced with a read length
of 100 bp (paired-end) and an insertion size of 300 bp on Illumina Genome analyzer (Majorbio, Beijing,
China). SeqPrep (https://github.com/jstjohn/SeqPrep) and Sickle (https://github.com/najoshi/sickle)
were used for the quality checks. Then, all high-quality reads were mapped to the B73 reference
sequence (RefGen_v3) by using HISAT2 (http://ccb.jhu.edu/software/hisat2/index.shtml). The RNA-Seq
data are deposited in Sequence Read Archive of the National Center for Biotechnology Information
under the submission number SUB6197337.

2.3. Differential Gene Expression Analysis of miRNAs and mRNA

The frequency of miRNAs and mRNA was normalized as FPKM (fragments per kilobase per
million reads) to correct copy numbers among different libraries. If the normalized read count of a
given miRNA or mRNA was zero, the expression value was modified to 0.001 for further analysis.
The fold change between the elongating internode and fixed internode was calculated as: Fold
change = ER/FR. Additionally, |log2FC| ≥ 1 and P-adjust ≤ 0.05 were considered to be upregulated or
downregulated in response to internode elongation, respectively. The P-value was calculated according
to previously established methods [36]. Series test of cluster (STC) algorithm was used to analyze the
dynamics of gene expression and observe the gene expression changes under different situations. The
raw expression value was converted to log2 FPKM. Through clustering analysis of the expression
trends of differentially expressed miRNA and mRNA in each group, the unique expression profiles
were established.

2.4. Target Gene Prediction and Identification

PsRNATarget (http://plantgrn.noble.org/psRNATarget) was used to predict mRNA targets of plant
miRNAs. The criteria for selection were allowing no more than three nucleotides mismatches, no more
than one nucleotide base indels, and fewer than five G–U pairs of sequences. The predicted target
genes were aligned with BLAST (http://blast.ncbi.nlm.nih.gov/) and annotated with Gene Ontology
(GO) terms (http://www.geneontology.org/). The target genes were then mapped to the B73 maize
genome (Version 2.0, http://www.maizegdb.org). To confirm the putative target of miRNA, the global
changes was used to analyze the following data sets: Different miRNA expressed profiling (FR_7_3d
versus ER_9_3d; FR_7_4d versus ER_9_4d; FR_7_6d versus ER_9_6d) and transcripts (FR_7_3d versus
ER_9_3d; FR_7_4d versus ER_9_4d; FR_7_6d versus ER_9_6d). Target genes that were negatively
correlated with miRNA expression were selected.

2.5. Function Enrichment Analysis

In order to evaluate the miRNA-gene regulatory network, the target sequences were annotated
with agriGO software (http://systemsbiology.cau.edu.cn/agriGOv2/index.php) for specifying GO items
to study the putative functions. The GO terms in the genes list were set against the background of
all the genes in the genome. GO analysis was used to analyze the major functions of specific genes
in the profiles of representative differentially expressed miRNA target genes. Only GOs that had a
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P-value of <0.05 were chosen. Enrichment provides a measure of the significance of the function: As
the enrichment increases, the corresponding functions are more specific, which helps us to find GOs
with more specific function descriptions in the experiment.

2.6. Construction of miRNA–mRNA and PPI Networks

mRNA was selected based on the prediction of miRNA target genes and the principle that
the expression pattern of mRNA was negatively correlated with miRNA from expression profiles.
Furthermore, combining the differentially expressed miRNAs and mRNAs, a core miRNA–mRNA
regulatory network was constructed by using the Cytoscape software. In the miRNA–mRNA network,
the relationship between miRNA and mRNA was represented by an edge. In order to further analyze the
interaction between miRNA target genes, the identified target genes were used for PPI (protein–protein
interaction) analysis. The protein names were obtained on Uniprot (https://www.uniprot.org) and
NCBI (https://www.ncbi.nlm.nih.gov/protein/). ‘The relationship between proteins is realized through
STRING: Function protein association networks (https://string-db.org). Then, a protein–protein
interaction network was constructed by using the Cytoscape software. The thickness of the edges was
adjusted from the combined score. The size of nodes was determined by the count of the interactions.

3. Results

3.1. Development of Internodes

After the ninth leaf was expanded, the length of the seventh internode did not change significantly
at the time points (1, 3, 5, and 7 d). The length of the seventh internode was about 10.5 cm. The
elongation trend of the ninth internode presented an s-shaped curve with the length of the ninth
internode continuously increasing. The final length of the ninth internode was approximately 12.4 cm.
The elongation rate first increased and then decreased, and the internode elongation rate of three to six
days was higher, among which the maximum elongation was on the fourth day (Figure 1B).
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Figure 1. Changes in the length of the seventh and ninth internodes. (A) Phenotypes of seventh and
ninth internodes length in B73. The bottom half shows the phenotype of the ninth internode from day 1
to day 7 after nine leaves of maize were unfolded. The top half shows the phenotype of the seventh
internode on day 1, 3, 5, and 7 after nine leaves of maize were unfolded. (B) Elongation curves of the
seventh and ninth internodes after nine leaves of maize were unfolded. The blue dots from left to right
indicate the length of the ninth internode from day 1 to day 8. The orange dots from left to right indicate
the length of the seventh internode on day 1, 3, 5, and 7 after nine leaves of maize were unfolded.
Values are means ± SE of four biological replicates. The data are presented in Supplementary Table S1.

3.2. Identification of miRNAs Associated with Internode Elongation

In order to describe the expression pattern of MIRNAs in the process of internode elongation,
transcriptome sequencing was performed on samples taken at different time points, which were in
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a high internode elongation rate. Thus, we selected 3, 4, and 6 d internode samples to construct
RNA libraries. Six total RNA libraries were built from the 1 cm region of seventh fixed node top
and the 1 cm elongation region of ninth elongating internode base, with three sample repeats for
each treatment. Through homologous analysis, we identified known miRNAs following the selection
criteria for miRNA sequences with a length of at least 18 nt, and there were at most two mismatches
compared with all known plant miRNA sequences in miRBase 22.1. Among these known miRNAs,
more than 14 miRNAs were common across the four libraries, and less than three miRNAs were specific
to internode elongation (Figure 2A). For example, zma-MIR160c, zma-MIR164c, and zma-MIR396f were
expressed only in elongating internode region samples, while zma-MIR169m was expressed only in the
fixed internode samples. In addition, the internode sample on the third day after the ninth spreading
leaf shared two miRNA families that did not occur in the fourth day in elongating internode region,
zma-MIR159f and zma-MIR319d. Zma-MIR164d was specifically expressed in the fourth day fixed
internode library.
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Figure 2. Distribution of microRNAs (miRNAs) at different stages of internode elongation. Comparison
of miRNAs identified between fixed internode region and elongation area. (A) Venn diagram of
miRNAs associated with internode elongation at FR and ER after nine leaves of maize were unfolded.
The 1 cm region of seventh fixed node top and the 1 cm (elongation) region of ninth elongating node
base are denoted as FR and ER, respectively. (B) Temporal patterns of microRNA expression in both
fixed and elongating internode samples. (C) miRNAs specifically expressed in the elongating internode
samples; (D) microRNAs specifically expressed in the fixed internode samples. The color bars show
log2 FPKM (fragments per kilobase per million reads). FR, seventh fixed internode region; ER, ninth
elongating internode region; 3d, 4d, or 6d, the third, fourth, or sixth day after the ninth spreading leaf.
The data are presented in Supplementary Tables S2 and S3.

Among the identified miRNAs, 22 known miRNAs were used to analyze differential expression
during internode elongation. Fourteen miRNAs were identified by comparing the expression profiles,
which were differentially expressed between the fixed and elongating internode samples. Based
on the expression patterns of 14 known miRNAs during internode elongation, three clusters were
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constructed by cluster analyses (Figure 2B). Cluster I and Cluster II contained the same expression
pattern, showing a lower or higher expression, both at fixed and elongating internodes; Cluster III
contained miRNAs with opposite expression patterns at fixed and elongating internodes. Three
microRNAs were expressed only in elongating internode samples, which show the same expression
pattern in the process of internode elongation (Figure 2C). Zma-MIR169m was expressed only at fixed
internode, while it presented a change of expression level in different time processes (Figure 2D).

3.3. Comprehensive Analysis for Predictive Target Genes of miRNA

To investigate the relationship between differentially expressed miRNAs and internode elongation,
gene ontology (GO) analyses were applied. MIR160c, MIR164b, MIR164c, MIR168a, MIR396f, and
MIR398b were selected, which had showed extremely significant differential expression in elongated
and fixed regions at the different time points (Figure 2). Based on target prediction, more than 200
genes were identified as the potential target genes of these six miRNAs. GO analysis of representative
profiles of miRNA putative target genes is shown in Figure 3. Gene ontology enrichment analysis of
biological process revealed that miRNA can participate in a single-organism cellular biological process
through gene silencing by RNA and auxin signaling pathway. miRNAs could negatively regulate
gene expression through RNA-induced gene silencing, thereby regulating biological and metabolic
processes. More importantly, miRNAs regulated cellular and single-organism processes by mediating
cell responses to auxin stimulus metabolic process via auxin activated signaling pathways (Figure 3A).
GO terms were mainly related to regulation of gene expression, signaling pathway, metabolism, and
development associated process, such as gene silencing, auxin-activated signaling pathway, and cellular
response to auxin stimulus on the biological process level (Figure 3B). On the cellular component
level, GO terms mainly included intracellular organelle, nucleus, and intracellular membrane-bound
organelle (Figure 3C). On the molecular function level, GO terms were mainly involved in nucleic acid
binding, DNA binding, protein binding, and enzyme activity (Figure 3D).

3.4. Identification and Analysis for Target Genes of Internode Elongation Related miRNA

The global changes in the expression patterns of miRNA and mRNA during internode elongation
were compared in maize. As we all known, miRNA leads to downregulation of target gene expression
at the transcriptional or translation level [37]. Negative correlation between miRNA and its target genes
has been reported in the literature. By conjunction with the predicted miRNA targets, further analyzing
and integrating expression profiles of microRNA and mRNA, we identified six miRNA–mRNA sets
potentially involved in the regulation of internode elongation following the negative correlation.
miRNA and mRNA expression profiling analysis confirmed the inverse expression patterns between
miRNAs and their target mRNAs, with the exception of very few target genes (Figure 4). In the process
of internode elongation, MIR160c, MIR164b, MIR164c, and MIR396f were dramatically induced. With
the gradual termination of internode elongation, the upregulated levels of the four miRNAs were
gradually decreased. Their target mRNAs showed the expected negative regulation pattern. To our
surprise, Zm00001d020921, Zm00001d003048, Zm00001d000358, Zm00001d035605, Zm00001d019299,
Zm00001d019044, Zm00001d048101, and Zm00001d003048 showed no remission of inhibition or even
decreased expression level with the decrease of miRNA expression level (Figure 4A–C). During the
internode elongation, the inhibition of the expression levels of MIR398b and MIR168a is attenuated
over time. Consistent with this, the upregulation levels of most target genes are gradually decreasing.
Interestingly, Zm00001d047395, Zm00001d033863, and Zm00001d047373 were not inhibited with the
increase of miRNA expression level (Figure 4D,E). The interaction between proteins of target genes
may affect the regulation of miRNAs on the expression level of target genes.
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associated with internode elongation. Gene ontology enrichment analysis of biological process (A).
−Log2 (P-value) of the corresponding biological process (B), cellular component (C), and molecular
function (D). Log2 (P-value) is the negative logarithm of P-value; a bigger Log2 (P-value) indicates a
smaller P-value. Detailed data are presented in Supplementary Tables S4 and S5.

GO analysis was performed on target genes of internode elongation-related miRNAs. GO analysis
of target genes identified by miRNA and mRNA transcriptome is shown in Figure 5. The target genes
of the differentially expressed miRNAs were classified into 18 categories: seven biological processes,
three molecular functions, and eight cell component categories. They were mainly related to regulation
of gene expression, metabolism, and development-associated process, such as gene silencing, cellular
process, and cellular macromolecule biosynthetic process on the biological process level. Within the
molecular function category, GO terms were mainly involved in nucleic acid binding and DNA binding.
On the cellular component level, GO terms mainly included intracellular organelle, nucleus, and
organelle (Figure 5).
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Figure 5. GO analysis for targeted genes of representative differentially expressed miRNA. −Log2
(P-value) of the corresponding biological process (BP), molecular function (MF), and cellular component
(CC). Log2 (P-value) is the negative logarithm of P-value; a bigger Log2 (P-value) indicates a smaller
P-value. The data are presented in Supplementary Tables S5 and S6.

3.5. Analysis of the miRNA–mRNA Network and Construction of PPI

Based on these miRNAs and their targeted genes, the miRNA–mRNA network was
constructed to summarize the interaction of miRNAs and these targeted genes. As shown
in Figure 6, these upregulated miRNAs that had higher degree were in the center of the
network. For example, ZmNAC30 (Zm00001d016950), ZmNAC108 (Zm00001d041472), ZmNAC113
(Zm00001d014405), ZmMYB22 (Zm00001d008528), Uncharacterized protein (Zm00001d018118),
Harpin-induced protein (Zm00001d039279), Cupredoxin superfamily protein (Zm00001d052191),
and laccase-17 (Zm00001d042905) are the presumed targets of zma-MIR164b/c. The network of four
upregulated miRNAs, including zma-MIR160c, zma-MIR164b, zma-MIR164c, and zma-MIR396f, may
repress the gene expression of transcription factors, for example, WRKY30 (Zm00001d044010), MYB22
(Zm00001d008528), NAC30 (Zm00001d016950), and NAC113 (Zm00001d014405) respectively. In addition,
the decreased miRNAs including zma-MIR168a and zma-MIR398b lead to the increased expression of
their target genes bZIP transcription factor to regulate related signal transduction.
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Figure 6. The biomolecular networks for miRNA–mRNA and STRING protein interaction (between
the genes, the specific interactive mode will not be discussed here). The network for miRNAs and their
target mRNA and their relationship is represented by a black edge. The pink circles mean upregulated,
and the yellow circles mean downregulated. The blue hexagon represents the protein translated by the
target gene. The thickness of the edges is adjusted from the gradient of the combined score. The size of
nodes is determined by the count of the interactions. The mRNA and the protein are connected by blue
lines. (Figure 6 is designed using open source software STRING and Cytoscape 3.4.0). More details can
be found in Supplementary Table S7.

In order to further analyze how miRNA affects internode elongation by affecting target genes, PPI
(protein and protein interaction) analysis was performed on identified target genes. As shown in Figure 6,
ARF15 (Zm00001d051172) interacts with four proteins which are the target genes of zma-MIR164b/c,
named ZmNAC113 (Zm00001d014405), ZmNAC30 (Zm00001d016950), ZmNAC40 (Zm00001d050893),
and laccase-17 (Zm00001d042905). TDT (tonoplast dicarboxylate transporter, Zm00001d016950),
NAC113 (Zm00001d014405), and PRP45 (Pre-mRNA-splicing factor prp45, Zm00001d052186) could
interact with each other. ZmNAC108 (Zm00001d041472) and ZmNAC110 (Zm00001d024268) are target
genes of zma-MIR164 b/c too. They could interact with TDT protein (Zm00001d016950). Putative RNA
helicase family protein (Zm00001d008326), MYB21 (Zm00001d035605), and MYB22 (Zm00001d008528)
are the interacting proteins of PRP45 (Zm00001d052186), and they are all the target genes of
zma-MIR164b. Unknown protein (Hypothetical protein, Zm00001d002530) and Ubiquilin-1 (Ubiquitin
domain-containing protein DSK2b, Zm00001d047373), both targets of zma-MIR168a, are interacting
proteins. Different target genes of certain microRNA tend to have common interacting proteins, which
may be caused by the resemblances of protein sequences caused by the high similarity of sequences
within the different target genes. miRNA and target sequences have extensive complementarity. This
can be explained by the wide complementarity of miRNA with target sequences and the tendency of
miRNA to act on multiple members of a protein family.
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4. Discussion

4.1. miRNAs Involved in Maize Internode Elongation

miRNAs, the post-transcriptional gene regulators, are known to play an important role in the
process of growth and development. The identification of differentially expressed miRNAs could
better help us understand the post-transcriptional regulation that occurs during internode elongation.
Accordingly, we compared the expression of miRNAs between fixed internode and elongation internode
samples and classified six differentially expressed miRNAs as internode elongation-responsive
miRNAs, which target mRNAs supported by transcriptome sequencing. zma-MIR160c, zma-MIR164b,
zma-MIR164c, and zma-MIR396f were upregulated in the development of internodes under maize
ear. In contrast, zma-MIR168a and zma-MIR398b were downregulated during internode elongation
(Figure 2). Target prediction and functional annotation of the significantly differentially expressed
microRNAs recognized microRNAs potentially associated with plastic internode elongation in maize
(Figure 3). Identification and analysis for target genes of internode elongation related miRNA further
confirmed that miRNA could participate in internode elongation of maize (Figures 4 and 5). Similar
results have previously been observed in other species. For example, zma-miR160 can affect the
development of the lower internode of maize ear through hormone signal transduction [38]. In addition,
the expression of zma-miR168 was associated with heterosis of internode elongation in hybrids [34].
The stunting and abnormal internode elongation of Paulownia were related to the expression level
of miR164 [30]. In rice, the expression of OsMIR396d affects cell elongation and division, thereby
affecting internode elongation [32]. Furthermore, the silencing of OsmiR398a leads to the phenotype of
significantly shortened internodes in rice [39]. These results indicate that the miRNAs in maize inbred
line B73 were similar to other species during internode elongation.

The regulation of miRNA on mRNA expression is mainly achieved through the splicing of the
target mRNA or repression of target protein translation. In the present study, the target genes of the
screened miRNA target genes related to internode elongation were mostly the transcriptional and
translational regulation factors that may affect global changes in gene expression. Transcription factors
regulated by miRNAs may be crucial for internode elongation, which accounts for one-third of miRNA
target genes. In addition to transcription factors, we also found that miRNAs target kinase, helicase,
oxidoreductase, transferase, transporter, and protein-coding genes that play roles in the progress of
internode elongation (Figure 7).
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4.2. miRNAs Affect Cell Expansion and Cell Wall Synthesis by Regulating Their Targets in Maize

Previous studies have demonstrated that TDT (tonoplast dicarboxylate transporter) is critical
for the regulation of pH homeostasis under altered pH conditions [40]. pH levels are necessary for
dilatation protein activity [41]. Cell wall acidification resulted in upregulation of the protein abundance
and gene expression of dilation, which was critical for internode growth due to cell elongation [40,42,43].
In this study, ZmTDT (Zm00001d020921) was inferred to be a target gene of zma-MIR160c, which
means that zma-MIR160c may affect cell pH and thus control internode development by regulating the
expression of ZmTDT. In addition, potassium is used as a major active solute to maintain turgor and
to drive irreversible and reversible changes in cell volume. K+ concentration gradient caused by the
potassium (K+) transporter can lead to a change in cell volume [44]. Moreover, EXPA1 is an active
dilatation protein and its expression is associated with internode elongation [45,46]. It is possible that
zma-MIR164b mediates cell expansion by targeting potassium (K+) transporter (Zm00001d036621) and
affecting the expression of ZmEXPA1 (Zm00001d043047, Figure 4).

The reduced expression of OsRhoGDI2 conferred hypersensitivity to gibberellin (GA) stress in
rice [47]. Therefore, in the process of internode elongation, the highly expressed zma-MIR164b may
improve the sensitivity to gibberellin by inhibiting the expression of ZmRhoGDI1 (Zm00001d010398,
Figure 4). In addition, miR164b regulates Hpa1-induced plant growth enhancement and
associated physiological and molecular responses. The harpin protein, Hpa1, induces a variety
of growth-promoting responses in rice, activating the ethylene and gibberellin signaling pathways,
improving photosynthesis rates and EXPANSIN (EXP) gene expression levels, and thereby promoting
vegetative growth [48]. Previous studies have found that 65 kDa MAP is involved in the
elongation growth of azuki bean epicotyls [49]. It is possible that zma-MIR164c targets 65 kDa
MAP (Zm00001d020685) to regulate plant microtubules, thus leading to the elongation of plant cells.

In order to maintain the integrity of the wall and to adjust its properties to adapt to the changing
needs of the cell, plants respond to the growth of the stem by remodeling matrix polysaccharides
and by regulating the cell wall biosynthetic machinery. Hybrid proline-rich proteins (HyPRPs)
are crucial players in cell elongation. Proline transporter 2 (Zm00001d042438), the putative target
gene of zma-miR164c, plays an important role in plant development by providing proline as a
source of nitrogen and energy and a component of plant cell wall proteins, which is required
for lignifications, xylem differentiation, and cell wall modification during plant development [50].
Meanwhile, Nucleotide-diphospho-sugar transferase (Zm00001d034844, the zma-MIR160c putative
target gene), glycosyltransferase (Zm00001d053715, the zma-MIR164b putative target gene), and
hexosyltransferase (Zm00001d049617, the zma-MIR398b putative target gene) affect the cell wall
development of elongated internodes by participating in the transition from primary cell wall to
secondary cell wall synthesis [51]. Laccases-17 (Zm00001d042905) are correlated with lignin biosynthesis
in Arabidopsis and Zinnia stem tissues [52,53]. Furthermore, OsLAC was found to be involved in the
sensitivity of plants to brassinosteroids [35]. This suggests that zma-MIR164b may affect the synthesis
of lignin during internode development by acting on Laccase (Zm00001d042905). Stellacyanin, a
germin-like protein, was described an oxalate oxidase, strongly associated with hemicelluloses, the
synthesis of which is linked to the increase in cell wall extensibility [54]. zma-MIR396f may target
stellacyanin (Zm00001d048101) to affect cell fibrogenesis during internode elongation [55].

4.3. miRNAs Targeting Transcription and Regulatory Factors Are Involved in Internode Elongation

Half of the targets were found to be transcription factors (TFs) and regulators of plant development.
These include auxin-responsive genes, members of the WRKY transcription factor family, the MYB
transcription factor family, the NAC transcription factor family, ARF transcription factor family, bZip
transcription factor family, the transcription elongation factor (TFIIS) family, the zinc finger-like family
and regulators (Figure 7).

In order to adapt to the changing needs of cells, plants regulate the biosynthesis mechanism of
cell walls in response to stem growth. zma-MIR164c could affect the dynamic properties of cell walls
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by acting on regulatory factor RLKL (receptor-like kinase-like, Zm00001d019044) that regulate cell
wall function [56,57]. Elongator mutants (abo1/elo2/elp1, elp2, elo3/elp3, and elo1/elp4) have reduced
root growth, abscisic acid hypersensitivity, and an increased accumulation of anthocyanins [58,59].
zma-MIR164c may affect the sensitivity to ABA by acting on ELO1 (elongation defective-like1,
Zm00001d033637), thus affecting the internode elongation. Previous findings demonstrate that RTE1
(REVERSION-TO-ETHYLENE SENSITIVITY1, Zm00001d038852) is a negative regulator of ethylene
signaling, which means zma-MIR164c may affect internode elongation by ethylene signaling [60].
Moreover, it has been found that cry1 (cryptochrome 1) mediates photoreceptor signaling networks
in plant responses to shade [61]. This means zma-MIR398b may be involved in stem elongation
by regulating ZmMCH3 (maize CRY1 homolog3, Zm00001d036565). Furthermore, ZmAGO1
(Zm00001d011096), a negative feedback regulator of the RNA-induced silencing complex (RISC),
was predominately repressed in the elongating internode of the B73 [62]. Furthermore, ZmPRP45
(Zm00001d052186), a zma-MIR396f putative target gene, is spliceosome associated throughout the
splicing process and is essential for pre-mRNA splicing [63]. In addition, transducin related to protein
targeting was upregulated due to downregulation of zma-MIR398b (Zm00001d047392) and plays an
important role in the internode elongation [64].

WRKY proteins are a large super family of transcriptional regulators primarily involved in various
plant physiological programs. GhWRKY15 was greater in the stems compared with the expression in
the cotyledon of cotton, and the stems of transgenic tobacco displayed faster elongation compared with
wild-type plants [65]. Moreover, the WRKY transcription factor regulates stem elongation in rice [20].
The conserved function of MlWRKY12 existing in secondary cell wall formation of monocotyledonous
species has been revealed [66]. It is possible that expression of zma-MIR160c, which acts on the WRKY
transcription factor (WRKY74, Zm00001d044010), enhances cell division in the internodes.

ARFs are the important TFs in the auxin signaling pathway, regulating the transcription of
auxin-responsive genes. AtARF10, AtARF16, and AtARF17 in Arabidopsis are the targets of miR160 [67].
In addition, genome-wide analyses of target genes of an auxin response factor (ARF6) that regulates
hypocotyl elongation have also been done [68]. In the present work, zma-MIR160c were validated to be
upregulated in ninth elongating internode. It seemed to play a negative regulation role in regulating
internode elongation of basal elongation internodes above ground.

Major functions of MYB are regulated by miRNA include primary and secondary metabolism,
cell fate and identity, developmental processes, etc. [69]. Previous studies have shown that MYBs are
targeted by miR159, miR828, and miR858 in Arabidopsis and Gossypium hirsutum [70,71]. Functional
deletion mutation in OsGAMYB leads to internode elongation [72]. This may be related to the
regulation of MYB21 by gibberellin [73]. NAC1 is induced by auxin and acts downstream of TIR1 [74].
In addition, a gibberellin-mediated DELLA-NAC signaling cascade regulates cellulose synthesis in
rice [75]. Furthermore, zma-miR164 was dominantly repressed in the hybrid, which indicated that
NAC transcription might be upregulated and result in enhancement of auxin and GAs signals, followed
by the expansion of internodes [34]. In the current work, zma-MIR164 was upregulated at the ninth
internode, which may be related to tissue specificity and plant materials.

5. Conclusions and Prospects

In conclusion, we compared the expression of miRNAs between fixed internode and
elongation internode samples and classified six differentially expressed miRNAs as internode
elongation-responsive miRNAs. These miRNAs might regulate the internode elongation and
development by their targets associated with transcription factor, regulatory factor in plant development,
cell expansion, and cell wall synthesis. The miRNA–mRNA–PPI (protein and protein interaction)
network was constructed to summarize the interaction of miRNAs and these targeted genes to further
reveal how miRNA affects internode elongation by affecting target genes. The involvement of miRNAs
and their targets contribute to understanding the possible roles of miRNAs in internode elongation
of maize.



Biomolecules 2019, 9, 417 13 of 16

However, our understanding of mechanism through which the miRNAs regulate internode
elongation in maize is just beginning. The main miRNA–mRNA interactions, identified here to have
a role in regulating internode elongation, require further investigation. Identification of target gene
splicing sites by miRNA is imperative. In addition, it is necessary to detect the tissue expression sites
of miRNA and target genes by in situ hybridization. STRING protein interactions have found that
several target genes of certain microRNA tend to have common interacting proteins, which need to be
further verified. Furthermore, the use of transgenic and gene-editing methods to alter the expression
levels of internode elongation-related miRNAs will contribute to their functional identification. This
provides a valuable reference for future functional analysis.
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