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Abstract: Human nosocomial infections are common around the world. One of the main causes is the
bacteria Klebsiella pneumoniae, which shows high rates of resistance to antibiotics. Thus, drugs with
novel mechanisms of action are needed. In this work, we report the effects of various natural
substances on the formation of biofilm in Klebsiella pneumoniae, as well as its stability. The effect of
the molecules on the growth of K. pneumoniae was initially determined by measuring the optical
density. The modification of the biofilm, the changes relating to its resistance, the effects on the
bacterial adhesion to the urethral catheter and its antagonist role the hexanoyl-homoserinelactone
were assessed by crystal violet, as well as by microscopy. The best effects were obtained with
3-methyl-2(5H)-furanone and 2′-hydroxycinnamic acid, which inhibited the formation of biofilm by
67.38% and 65.06%, respectively. Additionally, the remaining biofilm formed was more susceptible
to gentamicin. Through microscopy examination, there were evident changes in the biofilm and
adherence on the polyvinyl chloride (PVC) urethral catheter. Besides, 3-methyl-2(5H)-furanone
inhibited the biofilm-forming effect of the autoinducer hexanoyl-homoserinelactone. Thus,
these molecules could be developed as supplemental of antibiotics.

Keywords: Klebsiella pneumoniae; resistance; biofilm; adherence; quorum sensing; inhibition; furan;
pyran; phenyl-acyl compounds

1. Introduction

Pathogenic microorganisms have developed resistance against most antibiotics currently used,
including penicillins, aminoglycosides, fluoroquinolones, and cephalosporins [1]. For this reason, the
World Health Organization (WHO) has launched a global alert on health risks [2]. Addressing Klebsiella
pneumoniae is considered a critical priority; also, this bacterium, as well as E. coli, are often isolated from
contaminated medical devices [3]. Several strategies have been proposed to overcome this problem,
including the rationalization of therapies with antibiotics in humans and animals and the search for
innovative molecules with new mechanisms of action, among others. The last approach has biocide
effects, so these compounds frequently induce profound genetic modifications in microorganisms in the
medium and the long term, thus adapting microbial resistance [4]. This resistance has already restricted
the use of several antibiotics. Moreover, recently, we found in Klebsiella pneumoniae ATCC 13884
evidence that some medicines, such as hydrochlorothiazide and acetaminophen, promote the formation
of biofilm and increase its resistance against two antibiotics, gentamicin, and ciprofloxacin [5].

The possibility of modulating bacterial communication has now been suggested as a new
alternative to control the resistance of pathogens. This mechanism, called quorum sensing (QS),
is carried out through the production of autoinducer molecules known as acylhomoserinelactones
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(AHL). In K. pneumonia lactones with different size side chain have been detected, such as
N-octanoylhomoserine lactone and N-3-dodecanoyl-L-homoserine lactone [6], N-hexanoyl-homoserine
lactone (C6-AHL) [7], in addition to a furanosyl borate diester [8]. The role of these autoinducer
molecules is related to the induction of genes involved in the production of lytic enzymes, toxins,
and exopolysaccharides, among others, for pathogenicity and virulence [9] as well as the formation
of a biofilm [10]. Therefore, through the inhibition of QS, the bacterial behavior can be modified,
but without biocidal effects. This inhibition can be achieved in several ways, e.g. by blocking the
biosynthesis of the autoinducers, through their degradation by specific enzymes or preventing their
interaction with the receptor.

In this paper, we analyzed the effects of several substances on processes associated with QS
in K. pneumoniae ATCC 13884, specifically on the formation and stability of the biofilm, as well as
its adherence to the urethral catheter, and the antagonistic role against the autoinducer C6-AHL.
To achieve this, the viability of the bacterium was first tested at different concentrations of compounds,
selecting those with viability higher than 85%. Then, the ability to inhibit the formation of biofilm and
modify its architecture were also studied; in this way, the two most active compounds were selected.
Subsequently, changes in the sensitivity of the mature biofilm to gentamicin were determined in
addition to the inhibition of bacterial adhesion on a polyvinyl chloride (PVC) catheter. Finally, the role
in neutralizing the effect of the natural autoinducer hexanoyl-homoserine lactone, was established too.

These molecules could use as leaders for the development of substances that reinforce the effect of
antibiotics currently employed as well as to reuse antibiotics that are no longer used due to microbial
resistance by the formation of biofilm.

2. Materials and Methods

2.1. Compounds

Twenty-seven compounds were selected based on their structural similarity with QS inhibitors
reported in the literature (phenyl-acyl derivatives, pyridines, pyrroles, pyrazines, and pyrans, among
others [11], and due to their similarity to lactone autoinducers, such as furans. These compounds
(Figure 1) were purchased at Sigma (Sigma, St Louis, MO, USA); a specific code each molecule
was assigned.

Furans (F): 2-methyltetrahydro-3-furanone (F1), 3-methyl-2(5H)-furanone (F2), furfural (F3),
5,6-dihydro-2(H)-pyran-2-one (F4), methyl 2-furoate (F5), 5-hydroxymethyl-2-furaldehyde (F6),
2-pentylfurane (F7), 5-ethyl-4-hydroxy-2-methyl-3(2H)-furanone (F8), 2-benzofuranyl methyl
ketone (F9). Phenyl-acyl derivatives (PP): 3,5 dimethoxybenzoic acid (PP1), syringic acid
(PP2), caffeic acid (PP3), 3-methoxyphenylacetic acid (PP4), 2′-hydroxycinnamic acid (95%
trans, PP5), 4′-hydroxyphenylacetic (PP6), 3-phenyl-1-propanol (PP7), 2-methoxy-2-phenylethanol
(PP8), 2-phenylethanol (PP9), methyl chavicol (Basil oil) (PP10), myristicin aldehyde (PP11),
3,4-dihydroxybenzoic acid (PP12). Pyrroles, pyridines, pyrazines (DP), others: acetylpyrazine
(DP1), 5-acetyl-2-methoxypyridine (DP2), 2-acetyl-4-methylthiazole (DP3), 4-acetylpyridine (DP4),
3-acetyl-1-methylpirrole (DP5), 2-acetylpirrole (DP6). N-hexanoyl-L-homoserinelactone (C6-AHL) was
used like an autoinductor. All assays were made by triplicate, with a stock solution of concentration
1.0 mg/mL of each compound in methanol; in all control experiments this solvent was used.
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2.2. Bacteria

Klebsiella pneumoniae subsp. rhinoscleromatis ATCC 13884 was purchased from American Type Cell
Collection (Manassas, VA, USA) cultivated in Medio Luria-Bertani (LAB M, Lancashire UK), at 37 ◦C.
The inoculums were prepared in saline solution at 0.9%, adjusting to an optical density (OD600nm) of
0.05, equivalent to 106 CFU/mL.

2.3. Equipment

In a microplate reader (Thermo Scientific, Waltham, MA, USA) the absorbance of crystal violet
was determined. The spectrophotometer used was UV-Visible (Thermo Scientific, Waltham, MA,
USA). Binocular microscopy was done with a Nikon Alphaphot-2 YS2, (Nikon, Tokyo, Japan), and
fluorescence microscopy with a Nikon Eclipse 50i fluorescence microscope (Nikon, Tokyo, Japan),
with a digital camera (Nikon DXM1200-F, Nikon, Tokyo, Japan). The urinary catheter was from PVC
Medex (Passaic, NY, USA) caliber N 20.

2.4. Effects of Compounds on K. pneumoniae Viability

The viability of K. pneumoniae was determined analyzing the optical density (OD) at concentrations
of 100, 50 and 25 µg/mL at 600 nm, using a medium/inoculum ratio of 1:1 (v/v), and incubating for
18 h at 37 ◦C, as described earlier [7]. The OD600nm of the control without treatment to the culture
containing the compounds was compared. Concentrations with a growth factor equivalent to or
greater than 85% to control were selected.

2.5. Effects of Compounds on the Formation of Biofilm of K. pneumoniae

An inoculum of K. pneumoniae equivalent to 106 CFU/mL was incubated at 37 ◦C for 30 h in
Luria-Bertani (LB) agar in the microplates of 96 wells. Then, the selected substances were added at
non-biocidal concentrations, as established before. After incubation was completed, the wells were
washed twice with sterile water and dried at 50 ◦C. Later, they were dyed with 0.05% violet crystal
for 10 min. The dyed biofilm was allowed to dry again, and then 250 µL f methanol were added to
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quantify the stain at 585 nm in a microplate reader. The absorbance of the violet crystal retained by the
control sample without any treatment was taken as 100%.

2.6. Effects of 3-methyl-2(5H)-furanone and 2′-hydroxycinnamic Acid on the Kinetics of Biofilm Formation

An experiment was carried out using the same methodology before described to establish the
optimal time of addition of the inhibitory biofilm compounds, but 3-methyl-2(5H)-furanone and
2′-hydroxycinnamic acid were added at 0, 6 and 24 h. The absorbance of crystal violet was established
after 30 h of the assay.

2.7. Effects of Compounds on the Biofilm Architecture and the Size of the Bacterium by Scanning Electron
Microscopy (SEM)

The formation of the biofilm was made in 1 cm × 1 cm glass coverslips using an inoculum of K.
pneumoniae in saline solution at OD600nm 0.05 in liquid LB medium containing the biofilm-inhibitors
compounds. Thus, coverslips were incubated at 37 ◦C for 30 h. The fixation and drying of the material
were done by heating at 37 ◦C for 12 h and then coated with a micronized gold microlayer. Finally,
the biofilm was analyzed by Scanning Electronic Microscope, SEM (JEOL-JSM 6490LV, Peabody, MA,
USA) operated at 20 kV, with 200X and 7000X of magnification.

2.8. Effects of 3-methyl-2(5H)-furanone on the Configuration of the Biofilm in Glass

The methodology for this test was similar to that used to evaluate the biofilm architecture by SEM.
Thus, after incubation, coverslips were rinsed with water and then immersed in 0.1% acridine orange
in phosphate buffer saline pH = 7.2 (PBS) for 1 min; the excess dye was rinsed off with sterile water.
The stained biofilm was observed with an Episcopic-Fluorescence Attachment (EFD-3), using a B-2a
filter cube coupled to the camera.

2.9. Effects of Compounds on the Sensitivity to Gentamicin of the Mature Biofilm

On microplate of polystyrene of 96 wells, an inoculum of K. pneumoniae and
3-methyl-2(5H)-furanone and 2′-hydroxycinnamic acid at non-biocide concentrations (15 µg/mL) were
placed for 30 h. Then, the culture medium was renewed, and gentamicin was added to concentrations
between 0.12–1.0 µg/mL. Then it was incubated again for 30 h more, and the remaining amount of
the biofilm was quantified by staining with violet crystal at 0.5%. A biofilm without treatment of
inhibitory molecules was studied as a control. The effectiveness of the substances towards making the
biofilm more sensitive to gentamicin was calculated as:

% Biofilm Sensitivity (BS) = 100 − (BS with compounds/BS control) × 100) (1)

2.10. Effect of Compounds on K. pneumoniae ATCC 13884 Adherence to Urethral Catheters

As reported before, the effect of the substances on the adhesion of K. pneumoniae to urethral
catheters was evaluated [5]. Briefly, cultures of K. pneumoniae in the liquid LB media were incubated for
30 h at 37 ◦C with a piece of 5 cm, 20-caliber PVC catheter Medex® in the presence of the substances at
a non-biocidal concentration. Later, the catheter was washed with sterile water, then dried at 50 ◦C and
after that dyed with violet crystal at 0.05% for 10 min. Finally, it was washed three times with water
and allowed to dry at room temperature for viewing in the optical microscope at 10X magnification
and analyzed by ImageJ program.

2.11. Effect of 3-methyl-2(5H)-furanone on the Biofilm Inductor of C6-AHL

An assay was made in microplates of 96 wells with LB medium, according to the modified
method of O′Toole [12], to establish the effect of 3-methyl-2 (5H)-furanone in the capacity of C6-AHL
to induce the formation of biofilm. Thus, C6-AHL at a final concentration of 0.4 µg/mL was placed in
several wells. Similarly, in another wells 3-methyl-2(5H)-furanone at 15 µg/mL was added, and finally,
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a mixture of both compounds at the described concentrations was also deposited. Subsequently, an
inoculum of K. pneumoniae adjusted to a OD600nm of 0.05 UA was added to the wells, and next it was
incubated at 37 ◦C for 30 h. The measurement of the adhered bacterial mass was made by staining
with violet crystal at 0.05% for 10 min, washed with distilled water and then dried for 2 h at 50 ◦C,
and extracted with 250 µL of methanol dry again. In a microplate reader the crystal violet absorbance
(biofilm) was quantified at 585 nm.

2.12. Statistical Analysis

Stratigraphic Centurion software (16.2.04) (The Plains, VA, USA) was used to establish a
comparison in means of the assays with a confidence level of 95%.

3. Results

3.1. Effects of Compounds on the K. pneumoniae Viability

Nearly all compounds showed viability of >85% at all assayed concentrations, including the
lowest 25 µg/mL concentration, except 4′-hydroxyphenylacetic (PP6) and 3,4-dihydroxybenzoic acid
(PP12) (Figure 2). Therefore, a lower level for the other experiments was selected (15 µg/mL) to avoid
possible biocidal effects that could modify the results.
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Figure 2. The effects of the compounds evaluated on the viability of K. pneumoniae. Minimum
viability 85% growth was established respect to the found in the control medium without substances.
See structure code in Figure 1.

3.2. Effects of the Substances on the Formation of Biofilm of K. pneumoniae

A value of 20% was established as the minimum inhibition to determine the effectiveness of the
compounds in the inhibition of biofilm formation since the control without treatment reached that
value. The concentration used for each substance was previously established at 15 µg/mL. Most of
the compounds did not affect the formation of biofilm since they had effects beneath the control limit
selected (20%) (Figure 3).

Only two compounds were highlighted: 3-methyl-2(5H)-furanone, as it induces a biofilm
inhibition of 67.38%, and the phenyl-acyl derivative 2′-hydroxycinnamic acid, with an inhibition level
of 65.06%. However, the compound 2-methoxy-2-phenylethanol displayed an inducing effect of biofilm
formation of 10.27%, with 2-benzofuranyl methyl ketone and 2-methyltetrahydro-3-furanone having
lesser effects. In the group of pyrroles and pyridines, as well as pyrones, the results were negative.
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Figure 3. Effects of the compounds on the formation of the K. pneumoniae biofilm. The biofilm
was obtained from an inoculum of K. pneumoniae in microplates of polystyrene and quantified by
absorbance with violet crystal. In LB medium all substances were evaluated at 15 µg/mL (non-biocidal
concentration). Negative values indicate a biofilm-inducing effect. See structure code in Figure 1.

3.3. Effects of 3-Methyl-2(5H)-Furanone and 2′-hydroxycinnamic acid on the Kinetics of Biofilm Formation

For this test, 3-methyl-2(5H)-furanone was selected. Due to its structure, it has a slight resemblance
to the autoinducer lactones involved in QS; besides, it caused the most significant decrease in biofilm
development. On the other hand, the formation of the biofilm occurs in several phases: 0 h corresponds
to the adhesion phase, 6 h is the aggregation phase, and 24 h is the maturation phase. However, in this
case, the formation of biofilm was significantly modified when the compound was added at the
beginning of the experiment, at 0 h (Figure 4). No significant changes were observed at 6 and 24 h.
Therefore, the compound 3-methyl-2(5H)-furanone can change the adhesion phase of K. pneumoniae,
which generates a decrease in the formation of mature biofilm.
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Figure 4. The kinetics of biofilm inhibition of the compounds. At 0, 6 and 24 h of incubation the
compound was added, and the amount of biofilm formed was quantified by staining with violet crystal
at 30 h. The asterisk (*) represents values lower than the average of the control of each compound
concentration with statistically significant difference (* p < 0.05) (n = 5).

3.4. Effect of 3-methyl-2(5H)-furanone on the Architecture of the Biofilm of K. pneumoniae by Scanning
Electron Microscopy (SEM)

In the images of the formed biofilm (Figure 5), fewer colonization areas were observed compared
to the control, due to increases in the spaces between the microcolonies adhered to the material.
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The structure of the biofilm in the treated cultures is less compact and possibly more exposed to
exogenous substances.

Regarding bacterial morphology in the biofilm, images of the colonized catheter at 7000X
magnification were taken, then the sizes of 170 treated and untreated bacteria were measured. For both
compounds, approximately 20% of the population measured between 800–1199 nm, 40% between
1200–1599 nm, 30% between 1600–1999 nm and in the remaining 10% the size was higher than 2000 nm.
In the control without treatment, the measurements were 15.79%, between 800–1199 nm, 53.80%
between 1200–1599 nm, and 28.65% between 1600–1999 nm. Only 1.75% of the bacteria were sized
higher than 2000 nm. Thus, there was a close to 8% reduction in the number of larger bacteria.Biomolecules 2019, 9 7 
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(SEM) at 200X and 7000X. Upper: Culture without treatment. Bottom: Biofilm formed under the
effects of 3-methyl-2(5H)-furanone. The compound reduces the colonization area and increases the
interbacterial spaces.

3.5. Effects of Compounds on the Sensitivity of the Mature Biofilm of K. pneumoniae to Gentamicin

As mentioned before, 2′-hydroxycinnamic acid and 3-methyl-2(5H)-furanone are inhibitors of the
formation of biofilm, with percentages higher than 60%. So, it is essential to determine the stability
of the mature biofilm concerning the effect of gentamicin. Thus, when gentamicin (1.0 µg /mL) was
added to the mature biofilm formed in the presence of the inhibitors the amount of biofilm remaining
was reduced of 42.51% and 33.82%, respectively (Figure 6). This reduction is complementary to the
inhibition that was previously determined, which was 67.38% and 65.06%, respectively.

At lower concentrations of the antibiotic, the effect remains, since at 0.12 µg/mL of gentamicin the
reduction was 29% for both inhibitors. All this suggests that compounds 2′-hydroxycinnamic acid and
3-methyl-2(5H)-furanone not only inhibit the formation of biofilm but also make it more susceptible
to gentamicin.
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Figure 6. The effect of gentamicin on the elimination of mature biofilm formed under the effect of
2′-hydroxycinnamic acid and 3-methyl-2(5H)-furanone inhibitors (30 h incubation). These compounds
increased the sensitivity of the biofilm of K. pneumoniae to gentamicin. For both substances the relative
reduction of biofilm concerning the control and to each concentration of gentamicin it is appreciated.
Results along with the standard deviation are presented as average values. The asterisk (*) represents
values lower than the average of the control of each antibiotic concentration with statistically significant
difference (* p < 0.05) (n = 5).

3.6. The Effect of 2′-hydroxycinnamic acid and 3-methyl-2(5H)-furanone on the Adherence of K. pneumoniae to
the Catheter

The assays were carried out in a PVC urethral catheter by incubation for 30 h with these
compounds at 15 µg/mL; as a control, a catheter without any compound was used. Three different
zones in an area of approximately 17.000 µm2 with the ImageJ software, were analyzed (Figure 7).
In the control experiment, the colonization area was 4709 pixels2, while in the material treated with
2′-hydroxycinnamic acid it was 1887 pixeles2, equivalent to a reduction of 60.15%. For the case of
3-methyl-2(5H)-furanone, the colonized area was 1525 pixeles2, with a decrease of 67.82%.
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Figure 7. The appearance of the biofilm of K. pneumoniae in a polyvinyl chloride (PVC) urethral
catheter. Biofilm formed at 30 h of incubation at 37 ◦C was stained with violet crystal at 0.05%. The size
of microcolonies was determined in three fields to quantify the colonization level; each image is a
catheter field with greater biofilm formation. A 60.15% reduction in colonization was observed in
the presence of 2′-hydroxycinnamic acid, and a 67.62% reduction with 3-methyl-2(5H)-furanone at
15 µg/mL was observed.

3.7. Effects of 3-Methyl-2(5H)-Furanone on the Configuration of the Biofilm in Glass

In coverslips, the biofilms formed by K. pneumoniae without any treatment are shown as dense
groups (Figure 8). At the same time, bacterial agglomerations form well-defined three-dimensional
structures. In the case of biofilm under 3-methyl-2(5H)-furanone treatment at 15 µg/mL (viability
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95.90%), the bacterial density decreased notably. Also, bacterial clusters, although spread throughout
the surface, form thin layers, which is evidenced by the reduction in the light intensity of the staining.Biomolecules 2019, 9 9 
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Figure 8. The biofilm of K. pneumoniae on coverslips. Upper: Biofilm formed for 30 h without treatment.
Bottom: Biofilm formed under the effect of 3-methyl-2(5H)-furanone at 15 µg/mL. All biofilms were
stained with acridine orange at 0.1% and observed with a fluorescence microscope with a blue filter.

3.8. Effects of 3-Methyl-2(5H)-Furanone against the C6-AHL Autoinducer

Previously, we demonstrated that K. pneumoniae produces the autoinducer C6-AHL [7];
this compound is involved in the formation of biofilm. Therefore, it was assessed whether
3-methyl-2(5H)-furanone at 15 µg/mL could neutralize the effect of C6-AHL at the minimum inducing
concentration of biofilm (0.4 µg/mL) [5]. For this, from the beginning of the experiment, a culture of K.
pneumoniae was exposed to this substance. Figure 9 shows the usual effect of C6-AHL inducing biofilm
by 15.65%, but 3-methyl-2-(5H)-furanone withdraws this effect as the biofilm was reduced by 24.65%.
This effect was irreversible, because after adding a mixture of 3-methyl-2-(5H)-furanone and C6-AHL,
the ability to form biofilm was not recovered.
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Figure 9. The neutralizing effect of C6-AHL autoinducer with 3-methyl-2(5H)-furanone (G2).
The biofilm was formed for 30 h at 37 ◦C with the addition of the compounds from the beginning of the
assay. The biofilm was quantified by staining with violet crystal. The black asterisks indicate statistically
significant difference to the control, whereas the red asterisks indicate statistically significant difference
as compared to C6-AHL.
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4. Discussion

Quorum sensing (QS) is a mechanism of bacterial communication used to modulate bacterial
virulence through the synthesis of lytic enzymes, toxins, and biofilm [13]. At the hospital level,
some resistant bacteria produce biofilm within their first 24 h on medical devices, causing recurrent
infections which are difficult to eradicate [2]. The formation of biofilm is one of several strategies
found in bacteria to overcome biocidal effects of antibiotics because they become impermeable [14],
and this is the first defense mechanism of K. pneumoniae, a bacterium for which the WHO has made
an urgent call, seeking new and better tools for its control [2]. The blockade of QS (also called
Quorum Quenching or QQ) has been proposed as an alternative to overcome bacterial resistance
and to achieve effective treatments with current antibiotics [9,15]. These substances have been called
pathoblockers [16], antipathogenic compounds, or antivirulence compounds and the antibacterial
effect could be accomplished by inhibiting the production of autoinducer molecules or by blocking
their interaction with a receptor. In this way, its virulence and the resistance mediated by the biofilm
would practically be nullified. Although several natural products have been previously analyzed as
inhibitors of bacterial biofilm [17], examples of their effects on K. pneumoniae, as well as on the change
in the sensitivity to antibiotics and their interaction with autoinducers, are also scarce [18–21].

In the search for new molecules to overcome the resistance of Klebsiella pneumoniae initially, we
evaluated the viability of 27 compounds belonging to different chemical groups such as furans and
phenyl-acyl derivatives, as well as thiazoles, pyrazines and pyridines (Figure 1), among others.
Almost all compounds displayed high viability, even at a concentration as low as 25 µg/mL
demonstrating a non-biocide effect.

Of the eight compounds evaluated in the series of furans, only 3-methyl-2(5H)-furanone showed
significant inhibition of 67.38% in the formation of biofilm. The others evaluated were practically
inactive. As for the series of the phenyl-acyl derivatives, only the 2′-hydroxycinnamic acid caused a
similar inhibition, 65.06%. From the derivatives of pyrrole, thiazole, and pyridine, only 2-acetylpirrole
could inhibit a maximum value of 23%, an amount practically equivalent to that of the control (20%).

In conclusion, only 2′-hydroxycinnamic acid and 3-methyl-2(5H)-furanone showed a net effect
on the reduction of biofilm, but also make the mature biofilm less stable to gentamicin, since there
is another further reduction of biofilm to 42.51%, and 33.82% respectively. These compounds also
showed a marginal effect on the formation of biofilm in the urethral catheter.

Finally, the compound 3-methyl-2 (5H)-furanone was able to neutralize the inductive effect of
biofilm of C6-AHL, which irreversibly reduced by 24.65%.

There was no correlation between structure and activity, as substances as diverse as
2′-hydroxycinnamic acid and 3-methyl-2 (5H)-furanone have the same effect on biofilm formation.
All this seems to indicate that both compounds possibly have a different target in the QS mechanism
in K. pneumoniae. However, the presence of the lactone was essential for this activity, since
2-methyl-tetrahydro-3-furanone, which is an isomer of 3-methyl-2(5H)-furanone, was practically
inactive as a biofilm inhibitor.

It is important to emphasize that compounds 2′-hydroxycinnamic acid and
3-methyl-2(5H)-furanone are found in foods. The first is in Cinnamomum and grapes, and
the second is a whiskey scent and wine, among others. It has been proposed that the inhibitory
molecules of quorum sensing present in food could contribute to avoidance of the formation of
biofilm, thus reducing the risk of recurrent hospital infections and at the same time increasing the
sensitivity to antibiotics [22,23]. Thus, it has been reported that garlic extract (rich in ajoene content,
with anti-QS activity), supplied with the antibiotic tobramycin in vitro and in vivo, significantly
reduced the formation of biofilm in Pseudomonas aeruginosa [24,25].

5. Conclusions

In summary, in this paper has been shown that two natural molecules present in food,
2′-hydroxycinnamic acid and 3-methyl-2(5H)-furanone, modified in vitro several processes related to
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QS in K. pneumoniae, which are involved in its resistance to antibiotics. Thus, those compounds affected
the formation and the stability of the biofilm, making it more unstable but also sensitive to gentamicin.
Besides, the adherence to the urethral catheter was also blocked. These molecules could be of great
importance in the development of new antibiotics to fight pathogenic bacteria in a non-biocidal way.
They could also used in combination therapy with the current antibiotics or incorporated into medical
devices to prevent the formation of biofilm and therefore microbial resistance and spread of infections.

In case of 3-methyl-2(5H)-furanone the mode of action can be explained by interference with the
autoinducer C6-AHL.
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