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Abstract: Lycium barbarum polysaccharides (LBPs), as bioactive compounds extracted from L. barbarum
L. fruit, have been widely explored for their potential health properties. The extraction and structural
characterization methods of LBPs were reviewed to accurately understand the extraction method
and structural and biological functions of LBPs. An overview of the biological functions of LBPs,
such as antioxidant function, antitumor activity, neuroprotective effects, immune regulating function,
and other functions, were summarized. This review provides an overview of LBPs and a theoretical
basis for further studying and extending the applications of LBPs in the fields of medicine and food.
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1. Introduction

Lycium barbarum L., known as the wolfberry or goji berry, the fruits derived from Lycium barbarum
L, are a local food that is widely distributed in the arid and semi-arid regions of China, Korea, Japan,
Europe, North America, and the Mediterranean. Currently, China is the largest world producer with
its 82,000 ha of cultivated land and 95,000 t of berries produced per year. The earliest use of the goji
berry as a medicinal plant was at around 2300 years ago [1]. L. barbarum L. fruit is used as a traditional
Chinese herbal medicine and functional food in daily life [2,3].

Three Lycium species (L. barbarum, L. chinense, and L. ruthenicum) have been discovered. Among
the three species, the yield of Lycium barbarum is the largest in China. They are used as medicine in
China and as medicinal and functional food because of their health benefits, including anti-aging,
antioxidant, antidiabetic, anticancer, cytoprotective, neuroprotective, and immunomodulatory
effects [4–9]. The physical appearance of Lycium barbarum is shown in Figure 1. The fruit is red and
about 1–2 cm long. Numerous reports have been conducted to explore the function and characterization
of its extracts because of the health benefits of Lycium barbarum. More than 200 different components,
including carotenoids, phenylpropanoids, flavonoids, polyphenols, and polysaccharides, have been
identified, characterized, and analyzed. Polysaccharides, vitamins, betaine, and mixed extracts of the
goji berry are responsible for health benefits, such as eliciting anti-aging effects, improving eyesight,
and exhibiting antifatigue effects [10].

Among Lycium barbarum extracts, L. barbarum polysaccharides (LBPs) isolated from L. barbarum
fruit have been responsible for the biological activities of Lycium barbarum. LBPs are a group of
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water-soluble glycoconjugates with a molecular weight of 10–2300 kDa and comprise 5–8% of the dried
fruits [11]. The beneficial health effects of LBPs, including antioxidant and antiaging effects, increased
metabolism, antiglaucoma effects, immune regulation, anticancer effects, neuroprotective properties,
and antidiabetic effects, have been reported [12–16]. According to the Chinese understanding of Lycium
extracts and products, the content of LBPs is important for the efficacy of L. barbarum [17–19]. Therefore,
as bioactive constituents of L. barbarum, LBPs have many biological functions to improve people’s health.
The biological functions of LBPs are complex and multifaceted because of the relationship between the
physiological structure and functions of LBPs. The relationship and mechanism between LBPs and
human health should be fully understood. In order to give a comprehensive understanding of LBPS,
the extraction methods, structure, composition, and biological functions of LBPs were summarized
and discussed in this review. We collected and summarized the relative contents from previous reports
to provide a theory basis for comprehensively understanding and utilizing LBPs in medical and
food fields.
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Figure 1. The fresh (left) and dried form (right) of Lycium barbarum fruit.

2. Extraction Methods of LBPs

Previous reports have shown that the chemical ingredients of L. barbarum fruit include
polysaccharides, proteins, and phenylpropanoids. Among these ingredients, LBPs account for
5–8% of the dried fruit and elicit biological effects [2]. LBPs are subjected to extraction, purification,
and analysis. The flowchart of the extraction, purification, and analysis of LBPs is shown in Figure 2.

LBPs are extracted by destroying and degrading the cell wall under mild conditions without
changing the properties of the polysaccharides in accordance with basic extraction principles [20]. Many
LBP extraction methods, such as the water extraction method, enzyme-assisted extraction method,
microwave-assisted extraction method, ultrasonic-assisted extraction method, and supercritical fluid
extraction method, have been developed on the basis of this principle [21,22]. Traditional LBP
extraction methods have some advantages and disadvantages. Novel LBP extraction technologies,
such as ultrasound-assisted extraction method (UAE) [23,24], enzyme-assisted extraction method
(EAM) [25,26], microwave-assisted extraction method (MAM) [27], and supercritical fluid extraction
method (SFM) [28], have been developed to address the disadvantages of traditional extraction methods.
The high extraction yield and high biological activity of LBPs are considered in choosing an extraction
method [29].

These extraction methods have unique strengths and weaknesses [21]. Hot water extraction
(HWE) is the traditional method for polysaccharide extraction. The yield of HWE is largely affected by
extraction time, temperature, and the ratio of water to raw material. Also, the long duration and high
temperature may lead to the degradation of the polysaccharides and decrease their biological activity.
EAM possesses the advantages of environmental friendliness, high efficiency, ease of operation,
and low investment cost and energy. However, the enzyme is characterized by specificity and
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selectivity, while several factors, such as enzyme concentration, temperature, time, and pH also affect
the biological function of polysaccharides. MAM is a physical technique that is used for the extraction
of polysaccharides. MAE has noticeable advantages, such as shorter extraction time, higher extraction
yield, lower cost, and less solvent consumption. UAM has the advantage of improving penetration
and capillary effects, leading to an increase of polysaccharides’ extractability. However, ultrasonic
treatment could affect the structure and molecular weight (MW) of polysaccharides, which would
cause a change in the biological activity. The extraction conditions and yield of LBP extract by different
extraction methods are shown in Table 1.
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Figure 2. The flowchart of the extraction, purification, and analysis of Lycium barbarum polysaccharides
(LBPs). WEM: water extraction method, EAM: enzyme-assisted extraction method, MAM:
microwave-assisted extraction method, UAM: ultrasonic-assisted extraction method.

As the traditional extraction method is widely used in the extraction of LBPs, the yield of the
water extraction method (WEM) is 5.87% under the experimental conditions [30]. The yields of LBPs
via UAM, EAM, and MAM are 2.286–5.701%, 6.81% ± 0.10%, and 8.25% ± 0.07%, respectively [31–35].
The yield of LBPs of novel extraction methods is higher than that of the water extraction method.
Moreover, the combination of different extraction methods can obtain enhanced yields of LBPs;
when the ultrasound-enhanced subcritical water extraction method (USWE) is used to extract the LBPs,
high recovery yields of LBPs are produced [24].
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Table 1. Summary of the extraction methods on the extraction of LBPs.

Extraction Methods Extraction Conditions Yield (%) Ref

Water extraction method The ratio liquid to solid 70:1, pH 10, at 65 ◦C, extracted in soakage for 3.5 h. 7.46–7.63% [30,34,35]
Ultrasound-assisted extraction method Extraction time of 30 min, temperature of 60 ◦C, solid/liquid ratio of 20 g/600 mL, power density of 300 W/L, ultrasound frequency of 28 kHz. 2.286–5.701% [23,36]

Enzyme-assisted extraction method Extraction time of 91 min, extraction temperature of 59.7 ◦C, pH 5.0. 6.81 ± 0.10 % [26]
Microwave-assisted extraction method Ratio of water to raw material of 31.5 mL/g, extraction time of 25.8 min, microwave power of 544.0 W. 8.25 ± 0.07% [27]

Combination of extraction methods Temperature of 100 ◦C, extraction time of 53 min, liquid-to-solid ratio of 26 mL/g, ultrasonic electric power of 160 W. 5.728% [24]
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3. Structure and Composition of LBPs

The separation and structural characterization methods of purified LBPs have been developed.
As active ingredients, LBPs possess various biological functions. More than 33 polysaccharides have
been analyzed and identified from L. barbarum L.

The main applied and performance techniques for the structural characterization of LBP fraction
include the following techniques: (1) high-performance gel permeation chromatography (HPGPC),
which is used to determine the homogeneity and molecular weight of macromolecules; (2) partial acid
or enzymatic hydrolysis, oxidation with periodic acid, Smith degradation, high-performance liquid
chromatography (HPLC), gas chromatography (GC), polysaccharide analysis by gel electrophoresis
(PACE), and high-performance thin-layer chromatography (HPTLC). These techniques are used
to determine monosaccharide composition and map the glycidic component of glycoconjugates;
(3) infrared (IR) spectral analysis permits the identification of pyranosyl or furanosyl ring form
and α or β anomeric configuration in monosaccharide residues; (4) 1H and 13C nuclear magnetic
resonance (NMR) spectroscopy used to assign the ratios of monosaccharides present and ratios of their
anomeric bonds; (5) gas chromatography–mass spectrometry (GC–MS), employed to determine the
linkage positions.

Studies have widely explored the structure and composition of LBPs and demonstrated that
LBPs are polysaccharides, including some ingredients of acidic heteropolysaccharides, polypeptides,
or proteins [37]. The molecular weight of LBPs at the range of 10–2300 kDa. The methods used
for the isolation and purification of LBPs from L. barbarum include DEAE ion-exchange cellulose,
gel-permeation chromatography, and high-performance liquid chromatography (HPLC) [31,38]. About
20 types of polysaccharides, including Rha, Fuc, Ara, Gal, and GalA, have been investigated. Studies
have shown that monosaccharide and amino acid residues constitute glycoconjugates, and, relative to
glycosidic linkage analysis of glycan backbone, branching sites and side chains were considered as the
structure of LBPs. The possible structure of repeat units, molecular weights, and analysis technique of
previously investigated polysaccharides in L. barbarum are shown in Table 2.
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Table 2. The possible structure of repeat units, molecular weights, and analysis technique of polysaccharides in L. barbarum [39]. Definitions: SEC = size exclusive
chromatography, GC–MS = gas chromatography–mass spectrometry, NMR = nuclear magnetic resonance, IR = infrared, GC = gas chromatography, ESI-MS =

electrospray ionization mass spectrometry, HPGPC = high-performance gel permeation chromatography.

No Name Mw (kDa) Molar Ratio Analysis Technique Possible Structure of Repeat Unit Ref

1 LbGp2 68,200 Ara:Gal = 4:5 SEC, GC-MS Backbone composed of (1→6)- β-Gal. Branches composed of (1→3)- β-Ara and (1→3)- β-Gal terminated
with (1→ 3)/(1→5)- α-Ara. [40]

2 LbGp3 92,500 Ara:Gal = 1:1 NMR Backbone composed of (1→4)- β-Gal. Branches composed of (1→3)- β-Ara and (1→3)- α-Gal terminated
with (1→ 3)/ (1→5)- α-Ara. [41]

3 LbGp4 214,800 Ara:Gal:Rha:Glc =
1.5:2.5:0.43:0.23 NMR Backbone composed of (1→4)- β-Gal. Branches composed of (1→3)- β-Gal terminated with (1→3)- α-Ara

and (1→3)- β-Rha. [42]

4 LBPA3 66,000 Ara:Gal = 1.2:1 Ion exchange chromatography Heteropolysaccharide with (1→4), (1→6). [43]
5 LBPB1 18,000 Ara:Glc = 1:3.1 Heteropolysaccharide with (1→4), (1→6) β-glycosidic bond.

6 LBP-a4 10,200 Fuc: gal = 0.41:1 Ultrafiltration membrane method [43]

7 LBPC2 12,000 Xyl:Rha:Man = 8.8:2.3:1 Heteropolysaccharide with (1→4), (1→6) β-glycosidic bond. [44]

8 LBPC4 10,000 Glc IR, GC Heteropolysaccharide with (1→4), (1→6) α-glycosidic bond. [45]

9 LBP1a-1 115,000 Glc α-(1→6)- D –glucan.

[46]10 LBP1a-2 94,000 Glc α-(1→6)- D –glucan.

11 LBP3a-1 103,000 GalA composed of a small
amount of Gal and Ara

Gel permeation chromatography,
NMR Polygalacturonan with (1→4)- α-glycosidic bond.

12 LBP3a-2 82,000 GalA composed of a small
amount of Gal and Ara Polygalacturonan with (1→4)- α-glycosidic bond.

13 LBLP5-A 113,300 (1 -> 3)-linked Gal, (1 -> 4)-linked Gal, (1 -> 3)-linked Araf, (1 -> 5)-linked Araf, and (1 -> 2, 4)-linked Rhaf. [47]

14 WSP Rha:Fuc:Ara:Xyl:Man:Gal:Glc
= 1.6:0.2:51.4:4.8:1.2:25.9:7.3 NMR, ESI-MS Backbone composed of (1→ 2)-linked-Rha and (1→4)-linked-Gal. Branches composed of (1→5)-linked-Ara

terminated with Ara residues, and (1→4)-linked-Xyl terminated with Man residues.

15 AGP Rha:Ara:Xyl:Gal:Glc:GalA:GlcA
= 3.3:42.9:0.3:44.3:2.4:7.0 NMR Backbone composed of linear homogalacturonan fragments and rhamnogalacturonan fragments. Side

chains mainly composed of β−1,6- and β−1,4-galactopyranan and α−1,5-arabinofuranan. [48]

16 LBP-IV 41,800 Rha:Ara:Xyl:Glc:Gal =
1.61:3.82:3.44: 7.54:1.00 DEAE-Sephadex, HPGPC, IR, UV Backbone composed of both α- and β- anomeric configurations of Ara and Glc. Rha was located at terminal

of polysaccharide chain. [49]

17 LbGp1 49,100 Ara:Gal = 5.6:1 HPGPC Backbone composed of (1→6)-Gal. Side chains mainly composed of (1→3)-Gal/(1→4)-Gal and
(1→3)-Ara/(1→4)-Ara. Ara was located at terminal of branch. [50]

18 p -LBP 64,000
Fuc:Rha:Ara:Gal:Glc:Xyl:GalA:GlcA

= 1.00:6.44:54.84:22.98:4.05:
2.95:136.98:3.35

HPAEC-PAD, HPSEC, FT-IR,
GC–MS, and NMR

Backbone composed of (1→4)- α-GalA. Side chains mainly composed of α−1,2- and α−1,4-Rha and
α−1,5-Ara. [51]

19 LBP1B-S-2 80,000 Rha:Ara:Gal:Glu = 3.13: 53.55:
39.37: 3.95 DEAE Sepharose

Backbone consisted of 1, 3-linked beta-D-Galp, 1, 6-linked beta-D-Galp and branches contained 1, 4-linked
beta-D-GlcpA, T-linked beta-D-Galp, 1, 6-linked beta-D-Galp, T-linked alpha-L-Araf, T-linked beta-L-Aral 1,

5-linked alpha-L-Araf and T-linked beta-L-Rhap.
[52]

20 LRGP1 56,200 Rha:Ara:Xyl:Man:Glu:Gal =
0.65:10.71:0.33:0.67:1:10.41 HPGPC, ESI-MS Backbone composed of (1 -> 3)-linked Gal. The branches were composed of (1 -> 5)-linked Ara, (1 ->

2)-linked Ara, (1 -> 6)-linked Gal, (1 -> 3)-linked Gal, (1 -> 4)-linked Gal and (1 -> 2,4)-linked Rha. [53]
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4. Biological Function of LBPs

4.1. Antioxidant Function

Natural bioactive compounds present good biological activities, such as antioxidant, anticancer,
and other functions, because of the broad diversity of structures and functionalities [54–56]. As bioactive
compounds, LBPs have good antioxidant properties [57–59]. Antioxidant activity is mainly contributed
by carotenoids, flavonoids, ascorbic acid and its derivatives, and polyphenols [60,61].

The biological function of LBPs have many potential functions relative to the antioxidant activity
in many tissues [62–64]. Studies have investigated the antioxidant activity of LBPs that extract with
hot water and the protective effect of LBPs against tissue oxidative injury, with results showing that
LBPs exhibit a good antioxidant activity and a protective effect against skin oxidative injury [65].
The antioxidant effects of LBPs extracted by hot water have been explored via an in vivo model,
showing that LBP treatments can significant increase the serum levels of SOD and GSH-Px and
significantly decrease MDA contents [66–69]. The antioxidant function of LBPs shows that LBPs
can significantly enhance macrophage NO, phagocytic capacity, and acid phosphatase, and exhibit
good antioxidant activities in vitro [70]. LBPs can significantly increase cell viability that decreases
by LPS and regulate oxidative stress by inhibiting caspase-3 activation and ROS levels in vitro [71].
Studies have investigated the effects of LBPs on stressed RPE cells and have shown that LBPs can
decrease ROS levels via free radical scavenging and downstream gene function to prevent ROS-induced
apoptosis [72]. Antioxidant enzyme activities, GSH levels, and MDA levels in rats fed with a high-fat
diet and LBPs decreased when compared with those in the control group (p < 0.01) [73]. The antioxidant
activity and mechanisms of LBPs are shown in Table 3.

Table 3. Antioxidant activity and mechanisms of LBPs.

Antioxidant Activity Mechanisms Dose Experiment Model Experiment Type Ref

Reduce oxidative stress Regulating the level of MDA,
SOD, GSH 100, 200, and 400 mg/kg Rats In vivo [71,

74]
Against hypoxia-induced injury Down-regulation of miR-122 300 mu g/mL Cells In vitro [75]

Reduces hyperoxic acute Induced activation of Nrf2 100 mg/kg Mice In vivo [59]
Attenuates diabetic

testicular dysfunction
Upregulated p-PI3K and

p-Akt protein expressions 40 mg/kg Mice In vivo [76]

Radical scavenging Free radical scavenging
IC 50:1.29–3.00
mg/mL(DPPH)

0.39–1.10 mg/mL (ABTS)
Chemical reagent In vivo [77]

Regulate the activity of enzymes Increased activity of
antioxidative enzymes 200–400 mg/kg Rats In vivo [78]

4.2. Immune Regulation

Immune regulation is an important function of LBPs in people’s health. Previous studies have
shown that LBPs exhibit an immune-modulating function in target dendritic cells, macrophages, T-
and B-lymphocytes, and natural killer (NK) cells [79]. The immune regulation of LBPs is an important
function that has been studied widely in previous studies.

Dendritic cells are used to study the effects of LBPs, and results have shown that LBPs can induce
the phenotypic and functional maturation of DCs via Notch signaling and promote the cytotoxicity of
DC-mediated CTLs [80]. In nutritive additives, LBPs can be used as an additive in the growth of broilers,
indicating that LBPs may possess the clinical efficacy for growth promotion and immunomodulation
and can be used as an alternative to nutritive additive in broilers [81]. The nanoliposome technique is
used to load LBPs and study their function, showing that LBPs can significantly promote splenocyte
proliferation, increase the amount of CD4(+) to CD8(+) T cells, and promote the cytokine secretion
of macrophages [82]. The extract of L. barbarum exhibits a significant immunomodulatory activity
through the promotion effects of nitric oxide and cytokines in RAW264.7 cells [83]. The efficacies of
sulfated LBPs on immune enhancements in cultured chicken are high [84]. In summary, the immune
regulation and mechanism of LBPs are shown in Table 4.
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Table 4. Immune regulation activity and mechanisms of LBPs.

Immune Regulation Activity Mechanism Experiment Type Ref

Enhanced macrophage endocytic
and phagocytic capacities in vivo

Activate transcription factors NFAT, AP-1, prompt CD25 expression, induce IL-2 and
IFN-gamma gene transcription and protein secretion In vitro [85]

Regulation of immune cells Maintain high levels of T cells, prevent the increase of Tregs, promote infiltration of
CD8+ T cells In vivo [86]

Induce the phenotypic and
functional maturation of DCs Upregulate the expression of Notch and Jagged and Notch targets Hes1 and Hes5 In vitro [80]

Promote the proliferation of
spleen cells

Increase secretion of INF-alpha and IL-6, mRNA expression of iNOS, IL-beta and
IL-6 through activating phosphorylation of ERIC, JNK, p38 and p65 In vitro [87]

Increased immune organ indexes Promote blood B and T lymphocyte proliferation In vivo [81]
Improve immune responses Stimulate CD4(+) and CD8(+) T cell proliferation In vitro [88]

Enhance the immune activity Enhance PCV2-specific IgG antibody responses, promote Th1 cytokines (IFN-gamma
and TNF-alpha) and Th2 cytokine (IL-4) secretion In vitro [82]

Enhance the immune activity Inhibit cell proliferation, retard cell cycle growth, and promote apoptosis In vitro, In vivo [89]

4.3. Antitumor Activity of LBPs

The antitumor activity of natural products isolated from plants have been reported [90–92].
Previous studies have shown that more than 100 polysaccharides exhibit good anticancer activity via
in vitro studies and in vivo animal models [93].

As natural products, LBPs exhibit potential antitumor activity [94]. Studies have shown that the
anticancer activity of LBPs occurs because of their effects on cancer tissue or cancer cells. The exposure
to hot water extracts of Lycium barbarum for 24 h made cell viability reduce to 15.31% of hepatocellular
carcinoma cells, as reported in a previous study [95]. Colorectal cancer is one of the most common
cancers worldwide, with a study showing that the treatment of LBP (5000 mg/L) can decrease cell
viability of SW480 and Caco-2 cells to 10% after 5 days of treatment, and that the treatment with LBP
resulted in a dose-dependent increase in the distribution of cells in the G0/G1 phase [96]. For gastric
cancer cells, LBPs can inhibit the proliferation of these cells and arrest the cell cycle at the G0/G1 phase,
suggesting that LBPs are candidate anticancer agents [97]. The inhibitory effect of LBPs on the growth
of glioma in rats and the underlying mechanism have been explored, and results have shown that the
mechanism may be related to the regulation of the blood–brain barrier and to the promotion of CD[8]+

T cell invasion in the brain [98]. Studies on the effects of LBPs on the viability, cell cycle, and apoptosis
of human hepatoma cells have demonstrated that LBPs can inhibit cell growth, arrest the cell cycle in
the S phase, and induce apoptosis, suggesting the antiproliferative activity of LBPs by inducing cell
cycle arrest and increasing intracellular calcium in the apoptotic system [99]. The anticancer activity
of LBPs is mainly due to the inhibited growth of cells, arrested cell cycle, and induced cell apoptosis.
The antitumor activities of LBPs on different cancer cells are shown in Table 5. LBPs exhibit a good
antitumor activity on various cancer cells.

Table 5. Antitumor activities and mechanism of LBPs.

Antitumor Activity Mechanism Tumor Model Experiment Type Ref

Reduce cell viability Inhibit growth of tumor
MCF-7, T47D,
SMMC-7721,

DU145
In vitro [7,44,100]

Regulate apoptosis Induce apoptosis MCF-7, BIU87 In vitro [100]
Regulate cell cycle Arrest the cells at the G1 phase SW480, Caco-2 cells In vitro [101]

Regulate immune activity Enhance immunity Mice In vivo [84,86]

These results show that LBPs can decrease the viability of cancer cells and have inhibitory effects
on cancer cells, indicating that LBPs can be used as a candidate anticancer agent in cancer treatment.

4.4. Neuroprotective Effects of LBPs

Natural products isolated from plants exhibit certain biological functions and have been extensively
investigated because of their efficiency and biosafety. As such, they have been widely used to treat
diseases. Plant extracts have been utilized to treat various functions of central nervous systems [102].
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Polysaccharides are effective compounds from neurobiologically active plants, and many studies have
demonstrated their beneficial effects, including neurological disorders [102,103].

The neuroprotective effects of LBPs on ischemic injury is mainly through the signaling pathways
of NR2A activation and NR2B inhibition, and LBPs can be used to treat ischemic stroke [104].
A mouse experiment model of the neuroprotective effects of LBPs have shown that LBPs may exert
neuroprotective effects and help prevent neurodegenerative diseases [105]. In modern society, visual
impairments and blindness cause heavy damage on people’s health. LBP treatment can significantly
weaken these injuries with enhanced endogenous autophagy in the body [106]. The neuroprotective
effects and molecular mechanisms of LBPs are shown in Table 6.

Table 6. Neuroprotective effects and mechanisms of LBPs.

Neuroprotection Effects Molecular Mechanism Experiment Type Ref

Improve neurodegenerative
diseases

Increase the activity of Akt; regulate the expression of HSP60/HSP70; reduce
caspase cascade reaction In vitro, In vivo [107–111]

Inhibition of oxidative stress Increase SOD, CAT and GSH-Px; decrease the ROS level, inhibit JNK pathway In vitro, In vivo [112–115]
Inhibition of inflammation Inhibit of NF-κB In vivo [116]

Inhibit abnormal differentiation of
nerve cells

Increase differentiation of hippocampal neuron stem cells and inhibit
abnormal differentiation In vitro [117]

Inhibition of apoptosis Promotes Bcl-2, inhibits Bax, overexpression of CytC gene In vivo [118]

Reduce glutamate toxicity Decrease neurotoxic effects of glutamate on PC12 cells; inhibition of ROS
accumulation, LDH release and Ca[2]+ overload In vivo [119,120]

Inhibit the tube formation of
microvascular endothelial cells No report In vivo [52]

Neuroprotective agent in
ischaemic retinopathies

Enhance immunoreactivity of protein kinase C alpha and attenuated glial
fibrillary acidic protein expression In vivo [121].

4.5. Other Biological Activities

The antioxidant activity, antitumor properties, immune regulation, and neuroprotective effects
of LBPs were explored in in vitro and in vivo models. Besides this, LBPs also have other biological
activities, such as protecting the liver from hepatotoxicity [122], alleviating dry-eye disease [123],
eliciting antidiabetic effects [124], increasing cell abilities, decreasing cell morphologic impairment,
protecting against ultraviolet-induced damage [122], and alleviating CCl4-induced liver fibrosis [125].
As bioactive constituents, LBPs exhibit various biological functions and show potential benefits to
people’s health. The other biological activities and mechanism of LBPs are summarized in Table 7.

Table 7. Other biological activities and mechanism of LBPs.

Biological activities Mechanism Experiment type Ref

Attenuates diabetic testicular
dysfunction Inhibition of the PI3K/Akt pathway-mediated abnormal autophagy In vivo [76]

Inhibit the vascular lesions Regulating p38MAPK signaling pathways, inhibiting absorption of glucose In vivo [124,126]
Prevents against

ultraviolet-induced damage Activation of Nrf2 In vivo [122]

Protect the liver from
hepatotoxicity Regulating oxidative stress In vivo [62]

Alleviating effects of
CCl4-induced liver fibrosis Inhibition of the TLRs/NF-kappa B signaling pathway expression In vivo [125]

Alleviating dry-eye disease Schirmer’s test, tear break-up time (BUT) measurement In vivo [123]
Protects against neurotoxicity Upregulating Nrf2/HO-1 signaling In vitro [127]

Ameliorate Cd testicular damage Regulate oxidative stress In vivo [128]

5. Conclusions

In China, goji berries are a traditional medicinal herb that have been used for thousand years to
cure disease and improve the function of the liver, kidney, and lungs. More recently, western countries
have also started cultivating Lycium barbarum L. plants, whose fruits are consumed fresh or dried.
Previous reports have showed that L. barbarum fruit exhibits a wide array of pharmacological activities.
This beneficial L. barbarum component consists of a complex mixture of glycoconjugates—these being
LBPs—with a molecular weight range of 10–2300 kDa, water solubility, and containing a carbohydrate
portion (≥90%), represented by highly-branched polysaccharides. The LBP glycan backbones have been
found to be mainly represented byα-(1→4)-galA,α-(1→6)-glc, β-(1→3)-galp (typical of arabinogalactan
proteins), and β-(1→6)-galp. Other structures, less representative, are α-(1→5)-ara and β-(1→4)-galp,
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with different branching and terminal sites. The extraction methods of LBPs, including water extraction,
enzyme-assisted extraction, microwave-assisted extraction, and ultrasonic-assisted extraction, produce
different effects on the quality of LBPs. The biological functions of LBPs indicate that LBPs exhibits
antioxidant, immunomodulation, antitumor, neuroprotection, and hepatoprotection.

LBPs are the main active substances in L. barbarum fruits and are involved in various biological
functions. LBPs have great potential health benefits for further use in nutraceutical and pharmaceutical
fields. The biological function of LBPs has been explored using in vitro and in vivo models but not in
the human body. However, the relationship between a high-order LBP structure and bioactivities has
yet to be further explored. Novel omics technologies, such as proteomics, metabolomics, and genomics,
are effective in investigating the biological function of LBPs. Future works should focus on the
high-order structures of LBPs, their biological function in the human body, and the relationship
between their structure and bioactivity to enhance our understanding of the functional effects of LBPs.
Current extraction methods give low yields and other weaknesses in the extraction of LBPs. Novel
environmentally friendly and high-yielding extraction methods of LBPs should be further developed.
The extraction methods and structural and biological functions of LBPs were summarized in this
review to provide a useful bibliography for further investigations and applications of LBPs in medicine
and food.
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