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Abstract: In this paper, a nanocomposite of cuprous oxide and electrochemically reduced graphene
oxide (Cu2O–ERGO) was prepared by a simple and low-cost method; hereby, a new method for
the electrochemical determination of tryptophan (Trp) by this composite modified glassy carbon
electrode (GCE) is proposed. The prepared materials and modified electrodes were characterized by
scanning electron microscopy (SEM), X-ray diffraction (XRD), and cyclic voltammetry (CV). The results
showed that Cu2O–ERGO/GCE had good electrocatalytic activity for Trp. The effects of supporting
electrolyte, scanning rate, accumulation potential, and accumulation time on the determination of
Trp were studied. Under the optimum experimental conditions, Trp was quantitatively analyzed by
square-wave voltammetry (SWV). The oxidation peak current of Trp had a good linear relationship
with its concentration in the range of 0.02–20 µM, and the detection limit was 0.01 µM (S/N = 3).
In addition, the modified electrode has high sensitivity, good repeatability, and long-term stability.
Finally, the proposed method has been successfully applied in the determination of Trp concentration
in practical samples.

Keywords: cuprous oxide; electrochemical reduced graphene oxide; tryptophan; voltammetric detection

1. Introduction

It is well known that amino acids play an important role in neuroregulation, organ functioning,
and metabolism in human beings and animals. Tryptophan (Trp) is an important amino acid that is a
precursor of neurotransmitter serotonin and the neurohormone melatonin. It is also essential to the
establishment and maintenance of a positive nitrogen balance in human nutrition [1]. Unfortunately,
there is an inadequate amount of Trp in vegetables and fruits, and humans and animals cannot
synthesize Trp themselves, so Trp must be obtained from food and pharmaceutical formulas. The World
Health Organization recommends a Trp intake of 4 mg/kg per day. However, when Trp metabolism
malfunctions, toxic waste is produced in the brain, leading to hallucinations and illusions and resulting
in neurological dysfunction [2,3]. Therefore, it is important and urgent to establish a simple, sensitive,
and selective method for the determination of Trp in food, pharmaceuticals, and living bodies.
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So far, there have been many analytical methods for Trp determination, such as high-performance
liquid chromatography (HPLC) [4,5], fluorescence [6], capillary electrophoresis [7], chemiluminescence [8],
and spectrometry [9]. Although the above methods are useful for the quantitative analysis of Trp,
most have the disadvantages of high cost, complicated sample pretreatment process, long response
time, and the requirement for human-sized instruments. Electrochemical methods are good choices
to solve these defects because of their high accuracy, high sensitivity, simple operation, and low cost.
However, the electron transfer process is slow and the overpotential is high for the direct oxidation
of Trp on bare electrodes [2]. In addition, some electroactive biomolecules often coexist with Trp
in body fluids, which may have a similar oxidation peak potential with Trp and interfere with Trp
determination. Chemical modification of electrodes with suitable materials could solve these problems.
Therefore, many efforts have been made in recent years to find materials suitable for the design and
construction of high-performance electrochemical sensors to reduce the overpotential and improve
the sensitivity [10–20]. However, as shown in Table 1, most of them have deficiencies, such as narrow
linear range, insufficient low detection limit, or poor stability. The development of enhanced materials
and novel sensors for Trp is still of great significance.

Table 1. Comparison of results of Trp sensing between this study and previous reports.

Technique Modified Electrode Linear
Range (µM)

Detection
Limit (µM)

Repeatability
(RSD%)

Reproducibility
(RSD%) Stability Reference

a DPV d EGPU-tAuNP 0.6–2.0 0.053 - - - [10]
DPV e β-CD/MWCNTs/GCE 1.5–30.5 0.07 6.0 - 20 days [11]
DPV f ETPG 0.5–50.0 0.05 - 3.2 a month [12]

g PSA/GCE 0.05–10 0.0068 2.7 - four weeks [13]
DPV h rGO/SnO2/GCE 1–100 0.04 - 2.87 two weeks [14]
DPV i Au-NPs/GCE 0.09–50 0.08 2.4 - a week [15]

b SDLSV j Graphene/ABPE
0.1–10;
10–100 0.06 2.7 4.6 two weeks [16]

amperometry k CNF/CPE 0.1–119 0.1 1.0 2.2 an hour [17]
DPV l BuCh/GCE 2–60 0.6 - - a month [18]
DPV m MWNTs/GCE 0.25–100 0.027 2.6 - two weeks [19]
DPV n Pd-Cu@Cu2O/N-RGO/GCE 0.01–40 0.0019 2.11 3.78 a month [20]

c SWV Cu2O–ERGO/GCE 0.02–20 0.01 1.64 4.61 two weeks This work
a Differential pulse voltammetry; b Second-order derivative linear sweep voltammetry; c Square wave voltammetry;
d Gold nanoparticles modified graphite polyurethane composite electrode; e β-cyclodextrin incorporated with
multi-walled carbon nanotubes modified glassy carbon electrode; f Electrochemically treated pencil graphite
electrode (ETPG); g Poly(sulfosalicylic acid) modified glassy carbon electrode; h Reduced graphene oxide decorated
with tin oxide nanoparticles modified glassy carbon electrode; i Au nanoparticles modified glassy carbon electrode;
j Graphene modified acetylene black paste electrode; k Electrospun carbon nanofibers modified carbon paste electrode;
l butyrylcholine modified glassy carbon electrode; m multi-walled carbon nanotubes modified glassy carbon electrode;
n Pd−Cu@Cu2O cubes decorated N-doped reduced graphene oxide modified glassy carbon electrode.

Recently, metal oxide nanoparticles have attracted attention in industry and the scientific research
field due to their advantages such as high catalysis, low cost, and good stability [21–28]. In recent
years, Cu2O nanoparticles, important p-type semiconductors, have been widely used in solar energy
conversion, catalysis, lithium-ion batteries, optical devices, and gas sensors [29–31]. Cu2O is considered
a good additive for composite materials, not only because of its low cost and remarkable catalytic
activity, but also because of its good chemical stability, low toxicity, abundance, and easy preparation
and functionalization. Up to now, Cu2O nanoparticles with different morphologies have been
synthesized, including nanowire [32], nanooctahedron [33], nanocube [34], and nanosphere [35].
The results show that the structural flexibility of Cu2O improves its intrinsic electronic and catalytic
properties. Graphene, a carbon-based material, is becoming more and more popular as a nanomaterial
in electrochemistry due to its unique electronic, chemical, and structural characteristics. Graphene
exhibits many excellent properties including high surface area, high conductivity, and low intrinsic
size, which makes it attractive as a heterogeneous catalytic matrix [36–38]. Based on these advantages,
it has been reported that graphene combined with Cu2O can be used for electrocatalytic oxidation
of dopamine [39,40], hydrogen peroxide [41,42], and glucose [42–44]. These examples confirm
that graphene–Cu2O nanostructures exhibit better catalytic performance in electrochemistry than
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single components. The synergistic effect of graphene–Cu2O may come from the following aspects:
(i) electronic coupling between Cu2O and graphene can greatly improve the catalytic activity; (ii) the
conductivity of graphene–Cu2O composites is higher than when using Cu2O alone; (iii) Cu2O can
reduce the aggregation of graphene nanosheets and improve the chemical stability with the utilization
of catalysts. The incorporation of Cu2O particles into graphene can improve the electrochemical
response of Trp. Therefore, we hope to develop a high-performance electrochemical sensor for Trp.

It is well known that graphene is generally obtained by the chemical reduction of graphene oxide
(GO) with hydrazine hydrate or sodium borohydride. However, graphene is hydrophobic. Because of
Van der Waals interactions and strong π–π stacking, it often forms irreversible aggregations, which
seriously limits its application in electrode modification [16]. Recently the electrochemical reduction of
graphene oxide (GO) to produce graphene has been proposed with different electrochemical techniques
such as cyclic voltammetry [45,46] or controlled potential method [47,48], which is time-saving,
non-toxic, simpler, and greener than chemical reduction methods. Graphene oxide (GO) is a derivative
of graphene that has a large specific surface area and many hydrophilic oxygen-containing functional
groups on its hydrophobic surface. Such structural characteristics make it a special surfactant and a
good carrier to enhance the dispersion of Cu2O in water. Therefore, Cu2O nanospheres were prepared
using a simple precipitation method and then loaded onto the GO layer. Because the conductivity of
GO is poor, the Cu2O–GO composites were coated on the surface of a glassy carbon electrode (GCE)
and reduced by an electrochemical method. The conductivity of electrochemically reduced GO (ERGO)
is much higher than that of GO due to the restoration of conductive carbon conjugate networks. It was
found that the prepared material had good electrocatalytic activity for Trp. A detailed study was done
on the electrochemical behavior of Trp on the Cu2O–ERGO/GCE. Consequently, a simple, efficient,
and low-cost electrochemical method for the rapid and sensitive detection of Trp was proposed.

2. Experimental

2.1. Materials

Cupric sulfate (CuSO4·5H2O), tryptophan (Trp), graphite powder, hydrazine hydrate solution
(80 wt %), polyvinyl pyrrolidone (PVP) and all other reagents were of analytical grade from Shanghai
Sino pharm Chemical Reagent Co. Ltd., Shanghai, China. Compound amino acid injections (17AA-I)
and (18AA-I) were obtained from Xuzhou the Fifth Pharmaceutical Corporation, Xuzhou, China and
Guangzhou Green Cross Pharmaceutical Corporation, Guangzhou, China, respectively. Buffer and
standard solutions were prepared using double distilled water. 1.0 mM Trp solution was prepared by
dissolving 0.0204 g Trp in a small volume of 1.0 M NaOH solution, and then diluted with water in
a 100-mL volumetric flask. Serial dilutions with doubly distilled water were used to prepare more
dilute solutions.

2.2. Apparatus

The electrochemical measurements were performed with a CHI 660E Electrochemical Workstation
(Chenhua Instrument Co. Ltd., Shanghai, China). A conventional three-electrode cell was used at room
temperature. A Hg/Hg2Cl2 (KCl saturated) electrode, a platinum wire electrode, and a bare or modified
GCE were used as the reference, auxiliary, and working electrode, respectively. pH measurements
were done using a digital pHs-3c Model pH meter (Shanghai Leichi Instrument Factory, Shanghai,
China). The morphologies of the nanomaterials were observed by a scanning electron microscope
(EVO10, ZEISS, Jena, Germany). The crystal structure of Cu2O was collected with a powder X-ray
diffractometer (PANalytical, Holland, The Netherlands) with Cu Kα radiation (0.1542 nm).

2.3. Preparation of Cu2O and Cu2O–GO Composites

Cuprous oxide nanoparticles (Cu2O NPs) were synthesized according to a previous report with
some modification [39]. Typically, 100 mg CuSO4·5H2O and 50 mg PVP were dissolved in 20 mL H2O
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under stirring. Then 4 mL of 0.2 M NaOH was added dropwise, and blue precipitate was observed.
Finally, 15 µL hydrazine hydrate solution (80 wt %) was added to the above mixture and stirred for
20 min at room temperature and a brick-red suspension resulted. The solid product was separated
from the solution by centrifugation, washed with absolute ethanol and water, and dried in vacuum at
60 ◦C. Graphene oxide (GO) was synthesized referring to our preceding report [16]. Eventually, 1.0 mg
of Cu2O NPs was mixed with 20 mL of GO solution (1 mg/mL), followed by ultrasonication for 2 h to
obtain a homogeneous Cu2O–GO dispersion.

2.4. Preparation of Modified Electrode

To fabricate modified electrode, bare GCE was polished to a mirror-like state by 0.05 µm α-Al2O3

slurry. After successive sonication in ethanol and doubly distilled water, the electrode was allowed to
dry at room temperature. Typically, 5 µL Cu2O–GO nanocomposite was dropped onto the surface
of the cleaned GCE with a micro-injector. The obtained electrode was noted as Cu2O–GO/GCE.
The Cu2O–GO/GCE was immersed in a 0.1 M phosphate buffer (pH 6.0) and then electrochemically
reduced at –1.2 V for 120 s to obtain Cu2O–ERGO/GCE. In a similar way, GO/GCE, Cu2O/GCE,
and ERGO/GCE were obtained for comparison. When not in use, these modified electrodes were
maintained at room temperature.

2.5. Electrochemical Measurements

The electrochemical measurements were performed in a traditional electrochemical cell, which
contained a Trp standard solution of known concentration and 0.05 M H2SO4 as supporting electrolyte.
Accumulation was carried out at −0.1 V for 120 s under continuous stirring, and then kept for 5 s. In the
potential range of 0.50–1.1 V, square wave voltammograms were recorded at a scan rate of 0.1 V s−1.
After each measurement, the potential scan in the same range was repeated successively 3–5 times in
0.1 M H2SO4 solution to refresh the electrode surface.

3. Results and Discussion

3.1. XRD and SEM Characterizations

Figure 1 shows the X-ray diffraction (XRD) patterns of Cu2O nanoparticles. Diffraction peaks
are observed at 2θ = 29.6◦, 36.5◦,42.4◦, 61.5◦, and 73.7◦, which are related to (110), (111), (200), (220),
and (311) reflections, respectively. The peak positions are consistent with the standard document of
Cu2O (JCPDS No. 05-0667) [49], indicating that the prepared material is crystalline Cu2O. No diffraction
peaks of other possible impurities (such as Cu and CuO) are detected, demonstrating that the product
was pure Cu2O.

The surface morphologies of GO, Cu2O nanoparticles, ERGO, and Cu2O–ERGO composites
were characterized by a scanning electron microscope (SEM). As shown in Figure 2A, obvious wavy
structures could be observed in the SEM image of GO. Figure 2B shows the SEM image of Cu2O
nanoparticles. It was found that Cu2O nanoparticles are aggregated together, mostly in spherical
shape, with an average diameter of about 50–100 nm. As shown in Figure 2C, a lamellar structure of
ERGO nanosheets is observed. The layered structure of ERGO can effectively augment the specific
surface area of the modified electrode. It can be seen from Figure 2D that a large number of Cu2O
nanoparticles are evenly distributed on the ERGO with lamellar structure, which indicates that Cu2O
nanoparticles are well bound to the ERGO carrier. In addition, the SEM images in Figure 2D show that
the morphologies and sizes of Cu2O nanoparticles are similar to those observed in Figure 2B, showing
that the introduction of ERGO does not change the structure of Cu2O.
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3.2. Electrochemical Characterization of Different Electrodes

Figure 3 shows the cyclic voltammograms of 1 mM K3[Fe(CN)6] containing 0.5 M KCl at
different electrodes in the potential range of –0.2 to 0.8 V. On the GCE (curve a), the peak to peak
potential separation (∆Ep) was 87 mV (vs. SCE) with small redox peak currents, corresponding to
a quasi-reversible electron transfer process. On the GO/GCE (curve b), the redox peak current of
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[Fe(CN)6]3−/4− declines greatly with ∆Ep of 158 mV, which could be due to the weak conductivity
of GO. Curve c is the cyclic voltammogram of K3[Fe(CN)6] obtained at Cu2O–GO/GCE with Epc of
0.204 V, Epa of 0.286 V, and ∆Ep of 82 mV. As compared with GO/GCE, the peak currents increase
and the peak-to-peak separation decreases obviously. The results indicate that Cu2O could increase
the electron transfer rate of [Fe(CN)6] 3−/4− due to its excellent catalytic activity. On the ERGO/GCE
(curve d), a pair of well-defined redox peaks also appear with the redox peak current increasing and
the ∆Ep obviously decreases to 65 mV, which indicates the presence of high conductivity of ERGO. On
the Cu2O–ERGO/GCE (curve c), the value of ∆Ep is 71 mV with the further increase of the redox peak
currents, indicating a more reversible electron transfer process. So, the presence of high conductivity
of ERGO together with good catalytic activity of Cu2O on the GCE surface can further promote the
electron transfer and improve the performance of the sensor.
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Figure 3. Cyclic voltammograms obtained on (a) GCE, (b) GO/GCE, (c) Cu2O–GO/GCE, (d) ERGO/GCE
and (e) Cu2O–ERGO/GCE in a solution of 1.0 mM K3[Fe(CN)6] and 0.5 M KCl at the scan rate
of 0.1 V s−1.

3.3. Voltammetric Behavior of Trp at Different Electrodes

Figure 4 depicts the CV responses of 10 µM Trp in 0.05 M H2SO4 solution obtained at different
electrodes in a potential range of 0.0 to 1.2 V. As can be seen (inset in Figure 4), no redox peaks
are observed at Cu2O–ERGO/GCE in a blank solution, indicating that the Cu2O–ERGO/GCE is
non-electroactive in the selected potential region. On the other hand, when 10 µM Trp was added into
the blank solution, a well-defined oxidation peak is obtained at +0.923 V in the anodic scan, and a
small reduction peak is observed at +0.391 V in the reverse (cathodic) scan (curve d in Figure 4), which
could be attributed to the reduction of the oxidized intermediate of Trp [11]. Table 2 lists the peak
potentials and currents of Trp obtained at different electrodes. It is observed that the peak current
(ip) of Trp at ERGO/GCE is about 36 times, three times, and two times higher than that of bare GCE,
GO/GCE, and Cu2O–GO/GCE respectively, which may be attributed to the high conductivity, large
surface area, and good catalytic activity of ERGO. The Cu2O–ERGO/GCE shows the largest oxidation
peak current compared to other electrodes, which are about 120 times higher than that of the bare GCE
and almost three times higher than that of ERGO/GCE. The electrochemical data in Table 2 demonstrate
that the order of the ability to accelerate the electron transfer is Cu2O–ERGO/GCE > ERGO/GCE >

Cu2O–GO/GCE > GO/GCE > bare GCE. The above results suggest that the Cu2O–ERGO/GCE combines
the excellent properties of Cu2O and ERGO. Specifically, ERGO has excellent electrical conductivity and
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compensates for the deficiency of semiconductor Cu2O. In addition, ERGO provides a larger specific
surface area, which increases the loading of Trp, and Cu2O immediately exchanges electrons from the Trp
loaded in ERGO, promoting the electrocatalytic reaction. Therefore, the nanocomposites can maximize
the utilization within a limited electrode surface area, providing an electron transfer microenvironment
for accelerating the electrode reaction of Trp and enabling the sensitive determination of Trp.
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Figure 4. Cyclic voltammograms of 10 µM Trp obtained at different electrodes in 0.05 M H2SO4 solution.
Curve a: bare GCE; curve b: GO/GCE; curve c: Cu2O–GO/GCE; curve d: ERGO/GCE; and curve e:
Cu2O–ERGO/GCE. Scan rate: 0.1 V·s−1. Inset: the cyclic voltammogram of Cu2O–ERGO/GCE in 0.05 M
H2SO4 solution.

Table 2. Detailed data of cyclic voltammograms of 10 µM Trp at different electrodes.

Electrode ip/µA Ep/V

GCE 0.3190 0.994
GO/GCE 4.295 0.995

Cu2O–GO/GCE 6.985 0.975
ERGO/GCE 11.48 0.924

Cu2O–ERGO/GCE 38.17 0.923

3.4. Effect of Scan Rate

The electrode reaction kinetics was studied by investigating the effect of scan rate on the peak
current of Trp. Figure 5A indicates the cyclic voltammograms of 10 µM Trp at different scan rates
on the Cu2O–ERGO/GCE. It can be observed that as the scan rate increases from 30 to 300 mV·s−1,
the peak current increases gradually and shows a linear relationship with the scan rate. The linear
regression equation can be expressed as ip = 162.47 v + 0.5329 (ip: µA, v: V s−1); the correlation
coefficient is R2 = 0.9964, which indicates that the oxidation process of Trp at Cu2O–ERGO/GCE is an
adsorption-controlled process. The adsorption-controlled behavior was also confirmed by plotting logi
vs. logv corresponding to the equation logi = 0.964 logv+2.1934 (R2 = 0.9961). The resulting slope of
0.964 is close to 1.0, confirming the adsorption-controlled properties of the electrode process. As shown
in Figure 5C, the peak potential is linearly proportional to the Napierian logarithm of scan rate (ln v) in
the range of 30–300 mV·s−1, the linear regression equation is Ep = 0.0237 lnv + 0.9922 (Ep: V, v: V s−1),
with a correlation coefficient of R2 = 0.9992. Based on Laviron’s theory [50], the slope of the line is equal
to RT/αnF, so αn = 1.08. It is generally believed that α is 0.5 in the completely irreversible electrode
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process [51], so the number of electron transfer (n) involved in the Trp oxidation process is about 2.
The results show that at Cu2O–ERGO/GCE two electrons were involved in the oxidation process of Trp.Biomolecules 2019, 9, 176 9 of 15 
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3.5. Optimization of Parameters for Trp Determination

The effects of voltammetric determination parameters on the electrochemical oxidation of Trp
were investigated in detail. First, the effect of supporting electrolyte was evaluated by performing
the experiments at different supporting electrolyte including Britton–Robinson buffer (pH 3.0–8.0),
phosphate buffer (pH 3.0–8.0), HAc–NaAc buffer(pH 3.0-6.0), (CH2)6N4–HCl buffer (pH 3.0–6.0),
HAc–NH4Ac buffer (pH 3.0–6.0), NH3–NH4Cl (pH 8.0–10.0) and some different acids and alkalis such
as H2SO4, HCl, HNO3, and NaOH (each 0.1 M). The oxidation peak current values of Trp reached a
maximum in H2SO4 solution. In addition, the effect of the concentration of H2SO4 solution on Trp
oxidation was also evaluated in the range from 0.01 M to 0.5 M. It was found that the oxidation peak
current of Trp increased with increasing concentration from 0.01 M to 0.05 M, then gradually decreased
from 0.05 to 0.5 M (Figure 6). Therefore, 0.05 M H2SO4 was used in the current study.
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The effect of accumulation potential on the peak current was studied in a 10 µM Trp solution at
120 s accumulation time. It could be seen that, as the accumulated potential increased from −0.3 V
to –0.1 V, the peak current increased, and then the peak current changed a little with the further
positive shift of the accumulation potential (Figure 7A). Therefore, –0.1 V was chosen as the optimal
accumulation potential. The effect of accumulation time on the oxidation peak current of Trp was also
investigated at –0.1 V. It was found that with the increase of accumulation time, the peak current of
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Trp increased gradually. However, beyond 120 s, time period did not lead to significant increment
(Figure 7B). Therefore, taking into account the sensitivity together with the analysis speed, 120 s is
selected as the optimum accumulation time.
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3.6. Interference Studies

In this part, the effects of some interfering substances that may present in actual samples on
the electrochemical oxidation of Trp were examined. Under the optimal conditions, linear sweep
voltammetry (LSV) was performed in 0.05 M H2SO4 solution containing 10 µM Trp in the absence and
presence of each interfering substance of different concentrations. Ascorbic acid (AA), uric acid (UA),
dopamine (DA) usually coexist with Trp in biological fluids. Therefore, the interference effect of AA,
UA and DA on the oxidation of Trp was first studied. AA, UA and DA were found to produce oxidation
peaks at 235 mV, 468 mV, and 663 mV, separate from the Trp peak (Figure 8). The experimental results
showed that the peak current response of Trp did not change significantly in the presence of 100-fold
excess of AA, 20-fold excess of UA and DA. In addition, the effects of other different species were
also studied. No substantial changes in the peak current of Trp were observed in the presence of
100-fold excess of glucose, tartaric acid, citric acid, sodium chloride, and potassium chloride. Moreover,
in biological fluids as well as some pharmaceutical preparations, Trp often coexists with different
amino acids. Therefore, we separately studied the interference effects of different amino acids. Since
most amino acids are not electroactive, it was found that 100-fold concentrations of glycine, alanine,
valine, leucine, isoleucine, phenylalanine, histidine, and glutamic acid had no effect on Trp oxidation
(signal change ≤±5.0%). However, the oxidation peak potential of tyrosine is very close to that of Trp.
The results show that 2-fold tyrosine has no obvious interference on the determination of Trp.
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(UA) (curve b). Accumulation potential: −0.1 V, accumulation time: 120 s, scan rate: 100 mV s−1.
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3.7. Calibration Curve and Limit of Detection

Under the optimized conditions, Trp was quantitatively analyzed by square wave voltammetry
(SWV), and the corresponding voltammograms of different concentrations of Trp in the range of
0.02 µM to 20 µM are shown in Figure 9A. The oxidation peak current increased linearly with Trp
concentration. The calibration curve of Trp measurement (Figure 9B) showed a linear relationship
with Trp concentration (0.02–20 µM). The regression equation is ip (µA) = 3.1596c (µM) + 0.4811
(R2 = 0.9992). The low detection limit can be calculated by using Equation (1):

LOD = 3sb/S. (1)

In the formula, sb is the standard deviation of seven blank measurements and S is the sensitivity.
The low detection limit was identified at 0.01 µM (S/N = 3). The linear range and detection limit of
Cu2O–ERGO/GCE were compared with other electrodes. As indicated in Table 1, the linear range
obtained on Cu2O–ERGO/GCE was comparable to and even wider than that of other modified
electrodes, and the detection limit was lower than that of most electrodes except PSA/GCE [12] and
Pd–Cu@Cu2O/N-RGO/GCE [20]. Although a better detection limit (1.9 nM) and a wider linear range
(0.01–40 µM) have been achieved on Pd–Cu@Cu2O/N-RGO/GCE, the noble metal Pd was used for
electrode preparation. In addition, hydrothermal synthesis and chemical reduction were used in
the preparation of the electrode. Due to the high cost of Pd and the complex and time-consuming
preparation process, its practical application in commercial uses is greatly restricted. These results
show that Cu2O–ERGO/GCE is a suitable platform for Trp determination. In addition, compared with
other carbon-based materials, Cu2O–ERGO/GCE has the advantages of low production costs and a
simple preparation method.
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3.8. Repeatability, Reproducibility, and Stability of Cu2O–ERGO/GCE

According to some reports [13–15], Trp is easily adsorbed onto the electrode surface and fouls the
electrodes. In the present work, the most attractive feature of measuring Trp using Cu2O–ERGO/GCE
is that the electrode surface is easily renewed for the next use. After each measurement, the used
electrode was rinsed in 0.1 M H2SO4 solution and several voltammetric scans in the potential range of
0.5–1.2 V were carried out. The relative standard deviation (RSD) of seven measurements on the same
electrode in a 10 µM Trp solution was 1.64%, which indicated the weak adsorption of Trp oxidation
product on the electrode surface. In order to demonstrate the stability of Cu2O–ERGO/GCE, 100 CVs
were performed using 10 µM Trp. It was found that the peak current decreased only 3.47% even after
100 cycles. We also demonstrated the reproducibility by measuring the CV changes in a 10 µM Trp



Biomolecules 2019, 9, 176 11 of 14

solution obtained on seven different electrodes, and the RSD was calculated to be 4.61%. Furthermore,
Cu2O–ERGO/GCE long-term stability was also tested. The experimental results showed that the
current response of the modified electrode was 94.28% after two weeks in the refrigerator, which
indicates that the modified electrode has high stability.

3.9. Practical Applications

To explore the application feasibility of Cu2O–ERGO/GCE in the determination of Trp, human
serum samples and commercial compound amino acid injections were used as real samples. Before
analysis, serum samples were prepared according to our previous report [52], then the compound
amino acid injection was diluted 100 times with double-distilled water. Thereafter, an aliquot of the
sample solutions was diluted with 0.05 M H2SO4. In order to prevent the matrix effect, a standard
addition method was used. The results are shown in Table 3. The recoveries of human serum
samples and amino acid injection samples were 97.0–102.3% and 98.0–101.2%, respectively. The results
indicated that the electrode had high selectivity and accuracy for the determination of Trp in drugs
and biological samples.

Table 3. Determination of Trp in real samples (n = 4).

Samples Labeled/µM a Detected/µM Added/µM a Total Detected/µM Recovery/%

17AA-I 2.12 2.14 (±0.06) 2.0 4.10 (±0.10) 98.0
18AA-I 4.90 4.97 (±0.13) 5.0 10.03 (±0.29) 101.2
Serum 1 - 1.29 (±0.03) 1.0 2.26 (±0.06) 97.0
Serum 2 - 2.74 (±0.07) 1.0 5.81 (±0.15) 102.3

a Average ±confidence interval, the confidence level is 95%.

4. Conclusions

A highly sensitive electrochemical method was established for the determination of Trp by
Cu2O–ERGO/GCE. On Cu2O–ERGO/GCE, Trp undergoes a sensitive oxidation process and a sharp
peak is observed. The oxidation enhancement of Trp is due to the synergistic effect of Cu2O and
ERGO on the surface of the electrode. The results show that the modified electrode has wide linear
range, low detection limit, high stability, and good selectivity for the determination of Trp. In addition,
the modified electrode has the advantages of good reproducibility and simple preparation, especially
its anti-fouling performance to Trp and its oxidation product. The method has been applied to the
determination of Trp in human serum samples and commercial amino acid injections. The results
indicate that the method can be applied for the determination of Trp concentration in real samples.
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