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Abstract: It is well known that the formation and spatial correlation of lipid domains in the two
apposed leaflets of a bilayer are influenced by weak lipid–lipid interactions across the bilayer’s
midplane. Transmembrane proteins span through both leaflets and thus offer an alternative domain
coupling mechanism. Using a mean-field approximation of a simple bilayer-type lattice model,
with two two-dimensional lattices stacked one on top of the other, we explore the role of this
“structural” inter-leaflet coupling for the ability of a lipid membrane to phase separate and form
spatially correlated domains. We present calculated phase diagrams for various effective lipid–lipid
and lipid–protein interaction strengths in membranes that contain a binary lipid mixture in each
leaflet plus a small amount of added transmembrane proteins. The influence of the transmembrane
nature of the proteins is assessed by a comparison with “peripheral” proteins, which result from the
separation of one single integral protein into two independent units that are no longer structurally
connected across the bilayer. We demonstrate that the ability of membrane-spanning proteins to
facilitate domain formation requires sufficiently strong lipid–protein interactions. Weak lipid–protein
interactions generally tend to inhibit phase separation in a similar manner for transmembrane as for
peripheral proteins.

Keywords: biomembrane; lipid bilayer; phase separation; inter-leaflet coupling; membrane domain

1. Introduction

Lipids in membranes tend to mix nonideally [1]. Many lipid mixtures are known for their ability
to phase separate or form domains [2]. Of special interest is domain formation in biomembranes
because of its putative functional role associated with the membrane raft hypothesis [3–5]. The plasma
membrane of mammalian cells is asymmetric and multicomponent, but its lipid composition has
often been described—in a first-order approximation—as consisting of phosphatidylcholine (PC) and
sphingomyelin (SM) in the outer leaflet, phosphatidylserine (PS) and phosphatidylethanolamine (PE)
in the inner leaflet, and cholesterol as being able to populate both leaflets [6]. It is well known from
experiments in model membranes that the lipids in the outer leaflet appear to represent a mixture of
saturated and unsaturated lipids with cholesterol that forms liquid-ordered (lo) domains [7,8]. No such
tendency is observed for the lipids in the inner leaflet [9]. However, there are some hints—concluded
mostly from computer simulations [10,11]—that suggest lo domains could also exist in the inner leaflet
of the plasma membrane and that they are spatially registered with those in the outer leaflet [6].

The raft hypothesis remains controversial [12,13], but it has sparked a large number of
experimental [14,15], computational [16], and theoretical [17] studies about domain formation in model
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membranes, with an increasing focus on inter-leaflet domain coupling in asymmetric bilayers [7,18–20].
Despite being in their fluid state, sufficiently large domains located in the apposed leaflets of a lipid
bilayer tend to register due to a domain mismatch energy on the order of 0.1− 0.2 kBT/nm2 [21] (kBT is
the thermal energy unit: Boltzmann constant times absolute temperature). There is experimental
evidence that the mismatch energy is large enough to not only register preexisting domains, but to
even induce domains in one leaflet by an existing domain in the apposed leaflet [22]. The origin of the
mismatch energy has been suggested to be mostly entropic [23,24], stemming from a more efficient
dynamic penetration of the bilayer’s midplane by the lipid tails in the registered as compared to the
unregistered domain arrangement. Sufficiently small domains may antiregister to minimize the line
tension by hydrophobic domain matching [25,26]. Recent theoretical modeling on the mean-field level
of a lattice gas has addressed the calculations of phase diagrams in asymmetric membranes [25,27–32].
Here, the domain mismatch energy penalty drives domain registration, but domain formation itself is
driven foremost by interactions of the lipids in the same leaflet. This can lead to a rich phase behavior
depending on the lipid–lipid interaction strength within each leaflet and the strength of the inter-leaflet
domain coupling.

As mentioned, lipid domains can be coupled across the membrane “thermodynamically” through
a domain mismatch energy. Here, registered domains are energetically (but not structurally)
connected across the bilayer. There is another possibility that has been suggested [33–35] but
not further pursued: transmembrane proteins or peptides, or membrane-spanning lipids (such as
bolalipids [36]), provide a “structural” domain coupling mechanism that may act in conjunction
with the above-mentioned thermodynamic mechanism of energy penalties for mismatching domains.
Obviously, membrane-spanning proteins are able to physically connect the domains they are associated
with across the membrane, irrespective of the inter-leaflet domain interaction energy. In addition,
one single transmembrane protein has a lower in-plane translational entropy in a membrane as
compared to two equivalent “peripheral” proteins that result from the separation of the transmembrane
protein into two independent units. The lower entropy too is expected to favor domain registration.
On the other hand, transmembrane proteins of different hydrophobic lengths invoke hydrophobic
mismatch penalties in membranes [37] that will affect their ability to induce phase separation. This was
observed, for example, by Ackerman and Feigenson [38] in a coarse-grained molecular dynamic
simulation of a four-component lipid membrane in the presence of additional transmembrane WALP
peptides of varying lengths. Independently of their length, however, all WALP peptides were
observed to increase domain alignment. The structural coupling mechanism is not confined to
transmembrane proteins; it also applies to bolalipids [39] and even to lipids with long tails such as
monosialotetrahexosylganglioside (GM1) [40] and other long saturated acyl chains [11] that interact
with the lipids in the apposed leaflet.

The objective of the present work is to propose and analyze a minimal model for phase
separation in a mixed lipid bilayer that is subject to the two distinct inter-leaflet coupling mechanisms:
a thermodynamic one due to the presence of a compositional mismatch between the two leaflets
and a structural one due to the presence of transmembrane proteins. The term “transmembrane
protein” stands as a representative for any type of membrane-spanning molecule that is able to interact
with the lipids in both leaflets, including integral proteins, transmembrane peptides, bolalipids,
and even long-chain lipids. We propose a bilayer-type lattice model, with two two-dimensional
lattices stacked one on top of the other. Lipids of two different types (referred to as A and B)
occupy one lattice site each, whereas transmembrane proteins consist of two lattice sites that span the
bilayer. Hence, each leaflet contains a ternary mixture consisting of two different lipid types and the
protein. We introduce all relevant lipid–lipid and lipid–protein interactions and analyze the model
on the mean-field level by calculating spinodal surfaces, critical points, tri-critical points, as well
as coexistence regions and tie lines in some cases. We demonstrate the ability of transmembrane
proteins to facilitate phase transition and to register domains across the bilayer. Our work represents
a first attempt to approach an understanding of the three-dimensional phase diagram of a mixed
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protein-containing bilayer—the richness of the features in the phase diagram justifies the simplicity
of our lattice approach, including the neglect of effects due to hydrophobic mismatch, membrane
bending, and multi-body interactions.

2. Theory

We consider two-dimensional lattice models for the external (“ext”) and internal (“int”) leaflets
of a lipid bilayer that contains a fixed number of transmembrane proteins. The two lattices have
the same coordination number z (for example, z = 4 for a cubic and z = 6 for a hexagonal lattice)
and reside on top of each other so that each lattice site on the external lattice contacts exactly one
lattice site on the internal lattice. Each lattice has a total of M lattice sites; the external one hosts P
transmembrane proteins, Aext lipids of type A, and Bext = M− P− Aext lipids of type B. Similarly,
the internal lattice hosts P transmembrane proteins, Aint lipids of type A, and Bint = M− P− Aint
lipids of type B. Because transmembrane proteins span the entire bilayer, the protein positions in
each leaflet are exactly the same for each microstate. The illustration of one specific microstate in
Figure 1 shows the correlations of protein numbers and positions across the two lattices.

Figure 1. Lattice model for a mixed lipid bilayer that contains transmembrane proteins. The snapshot
shows the two membrane leaflets separated (left diagram) and merged into a bilayer (right diagram).
Positions of lipids of type A (green) and lipids of type B (red) are uncorrelated across the lattice.
Number and locations of transmembrane protein segments (black) are identical in the two leaflets.
Note that both leaflets may have different lipid compositions. The displayed snapshot corresponds to a
square lattice (z = 4) of size M = 10× 10 and mole fractions φ = Aext/M = 0.62 (the upper leaflet),
ψ = Aint/M = 0.30 (the lower leaflet) and α = P/M = 0.06.

2.1. Free Energy of a Lipid Membrane That Contains Transmembrane Proteins

We consider a mean-field Helmholtz free energy F = U − TS of our lattice model at fixed
temperature T. Its internal energy U = Uext + Uint + Ucoupl reflects nearest-neighbor interactions
within each lattice (Uext and Uint) and a coupling term across the two lattices (Ucoupl). The entropy
S = kB ln Ω (with kB denoting Boltzmann’s constant) accounts for the number of available states,

Ω =
M! (M− P)!

P! Aext! Aint! Bext! Bint!
. (1)

On the level of the random mixing approximation [41,42], the in-plane nearest-neighbor
interaction energies Uext in the external layer and Uint in the internal layer can be expressed as

Uext

kBT
= χext

L
Bext Aext

M
+ χext

P
PAext

M
+ χ̄ext

P
PBext

M
,

Uint
kBT

= χint
L

Bint Aint
M

+ χint
P

PAint
M

+ χ̄int
P

PBint
M

, (2)
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where
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,

are effective lipid A–lipid B, lipid A–protein, and lipid B–protein interaction strengths in the
external and internal leaflets. These reflect the actual interaction strengths between lipid A-lipid
A (ωext

AA and ωint
AA), lipid A–lipid B (ωext

AB and ωint
AB), lipid B-lipid B (ωext

BB and ωint
BB), lipid A–protein (ωext

AP
and ωint

AP), lipid B-protein (ωext
BP and ωint

BP), and protein–protein (ωext
PP and ωint

PP), all expressed in units of
kBT.

The physical situation we are interested in is the presence of lipid A–lipid B interactions in each
leaflet and preferential interactions of the proteins with only one lipid type. To this end, we may simply
assume ωext

BP = ωext
AA = ωext

BB = ωext
PP = 0 for the external leaflet and ωint

BP = ωint
AA = ωint

BB = ωint
PP = 0

for the internal leaflet. This would leave us with χext
L = zωext

AB/2, χext
P = zωext

AP/2, χint
L = zωint

AB/2,
and χint

P = zωint
AP/2, whereas χ̄ext

P and χ̄int
P both vanish. More generally, we assume everywhere in the

present work χ̄ext
P = χ̄int

P = 0, whereas χext
L , χext

P , χint
L , χint

P may all be non-vanishing. If the interactions
are symmetric across the bilayer, we are left with only two interaction strengths that we refer to as
χL = χext

L = χint
L and χP = χext

P = χint
P . We also consider cases of asymmetric interactions where

χext
L 6= χint

L or χext
P 6= χint

P . The case χext
L 6= χint

L accounts for the different propensities of the lipids in
the two leaflets of a plasma membrane to undergo phase separation [9].

Symmetry demands the lowest order term of the inter-leaflet coupling energy across the
membrane to be quadratic; on the basis of the random mixing approximation, we obtain Ucoupl/kBT =

Λ(M− P)[(Aext − Aint)/M]2, where the coupling constant

Λ =
1
2

[
ω̃AB −

1
2
(ω̃AA + ω̃BB)

]
, (4)

reflects the inter-leaflet interaction of lipid A with lipid B (ω̃AB), of lipid A with lipid A (ω̃AA), and of
lipid B with lipid B (ω̃BB). It is convenient to define the three mole fractions

φ =
Aext

M
, ψ =

Aint
M

, α =
P
M

. (5)

Using Stirling’s approximation ln(x!) ≈ x ln x− x in the expressions for S as well as the definitions
in Equation (5), we find for the total Helmholtz free energy f = F/(MkBT), in units of kBT and per
lattice site,

f = α ln α− (1− α) ln(1− α) + φ ln φ + ψ ln ψ

+ (1− α− φ) ln(1− α− φ) + (1− α− ψ) ln(1− α− ψ)

+ χext
L φ(1− α− φ) + χint

L ψ(1− α− ψ) + (1− α)Λ(φ− ψ)2 + χext
P αφ + χint

P αψ, (6)

where we again note that we assume χ̄ext
P = χ̄int

P = 0. Without that assumption, the free energy in
Equation (6) would contain the additional contribution χ̄ext

P α(1− α− φ) + χ̄int
P α(1− α− ψ).

A specific goal of the present work is to quantify the phase behavior that follows from the function
f = f (φ, ψ, α) specified in Equation (6), subject to fixing the interaction strengths χext

L , χint
L , χext

P ,
χint

P , Λ in the thermodynamic limits of fixed temperature T and an infinitely large membrane size,
M→ ∞. The compositional variables φ, ψ, and α can vary independently within the ranges 0 ≤ α ≤ 1,
0 ≤ φ ≤ 1 − α, and 0 ≤ ψ ≤ 1 − α. However, the interesting protein mole fraction—on which
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we focus in the present work—is that of small α. We generally consider 0 ≤ α < 0.05. This seems
reasonable because only the most protein-rich biological membranes such as the purple membrane of
Halobacterium halobium have protein-to-lipid molar ratios of less than 1:50 [43]. Larger mole fractions
may occur locally [44], but their consideration would not only add another layer of complexity to
the present work; they would also raise concerns about the structural stability of membranes that the
present simple lattice model is not designed to address.

The mole fractions φ, ψ, and α constitute three independent degrees of freedom. This renders
the phase diagram three-dimensional, with a maximum of four phases that can coexist. We note two
symmetries. The first one, f (φ, ψ, 0) = f (1− φ, 1− ψ, 0), applies to a lipid bilayer that does not contain
proteins. The second one, f (φ, ψ, α) = f (ψ, φ, α), is valid for a membrane with symmetric interactions,
χext

L = χint
L and χext

P = χint
P .

2.2. Spinodals and Critical Points

To investigate the phase behavior, we first consider the spinodal surface, which can be calculated
from the vanishing of the determinant, detA = 0, of the stability matrix

A =


∂2 f
∂φ2

∂2 f
∂φ∂ψ

∂2 f
∂φ∂α

∂2 f
∂φ∂ψ

∂2 f
∂ψ2

∂2 f
∂ψ∂α

∂2 f
∂φ∂α

∂2 f
∂ψ∂α

∂2 f
∂α2

 . (7)

Points {φ, ψ, α} inside the spinodal surface, where A is negative definite, are locally unstable.
Tie lines with end points {φ1, ψ1, α1} and {φ2, ψ2, α2} are determined by the familiar common tangent
plane construction [42](

∂ f
∂φ

)
1
=

(
∂ f
∂φ

)
2

,
(

∂ f
∂ψ

)
1
=

(
∂ f
∂ψ

)
2

,
(
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)
1
=

(
∂ f
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)
2

,

f2 − f1 = (φ1 − φ2)

(
∂ f
∂φ

)
1
+ (ψ1 − ψ2)

(
∂ f
∂ψ

)
1
+ (α1 − α2)

(
∂ f
∂α

)
1

, (8)

where we have introduced the abbreviations f1 = f (φ1, ψ1, α1), f2 = f (φ2, ψ2, α2), (∂ f /∂φ)1 =

(∂ f /∂φ)φ1,ψ1,α1 and analogously for (∂ f /∂ψ)1, (∂ f /∂α)1, (∂ f /∂φ)2, (∂ f /∂ψ)2, and (∂ f /∂α)2.
The existence of three distinct points that satisfy the common tangent plane construction defines
three-phase coexistence. We also note that the limit of tie lines with vanishingly small separation
between the two coexisting compositions {φ1, ψ1, α1} and {φ2, ψ2, α2} defines a critical point.
Critical points are located on the spinodal surface (as determined by Equation (7)); in addition,
they fulfill the operator equation(

Bφ
∂

∂φ
+ Bψ

∂

∂ψ
+ Bα

∂

∂α

)3
f (φ, ψ, α) = 0, (9)

where the Bφ, Bψ, Bα are the cofactors of A along one arbitrarily chosen row or column. For example,
taking the middle row implies

Bφ =
∂2 f

∂φ∂α

∂2 f
∂ψ∂α

− ∂2 f
∂φ∂ψ

∂2 f
∂α2 , Bψ =

∂2 f
∂φ2

∂2 f
∂α2 −

(
∂2 f

∂φ∂α

)2

, Bα =
∂2 f

∂φ∂ψ

∂2 f
∂φ∂α

− ∂2 f
∂φ2

∂2 f
∂ψ∂α

. (10)

We are not aware of previous approaches to express the critical point condition in the operator
form of Equation (9). In Appendix A, we briefly discuss the derivation of Equation (9) and state
equivalent criteria that appear elsewhere in the literature [45–47].

We finally note that tri-critical points require the merging of two critical points. Mathematically,
this can be expressed by the vanishing magnitude of the cross product |∇s1 × ∇s2| = 0,
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where ∇ = {∂/∂φ, ∂/∂ψ, ∂/∂α} denotes the gradient, s1 = s1(φ, ψ, α) = detA the determinant of
the stability matrix, and s2 = s2(φ, ψ, α) the left-hand side of Equation (9).

2.3. Example for Calculation of Spinodals and Critical Points

In Figure 2, we show two examples for the calculation of spinodal surfaces according to
detA = 0 (with A specified in Equation (7)) and its critical points (Equation (9), with the cofactors
specified in Equation (10)).
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0.0

0.2

0.4

0.6

0.8

1.0

ϕ

ψ

χL
ext  2.1

α  0

a

b
c

d

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

ϕ

ψ

χ
L

ext  2.1

χ
L

int  2.1
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int  0

Figure 2. Left diagram: Spinodal lines (curves in blue color) and the solution of Equation (9)
(the curve in red color) calculated for α = 0, χext

L = 2.1 and the four different choices
χint

L = 2.1 (spinodal labeled “a”), χint
L = 2.045 (“b”), χint

L = 2.027 (“c”), and χint
L = 1.95 (“d”).

Intersections of the blue and red lines (marked by blue bullets) specify the critical point locations.
A tri-critical point is located on curve “c”. Right diagram: Spinodal lines at fixed χext

L = χint
L = 2.1 and

χext
P = χint

P = 0 for different α, ranging from α = 0 (the outermost spinodal) to α = 0.045 (the innermost
spinodal) in increments of 0.005. Critical points are marked on each spinodal by blue bullets. All results
on the left and right diagram are calculated for Λ = 0.05.

To this end, we choose f (φ, ψ, α) according to Equation (6) with fixed Λ = 0.05. Note that the
magnitude of Λ can be obtained by dividing the domain mismatch energy by the cross-sectional
area per lipid (typically 0.7nm2). However, the domain mismatch energy is not well known. In the
Introduction, we referred to the range 0.1− 0.2 kBT/nm2 estimated by Risselada et al [21] through
Molecular Dynamics simulations, but Putzel et al. [29] argued the domain mismatch energy could be
an order of magnitude lower. Clearly, our value Λ = 0.05 should be regarded as a rough estimate of a
quantity that remains poorly understood.

The left diagram of Figure 2 refers to the absence of proteins, α = 0. It displays four spinodal
lines (curves in blue color labeled “a”–“d”) and the solution of Equation (9) (the curve in red color),
all calculated at fixed χext

L = 2.1 and the four different choices χint
L = 2.1 (spinodal labeled “a”),

χint
L = 2.045 (“b”), χint

L = 2.0272 (“c”), and χint
L = 1.95 (“d”). Note that there is only a single

red curve, independent of χint
L because the third derivatives present in Equation (9) remove the

quadratic dependencies of the lipid–lipid interaction strengths. Intersections of the blue and red
curves mark the critical point locations. The spinodal marked “a” exhibits two critical points,
“b” four critical points, “c” two tri-critical points, and “d” zero critical points. The tri-critical points
occur at χint

L = 2.0272; their locations are {φ, ψ} = {0.373, 0.526} and, as implied by symmetry,
{φ, ψ} = {1− 0.373, 1− 0.526} = {0.627, 0.474}.

The right diagram of Figure 2 shows spinodal lines for fixed χext
L = χint

L = 2.1 and
χext

P = χint
P = 0. The ten different spinodals correspond to different protein mole fractions α,
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ranging from α = 0 (the outermost spinodal) to α = 0.045 (the innermost spinodal) in increments of
0.005. Critical points are marked on each spinodal by blue bullets. Clearly, there are two tri-critical
points between α = 0.040 and α = 0.045. Their locations are {φ, ψ, α} = {0.4376, 0.5223, 0.04014} and,
as required by symmetry, {φ, ψ, α} = {0.5223, 0.4376, 0.04014}. The examples presented in Figure 2 will
serve as useful reference in the Results section below.

2.4. Numerical Calculation of Coexisting Phases

In order to compute phase diagrams, we need to determine the location of coexisting phases.
To this end, it is convenient to minimize the composite thermodynamic free energy

fth =
4

∑
i=1

θi f (φi, ψi, αi), (11)

of a potentially phase-separated membrane. In Equation (11), we allow for up to four coexisting phases,
labeled i = 1, 2, 3, 4, with compositions {φi, ψi, αi} and area fractions θi. Of the 16 variables θi, φi, ψi, αi
only 12 are independent because there are four constraints that express the conservation of (1) the total
number of lipids and proteins, (2) the number of lipids of type A in the external layer, (3) the number
of lipids of type A in the internal layer, and (4) the number of proteins in the membrane. The four
constraints read:

1 =
4

∑
i=1

θi, φ =
4

∑
i=1

θiφi, ψ =
4

∑
i=1

θiψi, α =
4

∑
i=1

θiαi. (12)

Hence, the minimization of fth = fth(φ, ψ, α) according to Equation (11) with respect to
12 independent variables and fixed interaction parameters χext

L , χint
L , χext

P , χint
P , Λ completely specifies

the phase behavior and thus can be used to compute all coexisting phases that correspond to a
given point {φ, ψ, α} in the phase diagram. We point out that the accurate calculation of complete
three-dimensional phase diagrams as function of all parameters and their meaningful visualization is
a formidable task beyond the scope of the present work. Instead, we focus on a few examples that
illustrate the role of transmembrane proteins for domain registration across the bilayer.

2.5. Free Energy of a Lipid Membrane That Contains Peripheral Proteins

The expected mechanism of how transmembrane proteins couple domains across a lipid bilayer
is a structural one, based on the ability of the proteins to protrude into (and interact with) both
the external and internal membrane leaflets. To assess how effective this mechanism is, we compare
transmembrane proteins with “peripheral” proteins, where we obtain 2P peripheral proteins by cutting
each of the P transmembrane proteins in the middle. The two peripheral proteins that result from one
single transmembrane protein are able to independently relocate in their host leaflet; see the illustration
in Figure 3.

Two modifications of the free energy are associated with transitioning from transmembrane to
peripheral proteins. The first is an increase in the number of available states due to the presence of
twice as many proteins

Ω =
M!

P! Aext! Bext!
M!

P! Aint! Bint!
, (13)

which will give rise to the additional free energy contribution α ln α + (1− α) ln(1− α) in the free
energy per lattice site. The second is a modification of the inter-leaflet coupling term due to the
presence of lipid–protein interactions across the bilayer. To deduce the latter, we first introduce the
presence of inter-leaflet interaction strengths between lipid A and protein (ω̃AP), between lipid B
and protein (ω̃BP), and between protein and protein (ω̃PP). These interaction strengths are present in
addition to the inter-leaflet interaction strengths of lipid A with lipid A (ω̃AA), of lipid B with lipid B
(ω̃BB), and of lipid A with lipid B (ω̃AB) as introduced in Equation (4). Recalling that we operate on
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the level of the random mixing approximation, we recognize that the total inter-leaflet interactions
are given by Ucoupl/(MkBT) = Λ(φ− ψ)2, where the coupling constant Λ, defined in Equation (4),
is independent of ω̃AP, ω̃BP, and ω̃PP. The fact that the inter-leaflet interactions of the peripheral
proteins are irrelevant is an immediate consequence of employing the random mixing approximation
and the conservation of the number of proteins in the external and internal leaflets. As a consequence,
the coupling term in Equation (6) for transmembrane proteins, Λ(1− α)(φ− ψ)2, must be replaced by
a coupling term Λ(φ− ψ)2 for peripheral proteins. Hence, we can write for the mean-field free energy
per lattice site in the presence of peripheral proteins

f̃ (φ, ψ, α) = f (φ, ψ, α) + α ln α + (1− α) ln(1− α) + Λα(φ− ψ)2

= 2α ln α + φ ln φ + ψ ln ψ + (1− α− φ) ln(1− α− φ) + (1− α− ψ) ln(1− α− ψ)

+ χext
L φ(1− α− φ) + χint

L ψ(1− α− ψ) + Λ(φ− ψ)2 + χext
P αφ + χint

P αψ, (14)

where f (φ, ψ, α) has been inserted from Equation (6).

Figure 3. Lattice model for a mixed lipid bilayer that contains “peripheral” proteins. The snapshot
shows the two membrane leaflets separated (left diagram) and merged into a bilayer (right diagram).
Positions of lipids of type A (green), lipids of type B (red), and peripheral proteins (black) are all
uncorrelated across the lattice. While both leaflets may have different lipid compositions, they contain
the same number of peripheral proteins. The displayed snapshot corresponds to a square lattice (z = 4)
of size M = 10× 10 and mole fractions φ = 0.61 (the upper leaflet), ψ = 0.30 (the lower leaflet),
and α = 0.06.

In summary, separating all transmembrane proteins in the membrane into pairs of peripheral
proteins that reside in opposite leaflets corresponds to adding the mixing entropy term
α ln α + (1− α) ln(1− α) and an inter-leaflet-interaction contribution Λα(φ − ψ)2. We expect the
latter to be small because we assume α < 1 throughout this work.

2.6. A Simple Example for Phase Stability in the Presence of Transmembrane versus Peripheral Proteins

In order to most clearly illustrate the different influence of transmembrane versus peripheral
proteins on the phase behavior, we consider the specific situation χint

L = χext
L = χint

P = χext
P = χ,

where the proteins interact the same with lipids of type A as lipids of type B interact with lipids
of type A. The motivation behind this choice is to eliminate the difference between lipid B and
peripheral protein, rendering each leaflet effectively a binary system. We obtain an especially simple
free energy expression by demanding identical compositions of the two leaflets, φ = ψ. This removes
the inter-leaflet coupling term and thus reduces the free energy difference between a membrane with
transmembrane proteins and peripheral proteins to the mixing term α ln α + (1− α) ln(1− α).

More specifically, for the peripheral protein, this leads to the free energy f̃ (φ, φ, α) =

2 [α ln α + φ ln φ + (1− α− φ) ln(1− α− φ) + χφ(1− φ)], which amounts to two identical
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contributions from the two symmetric leaflets. According to Equations (7) and (9), the critical point is
located at

χ = 2, φ =
1
2

. (15)

Phase separation can only be observed for χ > 2, independent of α. Indeed, α is merely a dummy
variable because there is no difference anymore between lipid B and peripheral protein: they only
differ by their name.

We contrast this to the presence of transmembrane proteins, for which the free energy amounts
to f (φ, φ, α) = α ln α − (1 − α) ln(1 − α) + 2 [φ ln φ + (1− α− φ) ln(1− α− φ) + χφ(1− φ)]. Here,
the critical point is

χ = 2(1− α), φ =
1
2

, (16)

implying that phase separation can already be observed for χ < 2 if proteins are present. Let us
focus on the case φ = 1/2 because that always passes exactly through the critical point as α is varied.
We can choose α from its minimal value α = 0 to its maximal value α = 1− φ = 1/2. In the former
case, the membrane consists of 50% lipid A and 50% lipid B, which produces a critical nonideality
parameter χ = 2. In the latter case, 50% lipid A and 50% transmembrane protein are present, implying
a critical nonideality parameter χ = 1. Because every transmembrane protein interacts with two
leaflets, the lipid–protein interaction strength is effectively doubled. This implies a reduction of the
critical nonideality parameter from χ = 2 to χ = 1. In the intermediate case, for 0 < α < 1/2, the
critical point is predicted by Equation (16) to decrease linearly with increasing mole fraction of
transmembrane proteins.

The presence of lipid–protein interactions is crucial for the ability of the transmembrane proteins
to facilitate phase separation. If we repeat the same calculation as in the preceding paragraph, yet with
χint

L = χext
L = χL and χint

P = χext
P = 0, we obtain the same critical point

χ =
2

1− α
, φ =

1− α

2
, (17)

irrespective of the proteins being transmembrane or peripheral. Here, the proteins do not exhibit any
interactions with the lipid; they merely dilute the two-component lipid mixture, and they do so in the
same way for transmembrane and peripheral proteins. This elevates the critical value for χ and thus
suppresses phase separation.

3. Results

3.1. Phase Behavior in the Absence of Proteins

We start our analysis by recalling the previously analyzed case α = 0, where no proteins are
present in the membrane [24,27]. To this end, Figure 4 displays two phase diagrams, both calculated
for α = 0 and fixed Λ = 0.05. They show spinodal lines in blue color with the location of critical points
(if present), marked as blue bullets. They also show tie lines as straight solid lines in black, with the
two coexisting phases indicated by black bullets at the two ends of each tie line. Regions enclosed by
three connected tie lines (present in the left diagram) exhibit three-phase coexistence. The left diagram
was calculated for χext

L = χint
L = 2.1 and the right diagram for χext

L = 2.1 and χint
L = 1.95.

We first discuss the left diagram, which can be viewed as a specific example for a class of systems
with χext

L = χint
L = χL. The existence of three-phase coexistence requires a sufficiently small coupling

constant Λ < Λ? with [27]

Λ? =
3
2

χL
χL − 2

2χL − 3
. (18)
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For Λ > Λ? and Λ < Λ?, the maximum number of coexisting phases is two and three, respectively.
The former may be referred to as the strong-coupling regime. At Λ = Λ?, the phase diagram contains
two tri-critical points φ = φ? and ψ = ψ? = 1− φ? with

φ? =
1
2

(
1∓

√
1− 2

χL

)
, ψ? =

1
2

(
1±

√
1− 2

χL

)
. (19)
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Figure 4. Phase diagrams in the absence of proteins, α = 0. The blue lines mark the spinodal.
Tie lines (black solid lines) are terminated by black bullets. The left diagram is calculated for
χext

L = χint
L = 2.1 and the right diagram for χext

L = 2.1 and χint
L = 1.95. The coupling parameter

is Λ = 0.05 in both diagrams. The left diagram exhibits two three-phase regions that each hide one
critical point, marked by a blue bullet.

For χL = 2.1, the critical coupling parameter amounts to Λ? = 0.2625, which is well above
the value Λ = 0.05 used everywhere in the present work. The corresponding locations of the
tri-critical points are {φ?, ψ?} = {0.391, 0.609} and {φ?, ψ?} = {0.609, 0.391}. The left phase diagram
in Figure 4 makes a number of notable predictions. First, at the boundary of the phase diagram
(φ = 0, φ = 1, ψ = 0, or ψ = 1), a two-component leaflet is coupled to a single-component
leaflet. The single-component leaflet tends to suppress phase separation in the two-component
leaflet. For example, ψ = 0 leads to spinodal points φ defined by the quadratic equation 2φ(1− φ) =

1/(χL −Λ), and thus an effectively smaller non-ideality parameter χ
e f f
L = χL −Λ. Second, for φ = ψ,

the membrane is symmetric and the inter-leaflet coupling term vanishes. The phase behavior is then
unaffected by Λ and is determined solely by the non-ideality parameter χL. That is, the spinodal points
for φ = ψ are defined by the quadratic equation 2φ(1− φ) = 1/χL. Third, the presence of the two
three-phase regions for a lipid layer with intermediate asymmetry (where |φ− ψ| is neither very small
nor large) reflects the competition between inter-leaflet coupling and the tendencies of each leaflet to
phase separate. Indeed, two of the three coexisting phases exhibit the same compositional difference,
whereas the remaining third phase (which has the largest compositional difference) serves as host for
the “non-matching” lipids. We finally note that the critical points (marked by the blue bullets) are
inside the three-phase coexistence regions, which render them irrelevant for the thermodynamically
observed phase behavior.

Next, we discuss the right diagram of Figure 4. The parameters χext
L = 2.1 and χint

L = 1.95 imply
that the external but not the internal leaflet tends to phase separate on its own. Hence, phase separation
is completely suppressed at small and large φ when the outer leaflet resides outside its binodal region.
We still observe two-phase coexistence regions, but no three-phase coexistence. Even a different choice
of Λ > 0 will not give rise to three-phase coexistence. Instead, when Λ grows (starting from Λ = 0.05 at
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fixed χext
L = 2.1 and χint

L = 1.95), the spinodal detaches from the borders of the phase diagram
(that happens at Λ = 0.1, with two critical points appearing at {φ, ψ} = {0.5, 0} and {φ, ψ} = {0.5, 1})
and then forms an increasingly more circular shape. In the limit Λ → ∞, the spinodal is a circle of
radius 0.079 centered at φ = ψ = 0.5, with the two critical points {0.556, 0.444} and {0.444, 0.556}
attached. The tilt of the tie lines in the right diagram of Figure 4 is a consequence of the inter-leaflet
coupling. The observed positive slope of the tie lines emerges from Λ > 0 and the ensuing tendency to
minimize the local compositional difference across the bilayer. Any non-vanishing tilt implies distinct
compositions of the two coexisting phases in both leaflets. Hence, phase separation in the external
leaflet induces phase separation in the internal leaflet. The maximal degree of this “enslaved” phase
separation in the inner leaflet is adopted for the tie line that passes the point φ = ψ = 1/2.

How the two phase diagrams in Figure 4 transform into each other upon decreasing χint
L from

2.1 to 1.95 is revealed by the spinodals shown in the left diagram of Figure 2: a tri-critical point exists
at χint

L = 2.027, which separates the presence of three-phase regions (for χint
L > 2.027) from its absence

(for χint
L < 2.027). It is thus interesting to note that for, say, χext

L > 2.1, χint
L > 2.02, and Λ = 0.05,

there exists no three-phase coexistence despite the presence of a non-vanishing inter-leaflet coupling
parameter and despite the tendency of both leaflets to phase separate.

3.2. Phase Behavior in the Presence of Proteins

Here, we investigate the influence of transmembrane proteins on the phase behavior and compare
it with peripheral proteins. For transmembrane proteins, we use f (φ, ψ, α) according to Equation (6)
and for peripheral proteins f̃ (φ, ψ, α) according to Equation (14).

Consider first the symmetric case with χext
L = χint

L = χL = 2.1, χext
P = χint

P = χP, and α = 0.04. We
initially discuss the left two diagrams of Figure 5. They only differ in the protein type: transmembrane
for the top left diagram and peripheral for the bottom left diagram. Each diagram shows eight
spinodals (displayed in blue color) with the locations of the associated critical points (blue bullets),
calculated for χP = 0 (the innermost spinodal) and changing in increments of 0.3 until reaching
χP = 2.1 (the outermost spinodal). The light-blue bullets mark additional critical points without the
corresponding spinodal lines being displayed. The innermost spinodal in the upper left diagram,
calculated for χP = 0 and α = 0.04, has already been displayed in the right diagram of Figure 2. We
recall that two sets of three critical points, residing in close vicinity to each other, are located on that
innermost spinodal. We have calculated a number of tie lines for the innermost spinodal and added
them to the phase diagram (black lines): clearly, the phase diagram exhibits two three-phase regions,
but their small size prevents them from being visible, given our choice of tie line positions. Note that,
for χP = 0, all coexisting phases have the same protein mole fraction, α = 0.04, thus preserving the
two-dimensional nature of the phase diagram.

Starting from the innermost spinodal in the upper left diagram of Figure 5 (calculated for
χP = 0 and α = 0.04), upon slightly increasing χP, the three critical points merge into a single one.
Indeed, the second innermost spinodal has only two single critical points left, and so does the third one
(which is calculated for χP = 0.6). Immediately after that, for χP slightly larger than 0.6, two tri-critical
points appear and then give rise to a total of four additional critical points. To visualize this, we have
added multiple light-blue bullets that mark critical point locations between the two spinodals for
χP = 0.6 and χP = 0.9. Hence, the next spinodal, calculated for χP = 0.9, contains two sets of three
critical points. Two of the six critical points have moved outside the phase diagram boundaries for
χP = 1.2, and four of the six critical points have moved outside the phase diagram boundaries for all
subsequent spinodals (the three outermost spinodals, calculated for χP = 1.5, χP = 1.8, and χP = 2.1).
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Figure 5. Sections of {φ, ψ, α} phase diagrams at α = 0.04 for transmembrane proteins (top diagrams)
and peripheral proteins (bottom diagrams), with χext

L = χint
L = 2.1 in both leaflets and Λ = 0.05. Left

diagrams: Spinodal lines (solid lines in blue color) with the locations of the associated critical points
(blue bullets), calculated for χP = 0 (the innermost spinodal) and changing in increments of 0.3 until
reaching χP = 2.1 (the outermost spinodal). The light-blue bullets mark additional critical points at
selected positions without the corresponding spinodal lines being displayed. The tie lines shown (black
lines) correspond to the innermost spinodal. Because of χP = 0 for that spinodal, all coexisting phases
have a protein mole fraction of 0.04. We have thus marked the two ends of each tie line by black bullets.
Right diagrams: Spinodal from the corresponding left diagram for χP = 1.2 with a number of selected
tie lines, calculated at positions on the spinodal marked by blue triangles. The α-value of the two
coexisting phases (at the end of each tie line) are color-coded according to the legend in the bottom
right diagram.

The lower left diagram of Figure 5 exhibits a similar scenario as the upper left diagram with
two differences. First, the innermost spinodal (which has χP = 0) is very similar in size and
shape. All differences result entirely from the different coupling terms (that is, (1− α)Λ(φ − ψ)2

for transmembrane proteins versus Λ(φ − ψ)2 for peripheral proteins) but not from the different
mixing entropies of the proteins. However, the innermost spinodal in the lower left diagram exhibits
only two (instead of six) critical points. That is, the phase diagram for χP = 0 and α = 0.04 exhibits
three phase regions for transmembrane proteins, but not for peripheral proteins. As in the upper
diagram, we have added a number of tie lines to the innermost spinodal; here, no three-phase region is
present in the phase diagram. Second, the spinodals for the peripheral proteins enclose smaller regions
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than the corresponding spinodals for transmembrane proteins. The latter is a major finding of the
present work. It quantifies the ability of the transmembrane proteins—even when present at small mole
fractions—to induce membrane phase separation, whereas, for equivalent peripheral proteins, the
membrane remains uniform. In addition, transmembrane proteins tend to induce or widen three-phase
coexistence regions. For example, all tie lines displayed in the left two diagrams of Figure 5 encode for
two-phase coexistence where the two phases have the same degree of inter-leaflet mismatch (|φ− ψ| is
the same in both phases). A third phase, one with larger inter-leaflet mismatch, does not form because
of the prohibitively large inter-leaflet domain-coupling energy. However, transmembrane proteins
are able to couple mismatching domains structurally, thus counteracting the unfavorable inter-leaflet
domain-coupling mechanism.

The outermost spinodals in the upper and lower left diagrams of Figure 5 refer to χP = 2.1,
where the interactions of the transmembrane proteins with the A-lipids are the same as the interactions
of the B-lipids with the A-lipids (that is, χL = χP = 2.1). Peripheral proteins then behave the
same as B-lipids, reducing each leaflet effectively to a binary mixture of A-lipids with the union
of indistinguishable B-lipids and proteins. Hence, all differences in the phase diagram arise from
the presence (for transmembrane proteins) or absence (for peripheral proteins) of the inter-leaflet
connectiveness between the proteins segments, without being further affected by the different
lipid–lipid and lipid–protein interactions within each leaflet. We have discussed this for the special
case of a symmetric membrane (φ = ψ) in Section 2.6. The outermost spinodals in the upper and
lower left diagrams of Figure 5 clearly demonstrate the widening of the region where the membrane is
unstable due to the inter-leaflet connectiveness of the transmembrane proteins.

We have selected one particular spinodal from the upper and lower left diagrams of
Figure 5—the fourth one counted from outside, corresponding to χP = 1.2—and calculated a number
of tie lines; the results are shown in the two right diagrams of Figure 5. Note that the phase diagrams
are three-dimensional, with tie lines and three-phase regions extending out of the plane of the displayed
{φ, ψ, α = 0.04} section of the phase diagram. Hence, unlike in Figure 4, each unstable point {φ, ψ}
has its own individual tie line (or three-phase region). This makes a meaningful visualization of the
phase diagram more challenging. On the two right diagrams of Figure 5, we have simply selected a
few points (marked by triangles) located on the spinodal (the solid blue lines with the critical points
marked as blue bullets) and calculated the corresponding phase behavior. In all cases, we found
two-phase coexistence as characterized by tie lines. The α-values of the end points of the tie lines are
color-coded, with green hues for α < 0.04 and red hues for α > 0.04; see the legend on the bottom
right diagram of Figure 5. From the effective lipid A–protein interactions terms in the free energy,
χext

P αφ + χint
P αψ, it follows that proteins preferentially reside in a phase rich in lipid B (that is, small φ

and small ψ), given that χext
P > 0 and χint

P > 0. This has two consequences in the phase diagrams. First,
coexisting phases with smaller φ and ψ values tend to have larger protein content (i.e., red triangles
on the left bottom end and green triangles on the right top end of each tie line). In addition, second,
phase separation tends to become more pronounced in regions of larger φ and ψ. Regarding the latter,
compare, for example, the cases φ = 0 and φ = 1− α = 0.96 for transmembrane proteins (the upper
right diagram in Figure 5). Clearly, there is no phase separation for φ = 0, but there is phase separation
for φ = 0.96. Comparing the free energy in Equation (6) shows the presence of the additional term
χint

P α(1− α) for φ = 1. This term is thus responsible for the additional destabilization of the membrane.
The physical origin of the difference is that, for φ = 0, the upper leaflet contains only lipid type B,
whereas, for φ = 1, the upper leaflet contains only lipid type A. There is no preferential interaction of
the proteins with lipid B, but a tendency for segregation when the protein resides in a matrix of lipid
A. Hence, we observe a stronger tendency for phase separation when φ = 1 as compared to φ = 0.

Similar considerations are also valid for membranes with asymmetric interactions, χext
L 6= χint

L or
χext

P 6= χint
P . We exemplify this in Figure 6 for a membrane with χext

L = χext
P = 2.1 and χint

L = χint
P = 1.95.

As in the two right diagrams of Figure 5, we show a {φ, ψ, α = 0.04} section of the phase diagram with
the spinodal line and a selected number of tie lines displayed. The left and right diagrams in Figure 6
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correspond to transmembrane and peripheral proteins, respectively. In fact, the only difference when
comparing the upper right diagram of Figure 5 with the left diagram of Figure 6 (for transmembrane
proteins) and the lower right diagram of Figure 5 with the right diagram of Figure 6 (for peripheral
proteins) is the parameter change from χint

L = χint
P = 2.1 to χint

L = χint
P = 1.95. Hence, because the

latter is below the critical point, we no longer observe phase transitions in the small and large φ-regions
of the phase diagram. By comparing the phase diagram in the right diagram of Figure 4 with those
in Figure 6, we directly observe the influence of adding transmembrane or peripheral proteins of
mole fraction α = 0.04 and interaction strengths χext

P = 2.1 and χint
P = 1.95. We also note that the

spinodal lines in Figure 6 reproduce the small and large ψ-regions of those in Figure 5 for χP = 2.1 (the
outermost spinodals in the two left diagrams of Figure 5). As a result of decreasing χint

P from 2.1 to 1.95,
no critical points are present anymore and phase separation always produces exactly two coexisting
phases. Most importantly and similar to our discussion of Figure 5, transmembrane proteins produce
substantially larger unstable regions in the phase diagram as compared to peripheral proteins.
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Figure 6. Sections of {φ, ψ, α} phase diagrams at α = 0.04 for transmembrane proteins (left diagram)
and peripheral proteins (right diagram), calculated for χext

L = χext
P = 2.1, χint

L = χint
P = 1.95,

and Λ = 0.05. Both diagrams show a number of selected tie lines, calculated at positions on the
spinodal marked by blue triangles. The α-values of the two coexisting phases (at the end of each tie
line) are color-coded according to the legend in the bottom right diagram of Figure 5.

We emphasize that the phase diagrams shown in Figures 5 and 6 only contain limited
information—spinodals and tie lines at a few selected positions of a {φ, ψ, α = 0.04}—section.
Complete phase diagrams contain information about all coexisting phases at every point {φ, ψ, α}
in the three-dimensional phase diagram. Visualizing full phase diagrams in a meaningful way and
analyzing them comprehensively for the set, χint

L , χext
L , χint

P , χext
P , Λ, of interaction parameters is a work

in progress.

4. Conclusions

Our work is a first step into the direction of analyzing the interplay between “thermodynamic”
and “structural” coupling of domains across a lipid membrane. “Thermodynamic” coupling results
from the inter-leaflet interactions of the lipids, whereas the coupling becomes ‘̀structural” for
transmembrane proteins (or other membrane-spanning components such as bolalipids) that stretch
across the entire lipid bilayer. We have considered a mean-field, lattice-based model with nearest
neighbor pair interactions. This type of model is highly simplistic and in many ways oversimplifies
a protein-containing lipid membrane. However, it captures the principal aspect of introducing
membrane-spanning molecules (which we refer to as transmembrane proteins) into a lipid bilayer and
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its influence on the membrane phase behavior. We find that this influence depends on the interaction
strength of the transmembrane proteins with the lipids in the two leaflets. Weakly interacting
proteins suppress phase separation by merely diluting the lipids. If the lipid–protein interaction
strength resembles that among the lipids (which leads to domain formation in the first place),
then transmembrane proteins are indeed able to couple domains and enhance or even induce their
formation. Our present work may trigger a number of extensions. Perhaps one of the most interesting
is related to the ability of immobilized pinning sites to limit the growth of lipid domains [48], which is
one among a number of mechanisms [49,50] that have been suggested to rationalize the nanoscopic size
of membrane rafts. Cytoskeletal coupling of the inner leaflet of a plasma membrane creates pinning
sites, but it is the outer leaflet that has a high propensity to phase separate.

We emphasize the simplicity of our model. For example, all energy penalties due to hydrophobic
mismatch (either between the lipids among each other or between the lipids and proteins) are lumped
into effective interactions’ parameters. Hence, our model is not capable of making predictions of how
domain coupling depends on lipid chain length or on the hydrophobic protein thickness. Moreover,
we represent lipids by the sites of two coupled two-dimensional lattices, thus ignoring any molecular
specificities such as head group size, degree of lipid chain unsaturation, etc. The special role of
cholesterol does not enter explicitly into our model, neither do membrane bending [51], line tension
effects of domains [52,53], protein-mediated coupling of domains to its surroundings [54–56], or any
multi-body interactions. Finally, we treat our lattice model on the mean-field level, which ignores any
type of correlations between interacting membrane constituents [57]. However, even with all these
approximations, our simple model leads to a surprisingly rich phase behavior.
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Appendix A. Thermodynamic Criterion for Critical Point

Equation (9) (together with Equation (10)) defines the location of critical points on the spinodal
surface. It can be derived starting from the tangent plane construction in Equation (8) by expressing the
two coexisting compositions as φ1 = φ+4φ, ψ1 = ψ+4ψ, α1 = α+4α, φ2 = φ−4φ, ψ2 = ψ−4ψ,
α2 = α−4α. Upon carrying out a series expansion up to first order in x = {4φ,4ψ,4α}, we can
express the three equal-slope equations in the first line of Equation (8) as Ax = 0, thus reproducing the
equation detA = 0 that defines the spinodal. With that, the first non-vanishing term in the expansion
with respect to4φ,4ψ,4α of the second line of Equation (8) is of third order. The two eigenvectors
of x allow us to express two of its components by the remaining one; for example,4φ = 4φ(4ψ) and
4α = 4α(4ψ). Inserting these into the third-order expansion of the second line of Equation (8) yields

0 = B3
φ

∂3 f
∂φ3 + B3

ψ
∂3 f
∂ψ3 + B3

α
∂3 f
∂α3 + 6BφBψBα

∂3 f
∂φ∂ψ∂α

(A1)

+ B2
φBψ

∂3 f
∂φ2∂ψ

+ B2
φBα

∂3 f
∂φ2∂α

+ BφB2
ψ

∂3 f
∂φ∂2ψ

+ B2
ψBα

∂3 f
∂2ψ∂α

+ BφB2
α

∂3 f
∂φ∂2α

+ BψB2
α

∂3 f
∂ψ∂2α

,

where our choice of the independent variable in expressing the two eigenvectors determines which row
(or, equivalently, column) the cofactors Bφ, Bψ, Bα refer to. Equation (A1) is equivalent to Equation (9).

We have not observed Equation (9) to be stated previously in the literature. However, multiple
equivalent ways to express Equation (9) are well known; see the discussions by Akasaka [46] and by
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Bell and Jäger [47]. Among those is a set of equations that goes back to Heidemann and Khalil [45] and
results from a third-order stability analysis of a Taylor series expansion of the Helmholtz free energy
about the equilibrium state. Another method involves the vanishing of the determinant detB = 0
where the matrix B is produced from matrix A (see Equation (7)) by replacing any one of its rows by
the row vector {∂(detA)/∂φ, ∂(detA)/∂ψ, ∂(detA)/∂α} [58] .
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