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Abstract: Diabetic nephropathy (DN) is the most common cause of chronic kidney disease worldwide.
Activation of signaling pathways such as the mammalian target of rapamycin (mTOR), extracellular
signal-regulated kinases (ERK), endoplasmic reticulum (ER) stress, transforming growth factor-beta
(TGF-$), and epithelial-mesenchymal transition (EMT), are thought to play a significant role in the
etiology of DN. Microparticles (MPs), the small membrane vesicles containing bioactive signals
shed by cells upon activation or during apoptosis, are elevated in diabetes and were identified as
biomarkers in DN. However, their exact role in the pathophysiology of DN remains unclear. Here,
we examined the effect of MPs shed from renal proximal tubular cells (RPTCs) exposed to high
glucose conditions on naive RPTCs in vitro. Our results showed significant increases in the levels of
phosphorylated forms of 4E-binding protein 1 and ERK1/2 (the downstream targets of mMTOR and ERK
pathways), phosphorylated-elF2« (an ER stress marker), alpha smooth muscle actin (an EMT marker),
and phosphorylated-SMAD?2 and nuclear translocation of SMAD4 (markers of TGF-f3 signaling).
Together, our findings indicate that MPs activate key signaling pathways in RPTCs under high glucose
conditions. Pharmacological interventions to inhibit shedding of MPs from RPTCs might serve as an
effective strategy to prevent the progression of DN.

Keywords: microparticles; diabetic nephropathy; mTOR; ERK1/2; endoplasmic reticulum stress;
TGF-$3; epithelial-mesenchymal transition

1. Introduction

Diabetic nephropathy (DN) is a major complication of diabetes, which affects about 30% to
40% of the patients with type 1 and type 2 diabetes, and ultimately leads to end-stage renal disease
(ESRD) [1,2]. Diabetes-induced structural alterations to the kidney such as glomerular basement
membrane thickening, glomerular hyperfiltration [3], and tubulointerstitial fibrosis [4] affect the renal
function and lead to micro- and macroalbuminuria (leakage of albumin in the urine). DN is highly
evident in stage 3, i.e., when a patient is diagnosed with microalbuminuria (30-299 mg/day) followed
by macroalbuminuria (>300 mg/day) at stage 4. Renal function is entirely compromised when the
glomerular filtration rate (GFR) falls below 15 mL/min (stage 5 or ESRD), which necessitates the need for
routine dialysis or kidney transplant for patient survival [5]. Thus, characterization of early biomarkers
of DN and development of therapeutic strategies that diminish the severity of DN [6] would prevent
the progression of DN to ESRD, and decrease mortality in patients with diabetes. Renal proximal
tubular cells (RPTCs) are one of the prominent targets of hyperglycemia-induced injury in DN [7].
Glucose reabsorption by RPTCs follows the tubuloglomerular feedback mechanism, which regulates
the GFR [8]. Under hyperglycemic conditions, there is a three-fold increase in the glucose and sodium
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reabsorption by RPTCs, which leads to glomerular hyperfiltration [9-12]. The excessive build-up of
glucose augments the intracellular glucose efflux within the RPTCs and triggers the secretion of various
cytokines, growth factors, reactive oxygen species, and matrix proteins by the RPTCs [7]. This leads to
tubular hypertrophy and tubular basement membrane thickening, the two characteristic features of
DN [13], and consequently, renal dysfunction in patients with diabetes [2,7].

Microparticles (MPs) are microvesicles, or submicron vesicles shed from cellular plasma membrane
upon various stimuli and their size range between 0.1 to 1 um [14,15]. MPs are released when cells
lose asymmetry of the distribution of phospholipids in the plasma membrane, with the most critical
change being the externalization of negatively charged phosphatidylcholine causing the formation of
blebs, a process called exocytosis. MPs encompass bioactive components such as mRNAs, microRNAs,
DNAs, bioactive lipids, and cytokines, and hence, their molecular content reflects the state of activation
of their parental cells [16,17]. With regards to DN, accumulating evidence from multiple studies
in vitro and in vivo suggest that MPs play an important role in cell-to-cell communication [17-24].
For example, Burger et al. showed that exposure to high glucose stimulated the formation of MPs
with pro-oxidative activity from cultured endothelial cells within 24 h and revealed that MPs derived
from glomerular podocytes during diabetes serve as early urinary biomarkers in DN [18,20]. Also,
recent clinical studies reported higher circulating levels of various types of MPs derived from platelets,
leukocytes, and endothelial cells in patients with DN as compared to nondiabetic subjects and in
various conditions associated with insulin resistance such as obesity and metabolic syndrome [14,15,19].
However, the exact role of MPs in the pathogenesis of DN is poorly understood.

Mammalian target of rapamycin (mTOR) and extracellular signal-regulated kinases (ERK) are
serine/threonine protein kinases, which not only play an important role in regulating cellular processes
such as cell growth, proliferation, and survival but also in the progression of DN [25,26]. The ERK
signaling pathway is involved in increasing mRNA translation and ribosomal biogenesis under
hyperglycemic conditions in the RPTCs and causes a rapid increase in matrix proteins, thus leading to
tubular basement membrane thickening in DN [27-29]. Endoplasmic reticulum (ER) is an essential
cellular organelle that helps in efficient folding and assembling of proteins post-translation [30].
Under hyperglycemic conditions, the excessive production of proteins overwhelms the ER protein
folding machinery and induce ER stress, which contributes to renal cell injury and the progression of
DN [31]. Transforming growth factor-beta (TGF-3) has been characterized as the primary mediator
in renal fibrosis [32], followed by tubulointerstitial injury under hyperglycemia and initiation of
epithelial-mesenchymal transition (EMT) in mature tubular epithelial cells, which is one of the
characteristic features of DN [33-38].

With respect to the involvement of MPs in the progression of DN, Munkonda et al. [21] showed
that incubation of RPTCs with MPs derived from podocytes subjected to high glucose-induced stress
stimulates profibrotic signaling in renal tubular cells [21]. Similarly, Zhou et al. [22] demonstrated
that microvesicles harvested from RPTCs subjected to TGF-f1-induced stress triggers EMT in naive
RPTCs [22]. However, the effects of MPs derived from RPTCs in response to high glucose-induced stress
that occurs with DN on naive RPTCs remain largely unknown. Therefore, in this study, we investigated
the paracrine (local) effects of MPs shed by RPTCs in response to high glucose-induced stress on the
cell viability, cell cycle progression, and various cell signaling pathways involved in the renal cell
injury such as mTOR, ERK, ER stress, TGF-3, and EMT signaling in naive RPTCs.

2. Materials and Methods

2.1. Cell Culture

NRK-52E cells (Public Health England, London, UK), a rat renal proximal tubule cell line,
were cultured in 100 mm culture dishes in Dulbecco’s modified Eagle medium (DMEM; Gibco, Grand
Island, NY, USA) supplemented with 5% fetal bovine serum (FBS; Gibco), 1% amino acid supplement
(L-Glutamine; Gibco), and 1% penicillin/streptomycin (Gibco). A premium grade FBS, which is
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subjected to triple 0.1 micron filtration, was used in this study. In addition, the complete culture
media (after the addition of FBS) was filtered using a 0.2 micron sterile filter to remove any extraneous
microparticles introduced by FBS into the media. The cells were grown at 37 °C in a humidified
atmosphere of 5% CO, and 95% air. Cells were either cultured on 48-well plates (for cell viability
studies) or 6-well plates (for Western blotting and cell cycle analysis) in 5% FBS-supplemented DMEM.
All the treatments were done on about 60-70% confluent cells of passage ranging from 7 to 19.

2.2. Isolation of Microparticles (MPs) from RPTCs

NRK-52E cells (RPTCs) were divided into three treatment groups: (1) Control, (2) intermittent high
glucose treatment, and (3) continuous high glucose treatment. RPTCs in the control and continuous
high glucose-treated groups were exposed to 5% FBS supplemented DMEM with 5 mM glucose and
30 mM glucose, respectively, for 72 h, and their media was replenished every 24 h. To mimic the
fluctuations in glucose levels that are typically seen in patients with diabetes, RPTCs in the intermittent
high glucose-treated group were exposed to 5% FBS supplement DMEM with 30 mM glucose for 16 h
and 5 mM glucose for 8 h, and the cycle was repeated for 72 h. At the end of 72 h, the media from each
group were collected for the isolation of MPs as described previously [39,40]. Briefly, the collected
media was first centrifuged at 1500x g for 10 min at 4 °C to remove cell debris. The supernatant
was transferred to 1.5 mL microcentrifuge tubes and centrifuged at 21,000x g for 45 min at 4 °C.
The supernatant was discarded carefully without dislodging the pellet, and the pellet was resuspended
in sterile phosphate-buffered saline (PBS), pH 7.4 (Gibco). The process of centrifugation at 21,000 g
for 45 min at 4 °C and resuspension in PBS was repeated twice, and the final pellet was suspended in
100 uL of PBS and stored at 4 °C [39,40].

2.3. Treatment of Naive RPTCs with MPs

About 6-7 x 10* RPTCs were added to each well of a 6-well plate containing 5% FBS supplemented
DMEM and cultured for 24 h to obtain 50-60% confluency. Then, 10 pg/mL of MPs isolated from the
three treatment groups were added to the naive RPTCs in each well and treated for a further 24 h as
previously done by us [39,40]. Cells were then processed based on the assay protocols described below.

2.4. Cell Viability Assay

The viability of naive RPTCs following 24 h treatment with MPs was measured quantitatively by
Alamar Blue™ cell viability reagent (Thermo-Fisher Scientific, Eugene, OR, USA). Alamar Blue™ gets
oxidized from a blue color to pink color compound that gives fluorescence in the presence of viable
cells. The fluorescence was measured using SpectraMax Plate Reader (Molecular Devices, San Jose,
CA, USA) at an excitation wavelength of 544 nm and an emission wavelength of 590 nm. Fluorescence
values were normalized to control and expressed as the percentage of control.

2.5. Cell Cycle Analysis

Following 24 h exposure to MPs, RPTCs were scraped and stained with propidium iodide solution
as described in the manufacturer protocol for Tali™ cell cycle kit (Thermo Fisher Scientific, USA).
Cells were incubated in the dark for 30 min and then analyzed for cell cycle progression using the
Tali™ image-based cytometer (Thermo Fisher Scientific, Paisley, UK) as described previously [41].

2.6. Nuclear Extraction

Nuclear extraction was performed according to instructions in the manufacturer protocol for the
Nuclear Extraction Kit (Abcam, Cambridge, UK). RPTCs were seeded in 100 mm cell dishes. The cells
were harvested with Trypsin-EDTA (0.25%) (Thermo Fisher Scientific, USA) and centrifuged at 1000x g
for 5 min. The resulting cell pellet was suspended in 100 uL of pre-extraction buffer per 10° cells and
transferred into a microcentrifuge tube. The suspension was incubated on ice for 10 min and then
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vortexed vigorously for 10 s. Upon further centrifugation at 12,000 g for 1 min at 4 °C, the supernatant
containing cytoplasmic contents was carefully transferred to a new microcentrifuge tube and stored at
—20 °C until analysis. The pellet containing nuclear fraction was resuspended in dithiothreitol (DTT)
solution containing a protease inhibitor cocktail (1:1100). This mixture was incubated on ice for 15 min
with continuous vortexing (5 s) every 3 min. The mixture was centrifuged at 14,000x g for 10 min at
4 °C, and the supernatant containing nuclear fraction was transferred to a new microcentrifuge tube
and stored at —20 °C until analysis. The isolated cytoplasmic and nuclear supernatants were analyzed
for specific proteins by Western blotting.

2.7. Western Blotting

Following 24 h exposure to MPs, RPTCs were scraped and lysed in 0.5 M Tris, pH 6.8 buffer
containing 20% sodium dodecyl sulfate (SDS) along with ethylenediaminetetraacetic acid (EDTA)-free
protease and phosphatase inhibitors (Thermo Fisher Scientific, USA). Samples were processed as
described previously [42], and the protein concentrations were determined using bicinchoninic acid
(BCA) protein assay (Thermo Fisher Scientific, USA). About 30 pg of protein from each treatment
group were loaded onto a 12% or 15% SDS-polyacrylamide gel and resolved by electrophoresis.
Proteins were then transferred onto polyvinylidene difluoride (PVDF) membranes (Merck GmbH,
Darmstadt, Germany). The membranes were blocked with 5% nonfat milk or bovine serum albumin
(BSA) (Sigma-Aldrich, Hamburg, Germany) for 1 h, and then probed with specific primary antibodies
(overnight at 4 °C) for the following: Phospho-ERK1/2 (Thr202/Tyr204) (E10), ERK1/2, phospho-elF2x
(Ser51) (D9G8) XP®, E-cadherin (4A2), phospho-SMAD?2 (Ser465/467) (138D4), SMAD?2 (D43B4),
SMAD4 (D3MU), phospho-4E-BP1 (Thr37/46) (236B4), and phospho-p70 S6 kinase (Thr389) (108D2)
obtained from Cell Signaling Technology (Danvers, MA, USA); and anti-GRP78/BiP, anti-GADD153
(CHOP), anti-XBP-1, and anti-alpha-SMA procured from Abcam (Cambridge, UK). Subsequently,
membranes were incubated with horseradish peroxidase (HRP)-conjugated goat antimouse IgG or goat
antirabbit IgG secondary antibodies (Abcam) for 1 h at room temperature. The immunoreactivity was
visualized with Optiblot ECL detection kit (Abcam) using FluorChem™ M imaging system (Protein
Simple, San Jose, CA, USA) and analyzed using AlphaView software (Protein Simple). The densitometry
values were normalized to loading controls, 3-actin (13E5) (Cell Signaling Technology), and Anti-Lamin
B1 antibody (Abcam) and expressed as a percentage of control.

2.8. Statistical Analysis

All values were calculated as a percentage of control and expressed as mean + standard error
of the mean (SEM). One-way analysis of variance (ANOVA) followed by Tukey’s post-hoc test was
performed using Prism 7 (GraphPad, San Diego, CA, USA) to determine statistical differences between
the various treatment groups. A p-value less than 0.05 was considered statistically significant.

3. Results

3.1. High Glucose-Derived MPs Do Not Cause Cytotoxicity or Affect Cell Cycle in Naive RPTCs

Intriguingly, the exposure of naive RPTCs for 24 h to MPs generated from RPTCs stimulated with
high glucose either continuously for 72 h or intermittently did not cause any changes in cell viability
as measured by Alamar blue assay (Figure 1A). Our findings reveal that MPs derived from RPTCs
postexposure to high glucose were not directly cytotoxic to naive RPTCs.

Next, we investigated the effects of MPs derived from RPTCs exposed continuously and
intermittently to high glucose for 72 h on the various stages of the cell cycle in naive RPTCs.
Similar to our findings from cell viability assay, no significant alterations were observed with any of
the three stages of the cell cycle in naive RPTCs incubated with MPs for 24 h (Figure 1B). These results
indicate that MPs released from RPTCs in response to high glucose-induced stress do not affect the cell
cycle progression in naive RPTCs.
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Figure 1. High glucose-derived microparticles (MPs; 10 ug/mL) do not affect the cell viability and cell
cycle progression of naive renal proximal tubular cells. (A) Cell viability determined using alamar blue
assay; and (B) Cell cycle analysis performed using Tali™ cell cycle assay kit. Values were expressed as
mean + SEM; n = 3—4. iHG: Intermittent high glucose; cHG: Continuous high glucose.

3.2. Continuous High Glucose-Derived MPs Activate mTOR Pathway in Naive RPTCs

We analyzed two downstream markers of the mTOR pathway—phosphorylated forms of
eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) and 70kD ribosomal protein S6
kinase (p70S6K). Naive RPTCs treated with MPs isolated from the RPTCs that were continuously
exposed to high glucose for 72 h showed a significant increase in the phosphorylation of both
proteins-4E-BP1 (about 1.75-fold increase) (Figure 2A,B) and p70S6K (about 1.3-fold increase)
(Figure 2A,C) as compared to those treated with MPs from RPTCs exposed to normal glucose
(i.e., control MPs). Intriguingly, no significant increases in the phosphorylation of p70S6K and 4E-BP1
were seen in RPTCs exposed to MPs derived from RPTCs subjected to intermittent high glucose
compared to the control MPs group. Together, these results suggest that the mTOR pathway was
activated in naive RPTCs by MPs shed from RPTCs exposed continuously to high glucose, which
might contribute to excessive renal cell proliferation and hypertrophy.
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Figure 2. High glucose-derived microparticles (MPs; 10 pg/mL) induce phosphorylation of two
downstream targets of the mammalian target of rapamycin (mTOR) pathway in naive renal proximal
tubular cells. (A) Representative Western blots of P-4E-BP1 and P-p70S6K; and (B,C) densitometry
analyses of P-4E-BP1 and P-p70S6K levels normalized to 3-actin respectively. Values were expressed
as mean + SEM; n = 3; * p < 0.05 versus no MPs (control); # p < 0.05 versus control MPs;
P-4E-BP1: Phosphorylated-eukaryotic translation initiation factor 4E-binding protein 1; P-p70S6K:
Phosphorylated-70kD ribosomal protein S6 kinase; iHG: Intermittent high glucose; cHG: Continuous
high glucose.
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3.3. High Glucose-Derived MPs Activate ERK Pathway in Naive RPTCs

To ascertain whether MPs trigger signaling pathways involved in the control of cell proliferation,
we assessed the impact of high glucose-derived MPs on the activation of ERK pathway by specifically
assessing the phosphorylation of extracellular signal-regulated kinases—ERK1/2—in the naive RPTCs
exposed to MPs. Our results revealed that MPs derived from RPTCs exposed to high glucose
(intermittent and continuous) increased the phosphorylation of ERK1/2—about 1.55-fold increase in
intermittent high glucose treatment and about 1.8-fold increase in continuous high glucose treatment
as compared to the untreated control, i.e., no MPs-treated group (Figure 3A—C). Moreover, a small
increase in the phosphorylation of ERK1/2 (about 1.2-fold increase) was seen in naive RPTCs treated
with MPs from control RPTCs as compared to untreated control RPTCs, which indicate that MPs from
healthy RPTCs tend to activate ERK1/2 signaling in naive RPTCs.
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Figure 3. High glucose-derived microparticles (MPs; 10 pg/mL) induce phosphorylation of the
downstream target of extracellular signal-regulated kinase (ERK) pathway—ERK1/2—in naive renal
proximal tubular cells. (A) Representative Western blot of P-ERK1/2; and (B,C) densitometry analyses
of P-ERK1 and P-ERK2 levels normalized to (3-actin. Values were expressed as mean + SEM; n = 3;
* p < 0.05 versus no MPs (control); # p < 0.05 versus control MPs; P-ERK1/2 and ERK1/2: Phosphorylated
and total extracellular signal-regulated kinases 1/2; iHG: Intermittent high glucose; cHG: Continuous

high glucose.
3.4. High-Glucose Derived MPs Partially Activate ER Stress in Naive RPTCs

We studied the effect of MPs on the expression of ER stress markers such as phosphorylated-
eukaryotic initiation factor 2« (P-elF2¢; Ser51), glucose-regulated protein 78 (GRP78), X-box binding
protein 1 (XBP-1), and CCA AT-enhancer-binding protein homologous protein (CHOP). Of the four
markers of ER stress we had examined, exposure of naive RPTCs to MPs derived from RPTCs both
intermittently and continuously treated with high glucose only affected the expression levels of P-el[F2x
(Ser51) (about 1.7-fold increase over the control), which is an early marker of ER stress (Figure 4A,B).
We observed no changes in the expression of the other ER stress markers such as GRP78 and XBP-1,
and the expression of CHOP was undetectable in the untreated as well as all three MPs-treated
RPTCs (Figure 4A-D). These data suggest that high glucose-derived MPs may contribute to the
transient inhibition of protein translation in naive RPTCs given the critical role of P-elF2¢ in controlling
this action.
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Figure 4. High glucose-derived microparticles (MPs; 10 pg/mL) induce phosphorylation of elF2«
in naive renal proximal tubular cells. (A) Representative Western blots of endoplasmic reticulum
(ER) stress markers - GRP78, P-eIF2«, XBP-1, and CHOP; and (B-D) densitometry analyses of
P-elF2«, GRP78, and XBP1 levels normalized to 3-actin. Values were expressed as mean + SEM;
n =3; *p <0.05 versus no MPs (control); # p < 0.05 versus control MPs; GRP78: Glucose-regulated
protein 78; P-eIF2«: Phosphorylated-eukaryotic initiation factor 2«; XBP-1: X-box binding protein 1;
CHOP: CCAAT-enhancer-binding protein homologous protein; iHG: Intermittent high glucose; cHG:
Continuous high glucose.

3.5. Intermittent High Glucose-Derived MPs Activate the TGF-B Pathway in Naive RPTCs

To tease out the effects of MPs (derived from high glucose-treated RPTCs) on the activation of
TGF-p signaling in naive RPTCs, we studied two important markers of TGF-3 pathway—SMAD2
and SMAD4 proteins. We observed a 1.6-fold increase in the phosphorylation of SMAD?2 protein
in naive RPTCs treated with MPs from RPTCs exposed to intermittent high glucose compared to
the other two MPs-treated groups (Figure 5A,B). This increase in SMAD2 phosphorylation was also
accompanied by increases in the levels of SMAD4 (about 1.4-fold increase) in the nuclear fraction of
RPTCs exposed to MPs isolated from RPTCs exposed to intermittent high glucose as compared to its
concurrent control (Figure 5C,D). Collectively, these findings indicate that MPs derived from RPTCs
exposed intermittently to high glucose caused activation of the TGF-f3 pathway in naive RPTCs.
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Figure 5. Cont.



Biomolecules 2019, 9, 348 8 of 15

= *” :
7] . »
g 1504 é E 150 -1—
9 125 ] 2
~ ' - <
a 10 e g 100 -
§ 75 2 <§[ : ﬁ ﬁ
504 504
2 25 ﬁ @
i e
0- = - ol B =
No MPs  Control iHG cHG Control iHG cHG
¢ MPs —e r— MPs N

Figure 5. High glucose-derived microparticles (MPs; 10 pg/mL) activate transforming growth factor-beta
(TGF-p) pathway via phosphorylation of SMAD2 and nuclear translocation of SMAD4 in naive renal
proximal tubular cells. (A) Representative Western blot of phosphorylated SMAD2; (B) densitometry
analysis of P-SMAD2 levels normalized to 3-actin; (C) representative Western blot of SMAD4 in the
nuclear fraction; and (D) densitometry analysis of SMAD4 levels normalized to Lamin-B. * p < 0.05
versus no MPs (control); # p < 0.05 versus control MPs; P-SMAD2: Phosphorylated-SMAD?2; iHG:
Intermittent high glucose; cHG: Continuous high glucose.

3.6. High Glucose-Derived MPs Induce EMT in Naive RPTCs

We analyzed the expression of two critical markers of the EMT pathway, i.e., E-cadherin
(an epithelial marker) and alpha smooth muscle actin («-SMA; a mesenchymal marker) in RPTCs
exposed to high glucose-generated MPs. We observed significant reductions in the expression of
E-cadherin (about 1.3-fold decrease) in naive RPTCs exposed to MPs generated from RPTCs exposed
continuously or intermittently to high glucose as compared to the untreated control RPTCs (Figure 6A,B).
Moreover, a concomitant induction of mesenchymal marker x-SMA (about 1.3-fold increase) was noted
in the naive RPTCs exposed to MPs obtained from high glucose-treated RPTCs as compared to those
treated with MPs from the control group (Figure 6A,C).
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Figure 6. High glucose-derived microparticles (MPs; 10 pug/mL) induce epithelial-mesenchymal
transition (EMT)—demonstrated by a decrease in epithelial-cadherin (E-cadherin) levels and increase
in alpha smooth muscle actin («-SMA) levels—in naive renal proximal tubular cells. (A) Representative
Western blots of EMT markers—E-cadherin and x-SMA; and (B,C) densitometry analyses of E-cadherin
and «-SMA expression normalized to 3-actin, respectively. Values were expressed as mean + SEM;
n =3;*p < 0.05 versus no MPs (control); # p < 0.05 versus control MPs; E-cadherin: Epithelial-cadherin;
a-SMA: Alpha smooth muscle actin; iHG: Intermittent high glucose; cHG: Continuous high glucose.
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4. Discussion

4.1. Cell Viability and Cell Cycle Progression

There are no studies, to the best of our knowledge, that have studied the cytotoxic effects of MPs
shed in response to high glucose-induced stress on RPTCs. So, we compared the effects of MPs isolated
from the RPTCs exposed for 72 h to normal glucose and high glucose conditions (intermittent and
continuous) on the viability and the cell cycle progression of naive RPTCs. Our findings reveal that
MPs shed by RPTCs in response to high glucose stress neither affects the viability nor the cell cycle
progression of naive RPTCs. As the contents of the MPs are largely dependent on the originating cell
and the nature of stimuli, our findings suggest that RPTCs exposed to high glucose conditions do not
shed MPs containing cytotoxic or antiproliferative signals.

4.2. mTOR Pathway

The mTOR signaling pathway stimulates cell growth, survival, and proliferation. We observed
a significant increase in the phosphorylation of two crucial downstream targets of the mTOR
pathway—4E-BP1 and p70S6K. The function of unphosphorylated 4E-BP1 is to bind to the eukaryotic
translation initiation factor 4E (elF4E) and inhibit mRNA processing. However, when it is
phosphorylated, 4E-BP1 cannot bind to elF4E, and thus, the mRNA translation is uninhibited.
Similarly, the function of phosphorylated p7056K is to enhance the synthesis of proteins that are
essential for cell growth and proliferation. Our study revealed that both downstream markers of
mTOR—4E-BP1 and p70S6K—were phosphorylated only in the presence of MPs obtained from RPTCs
that were continuously treated with high glucose for 72 h. These findings indicate that mTOR signaling
was activated by MPs shed by RPTCs under sustained hyperglycemic conditions, which may contribute
to the hypertrophy of renal tubular cells and buildup of fibrotic tissue, which represents a hallmark
of DN [43,44]. Since decreased protein degradation in renal tubules was also shown to contribute to
diabetic renal hypertrophy [45], future studies that examine the effect of high glucose-derived MPs on
proteolytic pathways including autophagic-lysosomal protein degradation in RPTCs are warranted.

It is also important to note that the activation of mTOR is in divergence to our findings with
TGF-3, where the activation was seen only in naive RPTCs treated with MPs generated from cells
treated with intermittent high glucose. These data highlight the importance of fluctuations in glucose
levels, a situation commonly observed during diabetes, in the differential control of the expression of
growth factors and other signaling molecules secreted into MPs under high glucose stress. This further
underscores the importance of the stimulus at the origin of MP shedding in conditioning the cargo
content of vesicles as well as the biological messages carried out by MPs [15].

4.3. ERK Pathway

In further support to our findings from the markers of mTOR pathway, our results show
a profound increase in the phosphorylation of ERK1/2 following the treatment of naive RPTCs with
MPs obtained from RPTCs exposed to high glucose for 72 h—whether it was intermittent or continuous.
In corroboration to our findings, transient activation of p38 mitogen-activated protein kinase (MAPK),
a signaling pathway closely related to ERK1/2, was demonstrated in cultured human proximal tubule
cells following exposure to MPs derived from podocytes [21]. Since the ERK pathway is activated in
the presence of growth factors and cytokines, the activation of ERK1/2 following treatment with MPs
provides indirect evidence that MPs shed from RPTCs post-high glucose stress carry a cargo of growth
factors, which can induce cell proliferation.

4.4. ER Stress Response

Several studies indicate that ER stress plays a major role in the pathogenesis of DN [46-50].
We observed a steady increase in the phosphorylation of elF2« in naive RPTCs in the presence of MPs
isolated from RPTCs exposed intermittently or continuously to high glucose. In the PERK pathway
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of ER stress, phosphorylation of el[F2« was the first event to occur, and this often follows ER stress.
However, the initiation of this event cannot be misconstrued as ER stress. Intriguingly, there were
no significant changes in the expression of other proteins involved in ER stress pathway, namely
GRP78, XBP-1, and CHOP. Previously, Safiedeen et al. [51] showed that MPs from apoptotic T-cells
and metabolic syndrome patients increased the levels of ER stress markers—P-elF2«, XBP-1, and
CHOP—in human aortic endothelial cells [51]. Our study is the first of its kind to have examined the
paracrine effects of MPs derived from RPTCs in triggering ER stress in naive RPTCs. Our findings
suggest that MPs from RPTCs exposed to high glucose do not evoke an ER stress response in naive
RPTCs, although they can trigger the phosphorylation of el[F2x and may, therefore, cause a transient
reduction in the translation of proteins.

4.5. TGF-B Pathway

In this study, we examined two critical downstream markers of TGF-f3 pathway—SMAD2 and
SMAD4—involved in the progression of renal fibrosis in DN [52,53]. Following the activation of
the TGF-f pathway, SMAD proteins—SMAD2 and SMAD3—undergo phosphorylation and form
a complex with SMAD4. The resulting trimeric complex translocates to the nucleus and modulates the
transcription of genes involved in fibrotic signaling response [53]. To investigate the cascade of the
events downstream of SMAD2 phosphorylation, we divided the proteins into cytosolic and nuclear
fractions. p-SMAD?2 expression was analyzed in the cytosolic fraction, and SMAD4 expression was
analyzed in the nuclear fraction as SMAD4 expression was undetectable in the cytosolic fraction.

Consistent with our findings from the EMT pathway, we noted an increase in the expression
of both markers of TGF-f3. Specifically, we observed a profound increase in the phosphorylation of
SMAD?2 and the levels of SMAD4 (in the nuclear fraction) in naive RPTCs treated with MPs generated
from cells exposed to intermittent high glucose as compared to that of those from continuous high
glucose treatment. It is intriguing that no changes in the phosphorylation of SMAD3 protein were
observed in any of the groups (data not shown). Our findings are consistent with observations that
have been previously documented in studies using exosomes derived from RPTCs in response to
hypoxic stimuli [54] and from glomerular cells subjected to high glucose stress [55,56]. For example,
Borgers et al. [54] showed that exosomes derived from RPTCs subjected to hypoxic stress promote
renal fibrosis via induction of TGF-1 and x-SMA expression in renal fibroblasts [54]. Other studies
also demonstrated that exosomes derived from high glucose-treated glomerular endothelial cells [55]
and glomerular mesangial cells [56] activate TGF-f1 signaling in podocytes. Together, our findings
suggest a strong profibrotic role of MPs derived from RPTCs under high glucose conditions.

4.6. EMT Pathway

Numerous studies implicate the role of EMT in the development of renal fibrosis [33,34,57-60].
During the process of EMT, cells lose cell adhesion proteins specific to epithelial phenotype, such
as E-cadherin, and start to express proteins that are specific to that of fibroblast phenotype, such as
«-SMA. Hence, we studied the expression of two critical markers of EMT: E-cadherin and «-SMA,
in the naive RPTCs postexposure to MPs. Our findings revealed that the expression of E-cadherin
was decreased in naive RPTCs in the presence of MPs obtained from RPTCs exposed to high glucose.
Simultaneously, we observed an increase in the mesenchymal marker x-SMA in the presence of MPs
derived from RPTCs exposed to high glucose conditions. Studies have shown that MPs derived from
podocytes, endothelial cells, and RPTCs are biomarkers of DN and also mediate renal fibrosis [21,22].
Wau et al. showed that exosomes derived from high glucose-treated glomerular endothelial cells induce
a-SMA expression in podocytes and glomerular mesangial cells [55,61]. Together, these studies suggest
that MPs and exosomes mediate cell-to-cell communication in the progression of renal fibrosis in
DN. In corroboration with the findings on exosomes [55,61], our study indicates that MPs shed by
RPTCs subjected to sustained high glucose stress trigger naive renal cells to undergo the transition
from epithelial to fibroblast phenotype. In addition, our findings also suggest that these MPs might
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contain growth factors and cytokines, which could signal distant healthy RPTCs to undergo EMT and
potentially, fibrosis of the kidney. Additional studies are warranted to understand the specific role of
MPs as mediators of EMT in DN.

5. Conclusions

Although previous studies have reported the role of MPs from cell types such as endothelial
cells [18,51], platelets [62], and podocytes [20,21] in DN and chronic kidney disease [51,63,64], the effects
of MPs shed by RPTCs under high glucose conditions on neighboring RPTCs is largely unknown.
The present study indicates that under hyperglycemic conditions, MPs released from RPTCs activate
several pathways such as mTOR, ERK, TGF-§3, and EMT, in neighboring RPTCs and contribute to the
progression of DN (as depicted in Figure 7). Our studies also suggest that intermittent and continuous
high glucose in RPTCs lead to the production of MPs of more or less a similar composition, reflected by
the comparable activation of several signaling pathways in naive RPTCs. However, we did observe that
only the MPs derived from continuous high glucose activated mTOR pathway, and only those derived
from intermittent high glucose activated TGF-f3 pathway. The precise mechanisms that attribute to
these deviations need further investigation; however, these discrepancies underscore the complexity
of MP signaling and the importance of the stimulus causing the release of MPs in conditioning the
cargo content of the shed MPs in addition to the biological messages that they vehicle. Further studies
to investigate the involvement of other mechanisms implicated in the progression of DN, such as
oxidative stress [10,18] and fibrosis [21], would shed more light on the mechanisms that underlie
MP-induced renal cell injury.

High Glucose stress [ - . @;)
i

Membrane Blebbing

\ Exocytosis

Microparticles (MPs) P

= 9O,
i
% Target RPTCs (in kidney)

I

v v v v v
mTOR ERK ER Stress TGF-B EMT
pathway pathway pathway pathway pathway

1 P-4E-BP1 1 P-ERK1/2 1 P-elF2a 1 P-SMAD2 | E-cadherin
1 a-SMA

1 P-p70S6K \ l 1 SMAD4
\ Diabetic
Nephropathy M

Figure 7. High glucose-derived microparticles (MPs; 10 pg/mL) induce multiple signaling

pathways such as the mammalian target of rapamycin (mTOR), extracellular-signal regulated
kinase (ERK), endoplasmic reticulum (ER) stress, transforming growth factor-beta (TGF-f3), and
epithelial-mesenchymal transition (EMT) in renal proximal tubular cells (RPTCs), and might potentially
contribute to the development of diabetic nephropathy. Upward and downward arrows, respectively,
indicate increase and decrease in protein levels. P-4E-BP1: Phosphorylated-eukaryotic translation
initiation factor 4E-binding protein 1; P-p70S6K: Phosphorylated-70kD ribosomal protein S6 kinase;
ERK1/2: Extracellular-signal regulated kinase 1/2; P-eIF2«: Phosphorylated-eukaryotic initiation factor
20; P-SMAD2: Phosphorylated-SMAD?2; E-cadherin: Epithelial-cadherin; «-SMA: Alpha smooth
muscle actin.
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Our study extends the knowledge on the potential mechanisms involved in the progression of
renal fibrosis in DN by elucidating that MPs released by RPTCs under high glucose conditions play
a critical role in communicating the signals from stressed RPTCs to naive RPTCs through paracrine
signaling. It is noteworthy to mention that elevated levels of circulating MPs have been shown
to serve as an independent marker of the cardiovascular disease and high mortality observed in
diabetes patients with ESRD undergoing hemodialysis [15,65]. Taken together with our study findings,
MPs derived from renal tubular cells might also contribute to the increased mortality observed in
diabetes patients receiving hemodialysis. Thus, investigating the role of MPs-mediated cell-to-cell
communication in future studies would be helpful to design new;, effective therapeutic strategies to
attenuate the progression of DN in patients and to decrease mortality in diabetes patients with ESRD.
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