Supporting Information

Assessment of DNA topoisomerase I unwinding activity, radical scavenging capacity and inhibition of breast cancer cell viability of *N*-alkyl-acridones and *N*,*N'*-dialkyl-9,9'biacridylidenes

Marios G. Krokidis, Zara Molphy, Eleni K. Efthimiadou, Marianna Kokoli, Smaragda-Maria Argyri, Irini Dousi, Annalisa Masi, Kyriakos Papadopoulos*, Andrew Kellett² and Chryssostomos Chatgilialoglu*

*CONTACT: <u>chrys@isof.cnr.it</u> <u>k.papadopoulos@inn.demokritos.gr</u>

List of Content:

- 1. Topoisomerase-I mediated DNA relaxation assay
- 2. Regression equations parameters of radical scavenging activity of DDPH and APTS assays
- 3. MTT assay of control acridone
- 4. Intracellular distribution of 9 and 11 after 24 h

1. Topoisomerase-I mediated DNA relaxation assay

Figure S1: Topoisomerase-I mediated DNA relaxation assay in the presence of increasing concentrations (10-400 μ M) of control acridone and *N*-alkylacridones 2-5 at pH 7.2.

Figure S2: Topoisomerase-I mediated DNA relaxation assay in the presence of increasing concentrations (10-400 μ M) of *N*,*N*'-dialkyl-9,9'-biacridylidenes **8**, **9** and **10** at pH 7.2.

2. Regression equations parameters of radical scavenging activity of DDPH and APTS assays

Table S1: Free radical-scavenging activity of N,N'-dialkyl-9,9'-biacridylidenes derivatives along with their corresponding regression equations parameters calculated by the DPPH-assay. Results were expressed as IC₅₀± standard deviation or TEAC values.

Analog	Lineal range (µM)	Slope	correlation coefficient (r ²)	Radical scavenging activity
				$\mathrm{IC}_{50}\pm sd$
				(TEAC)
7	5.0-25	2.7975	0.9943	16.98±0.88 (1.03)
8	10-50	2.6325	0.9824	33.7±2.1 (2.00)
9	10-50	2.346	0.9711	$28.350 \pm 3.1(1.69)$
10	10-50	1.587	0.9739	28.350 ± 3.1 (1.69)
11	5.0-20	2.7361	0.9643	17.73±0.53 (1.05)
12	5.0-20	3.0161	0.956	16.02±0.56 (0.96)
Caffeic acid	1.0-10.0	6.7494	0.9835	6.95±0.46 (0.42)
Trolox	2.5-50.0	2.8673	0.9781	16.76±0.54 (1.0)

Equations were calculated using five different concentrations assayed in triplicate. All equations followed a linear regression model. TEAC-values were calculated by dividing the IC_{50} value of each analog through the IC_{50} value of trolox.

Table S2: Free radical-scavenging activity of N,N'-dialkyl-9,9'-biacridylidenes derivatives along with their corresponding regression equations parameters calculated by the APTS-assay. Results were expressed as IC₅₀± standard deviation or TEAC values.

Antioxidant	Linear range	Slope	Correlation coefficients	Radical scavenging activity
	(µM)		(r ²)	$IC_{50}\pm sd$
				(TEAC)
7	5.0-50	1.3787	0.9766	32.32±1.90 (3.68)
8	10-50	2.2452	0.9824	9.33±0.42 (1.07)
9	10-50	2.845	0.9722	21.45±1.15 (1.14)
10	10-50	2.7576	0.9725	16.88±1.25 (1.92)
11	5.0-25	3.5243	0.9788	12.43±0.86 (1.42)
12	5.0-50	1.7882	0.9778	24.1±1.11 (1.52)
Caffeic acid	2.5-15	5.5325	0.9923	8.67±0.36 (0.99)
Trolox	2.5-12.5	5.8934	0.9961	8.78±0.29 (1.0)

Equations were calculated using five different concentrations assayed in triplicate. All equations followed a linear regression model. TEAC-values were calculated by dividing the IC_{50} value of each analog through the IC_{50} value of trolox.

3. MTT assay of control acridone

Figure S3: Dose-dependent response of MCF-7 epithelial breast cancer cells to acridone (0.01 to 100 μ M) for 24 h in serum containing medium. The results are presented as percentage of growth in respect to control cells. Each point represents the mean \pm standard deviation from experiments in triplicate. Asterisks mark the statistically significant levels using the Student t-test: *p<0.05, **p<0.01, respectively, as compared to control.

4. Intracellular distribution of 9 and 11 after 24 h

Figure S4: Determination of intracellular distribution of analogs 9 and 11 in MCF-7 breast cancer cells. Cells were treated with 1 μ M of each derivative and after 24 h incubation cells were imaged by confocal microscopy. Blue is DAPI (4',6-diamidino-2-phenylindole) nuclear stain.