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Abstract: Nanoparticles (NPs) possessing antibacterial activity represent an effective way of 
overcoming bacterial resistance. In the present work, we report a novel formulation of a 
nanoantibiotic formed using Ampicillin/sulbactam (Ams) and a zinc oxide nanoparticle (ZnO NP). 
‘ZnO NP–Ams’ nanoantibiotic formulation is optimized using response surface methodology 
coupled genetic algorithm approach. The optimized formulation of nanoantibiotic (ZnO NP: 49.9 
μg/mL; Ams: 33.6 μg/mL; incubation time: 27 h) demonstrated 15% enhanced activity compared to 
the unoptimized formulation against K. pneumoniae. The reactive oxygen species (ROS) generation 
was directly proportional to the interaction time of nanoantibiotic and K. pneumoniae after the initial 
lag phase of ~18 h as evident from 2'-7'-Dichlorodihydrofluorescein diacetate assay. A low 
minimum inhibitory concentration (6.25 μg/mL) of nanoantibiotic formulation reveals that even a 
low concentration of nanoantibiotic can prove to be effective against K. pneumoniae. The importance 
of nanoantibiotic formulation is also evident by the fact that the 100 μg/mL of Ams and 25 μg of 
ZnO NP was required individually to inhibit the growth of K. pneumonia, whereas only 6.25 μg/mL 
of optimized nanoantibiotic formulation (ZnO NP and Ams in the ratio of 49.9: 33.6 in μg/mL and 
conjugation time of 27 h) was needed for the same.  

Keywords: Klebsiella pneumoniae; ampicillin/sulbactam; ZnO nanoparticle; response surface 
methodology; genetic algorithm  
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1. Introduction 

The emergence of microbial resistance to conventional antibiotics poses a major threat in the 
field of medicine and makes the bacterial treatment quite difficult [1]. Therefore, there is an urgent 
need of developing novel therapeutic approaches, such as new drugs and drug targets to treat 
resistant microbial infections. During the past few decades, nanoparticles (NPs) have been exploited 
significantly because of their applications in the targeted delivery of therapeutic agents [2], disease 
diagnosis [3], and minimizing microbial infections [4]. Antimicrobial activities of NPs make it a 
suitable alternative to these antibiotics that are no longer effective against resistant microbes.  

Nowadays, applications of a combination of NPs with antibiotics, termed as nanoantibiotics, is 
a novel strategy and therefore gaining research interest as it increases the effectiveness of both the 
nanoparticle and antibiotic towards multidrug-resistant (MDR) microbes [5]. The conjugation of NPs 
with small molecules, like drugs showing a synergistic effect, is a promising approach for reducing 
the emergence of microbial resistance [6]. The application of nanoantibiotics for the treatment of 
microbial infections not only minimizes the toxicity of both the substances i.e., antibiotics and NPs 
towards a human cell line, but elevates their antimicrobial properties [7]. Shahverdi et al., (2007) 
reported an enhancement in the activity of antibiotics (amoxicillin, erythromycin and vancomycin) 
against S. aureus and Escherichia coli, when used in a combination with silver nanoparticles [8]. 

Enormous literature is available on NPs and their applications in the medical field. However, 
restricted data is available on metal oxide NPs that cover in vivo antimicrobial effectiveness in 
combination with antibiotics against the MDR pathogens. Among nanoparticles, silver NPs have 
been studied extensively for antimicrobial activities alone as well as in combination with antibiotics.6 
Silver NPs have been reported to enhance the activity of antibiotics (penicillin G, amoxicillin, 
erythromycin, clindamycin, and vancomycin) against Staphylococcus aureus and Escherichia coli [9]. 
However, the efficacy of other nanomaterials in synergism with antibiotics need to be investigated 
properly, such as copper oxide (CuO) and zinc oxide (ZnO). Among nanoparticles, NPs of ZnO have 
effective catalytic efficiency, chemical stability and strong adsorption ability and therefore are 
gaining more attention from researchers [10–13]. The antimicrobial potential of ZnO NPs has already 
been proved and utilized against a variety of bacterial and fungal strains [10–14]. The United States’ 
Food and Drug Administration (US-FDA) has approved ZnO as a safe material having extensive 
applications in drug delivery, pharmaceuticals and food supplements etc. [15] 

Process optimization is still one of the most critically investigated phenomena that has to be 
carried out before any large-scale production. There are many techniques, from traditional to 
advanced, available for process optimization. Traditional optimization methods used for the 
screening of effective parameters for desirable outcomes are generally based on one-factor-at-a-time 
(OFAT) approach. OFAT is a time-consuming, cost-effective, labor-intensive methodology and 
failed to depict the interactions of parameters [16]. These drawbacks of a traditional approach can be 
overcome by using statistical optimization techniques like response surface methodology (RSM).  

RSM is used for the study of linear, square and interaction effects of the parameters on the 
process. Statistical optimization techniques are effectively used in diverse fields for various 
optimization processes, such as metabolite production, metabolite extraction, bacterial cell lysis, etc. 
[17–19] Keeping the potential of statistical optimization techniques in view, researchers have started 
using various designs of RSM for the formulation optimization of various nanodrug/delivery 
preparations [20–26]. However, artificial intelligence (AI)-based optimization techniques alone or in 
amalgamation with statistical optimization techniques have yet to be used in the formulation 
optimization of nanodrug preparations. In the present study, we have used a RSM-coupled genetic 
algorithm (GA) approach for the optimization of formulation variables of the ZnO nanoantibiotic. 
To the best of our knowledge, this RSM/GA amalgamated optimization approach has not yet 
utilized in the field of nanoantibiotic formulations. 

RSM uses factorial designs, like central composite design (CCD), to optimize any process 
output. The experimental runs of the CCD act as inputs for RSM in finding the mathematical model, 
which correlates process parameters and outcome. This mathematical model can be presented in the 
form of a second-order polynomial equation: 
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Y = b°+ Σbi Xi + Σbi2 Xi2 + Σbij Xi Xj (1) 

where, Y is the process output, X is the variable, b° is the intercept, bi is the coefficient for linear 
effect, bi2 is the coefficient for quadratic effect and is responsible for curvatures in the model, and bij 
is the coefficient for the interaction effect.  

A mathematical model of RSM, i.e., Equation (1), serves as a fitness function for the genetic 
algorithm (GA) to determine the optimum concentrations of the process parameter for maximum 
process output. The concept of GA method is based on a natural selection process just like biological 
evolution. On the basis of the rules of selection, crossover and mutation, GA randomly selects the 
individuals from the current population to act as parents and uses them to produce offspring for the 
next generation. Over consecutive generations, the population “shifted” toward an optimal solution. 

Klebsiella pneumoniae is a Gram-negative bacterial strain that is known to cause an array of 
infections. The emergence of multidrug resistant (MDR) strains of K. pneumonia has narrowed down 
the current therapeutic interventions. Therefore, this study was performed to develop an effective 
way of reutilizing the presently available therapeutic molecule in a more efficient manner by 
exploiting the potential of ZnO NP against K. pneumoniae. In the present study, antibacterial efficacy 
of different antibiotics was evaluated against different microorganisms using the agar well diffusion 
method. The most resistant antibiotic found, i.e., Ampicillin/Sulbactum (Ams), was conjugated with 
ZnO NPs. To the best of our knowledge, for the first time, we have prepared and optimized the 
formulation of ZnO NP–Ams nanoantibiotic using traditional -and currently used RSM-coupled GA 
method followed by its evaluation and testing of antibacterial activities. The graphical abstract 
appended with this manuscript shows the representation of the complete process of preparation, 
optimization and evaluation of ZnO NP–Ams nanoantibiotic effective against K. pneumoniae. 

2. Results  

2.1. Selection of Drug for Nanoantibiotic Formulation 

The results regarding the antibiotic resistance profile of six selected bacterial strains against 17 
antibiotics are summarized in Table 1. ‘Ampicillin/Sulbactam’ (Ams) showed maximum resistance 
against five bacterial strains (Streptococcus aureus MTCC 902, Escherichia coli MTCC 1304, Klebsiella 
pneumoniae MTCC 3384, Pseudomonas aeruginosa MTCC 741 and Salmonella typhi MTCC 537) followed 
by ampicillin, amoxyclav, ceftazidime and penicillin G. Ams showing resistance in maximum 
microbial cases was selected for further study. 

Table 1. Resistance profile of bacterial strains against different antibiotics. 

S. No. Antibiotic (Concentration) Zone of Inhibition (mm) 

  S. a E. c B. p S. t K. p P. a 

1. Amikacin (Ak30) 30 22 25 26 29 19 

2. Ampicillin (A10) R 10 19 R R R 

3. Ampicillin/Sulbactam (As10) R R 11 R R R 

4. Amoxyclav (Ac30) R 21 24 R R R 

5. Ceftazidime (Ca30) 30 R R R 13 R 

6. Cephotaxime (Ce30) R R 18 11 R 11 

7. Ciprofloxacin (Cf5) 19 30 24 25 31 29 

8. Clindamycin (Cd2) 35 R 21 20 33 10 

9. Co-Trimoxazole (Co25) R 23 33 24 R 29 

10. Erythromycin (E15) 28 10 R 10 31 20 

11. Gentamycin (G10) 26 23 22 18 24 11 

12. Nalidixic acid (Na30) 11 R 26 18 25 30 

13. Netillin (Nt30) 12 13 15 12 17 11 
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14. Nitrofurantoin (Nf300) R 20 23 21 18 10 

15. Penicillin G (P10) R 20 26 R R R 

16. Tobramycin (Tb10) 15 13 20 15 20 11 

17. Vancomycin (Va30) R 23 21 16 19 16 

Note: S. a (Staphylococcus aureus MTCC 902), E. c (Escherichia coli MTCC 1304), B. p (Bacillus pumilus), 
S. t (Salmonella typhi MTCC 537), K. p (Klebsiella pneumoniae MTCC 3384), P. a (Pseudomonas aeruginosa 
MTCC 741); R: Resistance. 

2.2. Minimum Inhibitory Concentration (MIC) of Ams against Resistant Bacterial Strains  

Increased antibiotics doses are sometimes able to inhibit the resistant pathogens. To investigate 
this, enhancement in the inhibitory concentration of Ams against resistant pathogens, MIC was 
evaluated against E. coli, K. pneumoniae, P. aeruginosa, S. typhi and S. aureus. The results suggest that 
the tested bacterial strains resistant at lower (10 μg) concentration of Ams (Table 1), becomes 
sensitive at a higher Ams concentration (Table 2). One-hundred μg/mL of Ams was required to 
inhibit the growth of P. aeruginosa and K. pneumoniae, whereas 50 μg/mL was sufficient to inhibit the 
growth of S. typhi, S. aureus, and E. coli.  

Table 2. Minimum inhibitory concentration (MIC) of ampicillin/sulbactam (Ams). 

S. No. Bacterial Strains MIC (μg/mL) 
1. Escherichia coli MTCC 1304 50 
2. Klebsiella pneumoniae MTCC 3384 100 
3. Pseudomonas aeruginosa MTCC 741 100 
4. Salmonella typhi MTCC 537 50 
5. Staphylococcus aureus MTCC 902 50 

2.3. Antibacterial Activity of ZnO NP 

Antibacterial activity of ZnO NPs was observed at four different concentrations (μg/mL) i.e. 25, 
50, 100, and 200, respectively. The results suggest that ZnO nanoparticles possess inhibitory activity 
against all the tested bacterial strains (Table 3). With the increase in the concentration of ZnO NP, 
enhancement in its inhibitory activity against the examined bacterial strains was observed. ZnO NP 
showed maximum activity against K. pneumoniae followed by S. typhi, E. coli, S. aureus, and P. 
aeruginosa. Based on the promising results of ZnO NP against K. pneumoniae, this strain was selected 
for further experimental study. 

Table 3. Activity of zinc oxide nanoparticle against different bacterial strains. 

S. No. Bacterial Strains Zone of Inhibition (in mm) at 
Different Concentration (μg) 

  25  50  100  200  
1. Escherichia coli MTCC 1304 9 10 11 13 
2. Klebsiella pneumoniae MTCC 3384 19 20 22 25 
3. Pseudomonas aeruginosa MTCC 741 5 6 8 10 
4. Salmonella typhi MTCC 537 12 14 18 20 
5. Staphylococcus aureus MTCC 902 7 10 14 16 

2.4. ‘ZnO NP–Ams’ Nanoantibiotics - Formulation and Optimization Employing Statistical Design 

The responses of the concentration of ZnO NP, Ams antibiotics, and their conjugation time on 
the effect of ZnO NP–Ams nanoantibiotic observed by executing the RSM experiments are 
summarized in Table 4.  
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Table 4. CCD for formulation and optimization of ‘ZnO NP–Ams’ nanoantibiotic. 

Runs 
X1 

Coded Uncoded 
X2 

Coded Uncoded  
X3 

Coded Uncoded  
ZOI (mm) 

Experimental Predicted Residual 
1. +1 80 +1 65 +1 36 26 24.56 1.44 
2. +1 80 −1 25 −1 12 25 23.06 1.94 
3. −1 30 +1 65 −1 12 22 21.81 0.19 
4. +1 80 +1 65 −1 12 27 26.81 0.19 
5. +1 80 −1 25 +1 36 25 23.81 1.19 
6. −1 30 +1 65 +1 36 20 20.56 0.56 
7. −1 30 −1 25 +1 36 25 23.81 1.19 
8. −1 30 −1 25 −1 12 22 22.06 0.06 
9. −2 5 0 45 0 24 21 20.68 0.32 

10. 0 55 −2 5 0 24 21 22.43 1.43 
11. 0 55 0 45 −2 0 21 21.43 0.43 
12. +2 105 0 45 0 24 24 25.68 1.68 
13. 0 55 +2 85 0 24 23 22.93 0.07 
14. 0 55 0 45 +2 48 20 20.93 0.93 
15. 0 55 0 45 0 24 26 26.22 0.22 
16. 0 55 0 45 0 24 26 26.22 0.22 
17. 0 55 0 45 0 24 26 26.22 0.22 
18. 0 55 0 45 0 24 26 26.22 0.22 
19. 0 55 0 45 0 24 26 26.22 0.22 
20. 0 55 0 45 0 24 26 26.22 0.22 

Note: X1 = Concentration of ZnO Nanoparticles; X2 = Concentration of Ampicillin/Sulbactam (Ams) 
antibiotic; X3 = Conjugation time; ZOI: Zone of inhibition in mm; Concentration units of ZnO NP and 
Ams were in μg/mL, and conjugation time was in hour. 

The results of the regression coefficient of linear, interaction and quadratic terms of the above 
variables are listed in Table 5. Linear value of ZnO NP concentration (Var1: p = 0.13150) and Ams 
concentration (Var2: p = 0.07796) was found to be insignificant, whereas their quadratic values were 
found to be significant (Var1: p = 0.01155; Var2: p = 0.00492). However, the conjugation time (Var3) 
was found to be significant in term of linear (Var3: p = 0.00196) as well as quadratic (Var3: p = 
0.00045). The interaction of nanoparticle concentration (Var1) and Ams concentration (Var2) was 
found to be significant but the interaction of the conjugation time (Var3) with ZnO NP concentration 
(Var1) and Ams concentration (Var2) was found to be insignificant. 

Table 5. Estimated regression results of different variables. 

Effect SS MS F p-Value 
“Var1” 4.1329 4.1329 2.6980 0.13150 

“Var1^2” 14.5746 14.5746 9.5146 0.01155 
“Var2” 5.9065 5.9065 3.8558 0.07796 

“Var2^2” 19.7532 19.7532 12.895 0.00492 
“Var3” 26.4558 26.4558 17.270 0.00196 

“Var3^2” 40.0032 40.0032 26.114 0.00045 
“Var1”*“Var2” 8.0000 8.0000 5.2225 0.04537 
“Var1”*“Var3” 0.5000 0.5000 0.3264 0.58039 
“Var2”*“Var3” 4.5000 4.5000 2.9376 0.11730 

Note: Var1 = Concentration of ZnO Nanoparticles; Var2 = Concentration of Ampicillin/Sulbactam 
(Ams) antibiotic; Var3 = Conjugation time; SS: Sum of square; MS: Mean square; p-values less than 
0.05 are significant. “*” is the interaction between 2 different variables, whereas “^” is the square 
term. 

2.4.1. ANOVA Analysis 

Regression coefficients were further validated by the analysis of variances (ANOVA). The 
results confirmed the adequacy of the developed response surface model (Table 6).  
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Table 6. Analysis of variance (ANOVA) for the quadratic model. 

Source SS DF MS F- Value Prob (p) 
Whole model 92.48 9 10.27 6.70 0.0031 

Residual 15.31 10 1.53   

Note: SS: Sum of squares;  DF: degree of freedom; MS: mean square; R = 0.926230; R2 = 0.857902; R2 
(adj) = 0.73001. 

The low probability value of the Fisher F-test (F = 6.70, p = 0. 0031) indicates the statistical 
significance of the regression model. The high value of the correlation coefficient (R = 0.926) of model 
explains the significant interactions among the independent variables. The determination coefficient 
(R2 = 0.857) indicates the goodness-of-fit of the model and suggests that the generated second-order 
polynomial model was able to interpret 85.7% of the input data. The adjusted determination 
coefficient (adj. R2 = 0.73001) of the model further indicated its high significance.  

The model generated through Statistica version 10 is expressed in the form of second-order 
polynomial equation shows a relationship between the logarithmic values of dependent 
(nanoantibiotic) and independent variables (ZnO NP, antibiotics and conjugation time).  

Y= 15.00335 + 0.114000000(Var1) − 0.00121818(Var1)2 + 0.170681818(Var2) − 
0.00221591(Var2)2 + 0.596496212(Var3) − 0.00875947(Var3)2 + 

0.002000000(Var1)(Var2) − 0.000833(Var1)(Var3) − 0.00312500(Var2)(Var3) 
(2) 

where, Y is a response, i.e., zone of inhibition (mm). Var1 = concentration of ZnO nanoparticles, Var2 = 
concentration of Ams antibiotics and Var3 = interaction time between nanoparticles and antibiotics. 

2.4.2. Contour Plots 

The three-dimensional contour plots (Figure 1a,b,c) obtained through Statistica V10 explain the 
main and the interaction effects of two variables. These plots represent the effect of two variables on 
the output at a time while maintaining the third variable fixed at zero levels (coded units). The first 
graph (Figure 1a) between ZnO NP and Ams concentration, shows the requirements of increase in 
the values of both the variables for higher antibacterial activity of the formulated ZnO NP–Ams 
nanoantibiotic. The second graph (Figure 1b) between ZnO NP and conjugation time, suggests the 
higher value of ZnO NP and lower value of conjugation time are required to maximize the 
nanoantibiotic’s effect. The third graph (Figure 1c) between Ams and conjugation time (Var3) shows 
higher value of Ams and lower value of conjugation time favors high antibacterial activity of the 
formulated nanoantibiotic.  
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Figure 1. Response Surface Contour plots: (a) Contour plot of ZnO NP and Ampicillin/sulbactum 
concentration; (b) Contour plot of ZnO NP and conjugation time; (c) Contour plot of 
Ampicillin/sulbactum concentration and conjugation time. 

2.5. Genetic Algorithm-Based Optimization  

The genetic algorithm (GA) was employed using MATLAB to optimize the second-order 
polynomial model developed through RSM. The genetic algorithm depicted the optimum 
concentration of ZnO NP concentration (Var1), Ams concentration (Var2) and conjugation time 
(Var3) as 49.9 μg/mL, 33.6 μg/mL and 27 h, respectively, at which, antibacterial activity in terms of 
zone of inhibition (zoi) is 30 mm (Figure 2a,b). 

 

Figure 2. Genetic algorithm showing generations till the optimum results obtained, the optimum 
conditions of the nanoantibiotic components: (a) Current generation vs. fitness values; (b) Current 
best individual vs. number of variables. 
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The results suggest that nanoantibiotic formulated through optimized parameters 
demonstrates 15% activity enhancement compared with the unoptimized parameter. The predicted 
yield was experimentally verified with the optimized concentrations in a basal medium and the zone 
of inhibition was around 29 mm (i.e., very close to the predicted one). The zone of inhibition at the 
center points of CCD was observed as 26 mm. The comparison of CCD results (center point: 26 mm) 
with the optimized one (29 mm) further suggests that the GA-optimized concentration was better 
than the CCD designed concentration. 

2.6. ROS Estimation 

The mode of action of the optimized (formulated) nanoantibiotic (consisted of 55 μg/mL 
concentration of ZnO NPs + 45 μg/mL concentration of ampicillin/sulbactam) in Ams-resistant K. 
pneumoniae cells was studied by ROS estimation employing the DCFH-DA assay. The results of 
DCFH-DA assay have been summarized in Figure 3, which shows the fluorescence intensity 
measured at different times points using different concentrations of formulated ZnO NP–Ams 
nanoantibiotic.  

 

Figure 3. Cell-based DCFH-DA assay graph of ROS estimation. Note: Each bar represents the mean of 
two technical duplicates of an independent experiment and the corresponding standard deviations. 

DCFH-DA assay revealed that ROS generation is directly proportional to the interaction time of 
ZnO NP–Ams and K. pneumoniae after the initial lag phase of ~18 h. In other words, a time dependent 
increment in the fluorescence level was noticed after the initial lag of some hours. Besides, it is also 
clear from the assay results that with the increase in the interaction time, relative fluorescence unit 
(RFU) also increases.  

2.7. Determination of MIC of Optimized ZnO NP-Ampicillin/Sulbactam Nanoantibiotic  

MIC experiment was performed to determine the minimum concentration of ZnO NP–Ams 
nanoantibiotic, required to inhibit the growth of K. pneumoniae. The MIC of optimized nanoantibiotic 
to inhibit the growth of K. pneumoniae, which consists of the combination of ZnO NP and Ams in the 
ratio of 49.9: 33.6 in μg/mL and conjugation time of 27 h was found to be 6.25 μg/mL. 
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2.8. Scanning Electron Microscopy 

The activity of the optimized (formulated) ZnO NP–Ams nanoantibiotic was further 
corroborated by scanning electron microscopy (SEM) as shown in Figure 4(a,b,c). SEM images of 
ZnO NP, Ams, and ZnO NP–Ams nanoantibiotic treated K. pneumoniae revealed that optimized 
formulated nanoantibiotic caused severe damage to the microbial cell compared to ZnO NP or Ams 
alone and endorsed its efficacy. 

 

Figure 4. Scanning electron microscopy of treated K. pneumoniae cells: (a) SEM of K. pneumoniae cells 
treated with Ams (AB); showing no effect/damage; (b) SEM of K. pneumoniae cells treated with ZnO 
NP; slight damage; (c) SEM of K. pneumoniae cells treated with ZnO NP–Ams (AB); showing severe 
damage. Note: *Untreated strain = no treatment of Ams, ZnO NP, or ZnO NP–Ams. 

3. Discussion 

Ampicillin, a broad spectrum antibiotic of the β-lactam class is well known for its applications 
for treating infections, such as respiratory tract infections, urinary tract infections, meningitis, 
salmonellosis and endocarditis caused by Gram-positive and -negative bacteria. The antibacterial 
activity of ampicillin is demonstrated by the inactivation of D, D-transpeptidases enzyme, 
responsible for the cross-linkage of peptidoglycan moieties during the synthesis of the cell wall [27]. 
However, some of the bacteria, with time, was used to develop resistance to ampicillin by producing 
a β-lactamase/penicillinase enzyme like TEM-1, TEM-2 or SHV-1 that attacks the β-lactam ring of 
antibiotics [28]. To overcome this problem, β-lactam antibiotics are now given with β-lactamase 
inhibitors, such as sulbactam, with clavulanic acid having the ability to inhibit the β-lactamase 
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enzymes produced by bacteria [29]. With the emergence of extended spectrum β-lactamase (ESBL), a 
mutant of the β-lactamase enzyme, the incidences of resistance against this combination have also 
been observed in hospitals [30]. Pseudomonas aeruginosa, Klebsiella pneumoniae, Salmonella typhi and 
Escherichia coli are some of the ESBL-producing strains that render them resistant to various 
antibiotics [31–34]. The application of Ams for the treatment of infections is now becoming 
ineffective. Since K. pneumoniae is an ESBL-producing strain that causes a range of minor to 
life-threatening nosocomial infections, it was considered for this study [32].  

During the experiments, K. pneumoniae was found resistant to Ams at lower (10–50 μg) 
concentrations. At higher concentrations (≥100 μg/mL), Ams is effective, however, it may lead to 
severe side effects. Therefore, an alternate approach is the need of an hour. The use of nanoparticles 
is one of the best possible solutions to meet such a need. Hence, we studied the activities of ZnO NP 
of dimension 25 nm in combination with Ams for the formulation of a potential nanoantibiotic. 
Earlier studies proved that with the decrease in size, the efficiency of nanoparticles increases. 
Nanoparticles show unique properties that are significantly different from their bulk counterparts. 
Due to the decrease in size, they can be engineered for different end applications [35]. The properties 
of metal oxides, such as zinc oxide (ZnO), greatly depend upon their size, shape, composition and 
morphology. A reduction in size, allows nanoparticles to interact more efficiently with cellular 
biomolecules and facilitate easier penetration into the cell. A large surface to volume ratio of ZnO 
nanoparticles increases the surface reactivity, as a large number of free electrons are available at the 
surface [36]. 

The combination of ZnO NP–Ams was found reasonably effective against Ams-resistant K. 
pneumoniae even at a lower concentration. Further, we optimized the formulation of this combination 
using experimental designs. The statistical/AI approaches like RSM, ANN and GA are some popular 
techniques used in the optimization of various parameters like metabolite production, extraction 
condition etc. [16,17,37]. Response surface methodology is the most commonly used statistical 
technique used for depicting the nature of the response within the framed design space [17], 
whereas the genetic algorithm mimics the biological mutation process; hence it is based upon the 
biological principle of “survival of the fittest”. The theory similar to natural selection (biological 
process of evolution) plays a significant role in the execution of tool [16]. 

In the present work, we applied RSM and GA in combination to optimize three parameters i.e., 
NP concentration, Ams concentration and their conjugation time for the formulation of a 
nanoantibiotic. The conjugation time plays an important role in the formation of nanoantibiotic by 
facilitating the maximum uptake of either the antibiotic or nanoparticle at the surface of each other 
and may vary from 12 to 48 h, depending on the nature of nanoparticles [38,39]. The application of 
the RSM and GA methodology has significantly improved (nearly 15%) the antibacterial activity of 
the ZnO NP–Ams nanoantibiotic formulation compared with the unoptimized conditions. The 
approach presented here is significantly simple in nature and can be extended for modeling and 
optimization of other similar processes.  

An explanation for the increased activity of Ams in the presence of ZnO NP in K. pneumoniae is 
based on the fact that the ZnO NP generates reactive oxygen species (H2O2 and OH) and also 
possesses the ability to induce faster electron transfer kinetics at the active site of the enzyme [27,40]. 
NPs are well known to interact with the basic components of bacterial cells, which leads to oxidative 
stress, changes in membrane permeability, heterogeneous alterations, enzyme inhibition, protein 
deactivation, changes in gene expression, etc. [41]. Arakha et al., (2015) hypothesized that the 
neutralization of bacterial surface potential leads into electron–hole pair generation in proximity, 
which ultimately enhances ROS production [42]. In this study, the change in ROS production due to 
the addition of ZnO NPs has been evaluated using the fluorescence dye DCFH-DA [43]. In literature, 
DCFH-DA used as ROS indicator, is basically a peroxynitrite indicator, which is capable of detecting 
hydrogen peroxide and nitric oxide [44]. The interaction studies of the nanoantibiotic and the cells of 
K. pneumoniae at different interaction times (1 to 34 h; measured at the interval of every 2 h) through 
DCFH-DA suggested that nanoantibiotic treated microbial cells exposed for a longer time period 
leads to more ROS generation as evident by the increased fluorescence. This in turn increases the 
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activity of the nanoantibiotic. Also, during the experiments, minor ROS generation was observed 
even in the absence of ZnO NPs, i.e., control culture. Some ROS scavenging enzymes are present in 
bacteria, which counteract the ROS produced under non-stress condition [29]. However, in the 
presence of NPs, this ROS production is comparatively high. Tiwari et al., (2018) reported a fourfold 
enhancement in the production of ROS in the cells of ZnO NP-treated, carbapenem-resistant 
Acinetobacter baumannii compared to the untreated ones [45]. Yi et al., (2019) have evaluated the 
production of ROS by using 10 mg of ZnO NP alone in the dark and the absorbance at a wavelength 
of 470 nm was observed to be 0.05. On the other hand, we evaluated ROS generation in μg levels of a 
nanoantibiotic (ZnO NP–Ams) treatment and the fluorescence intensity value ranged between 
500–800 [46]. Thus, the ROS generated by ZnO nanoparticle is negligible compared to ROS 
generated by the bacteria. 

The chemical interaction between Ams and ZnO NP is still unexplored. However, it can be 
hypothesized that the interaction of the antibiotic with the nanoparticle (ZnO NP) is reversible in 
nature, as the surface of ZnO NP and other metal-oxide NPs is rich in surface bound hydroxyl 
groups, which increase the Zeta (ζ) potential of ZnO NP [47]. This facilitates a reversible ionic 
interaction with the surface-bound molecules, which may also undergo reversible hydrogen 
bonding [47]. The bound antibiotic in a reversible interaction can only be released and interact with 
its target. In contrast, irreversible interaction (covalent bond formation) between the adsorbent (ZnO 
NP) and adsorbate (antibiotic) may result in permanent linkage of the antibiotic and ZnO NP, which 
ultimately render the antibiotic inactive.    

Hence, at any instance, the interaction of antibiotic the nanoparticle (within the medium) can be 
represented by an equilibrium (K). 

A (antibiotic) + N (free nanoparticle) ↔ NA (antibiotic nanoparticle complex) 

K= [NA]/[A]·[N] (3) 

where, K is an Equilibrium constant and depends upon the type and properties of the nanoparticle 
and antibiotic under consideration. 

From the above equilibrium, it is evident that the free nanoparticles are always available and 
remain in a dynamic equilibrium with the coated ones. These free NPs are responsible for interacting 
with the microbial cell wall through several reported mechanisms including ROS generation [48–53]. 
This further facilitates the interaction of the positively charged ZnO NP with the negatively charged 
molecules on the cell surface and providing channels for easy delivery of the antibiotic [54].  

Basically, lipopolysaccharides present in the cell wall of Gram-negative bacteria, provides a 
negatively charged region on the cell surface that attracts positively charged ZnO NPs [31]. Hence, 
speculations can be made that ZnO NP firstly comes in contact with the bacterial cells by various 
forces such as electrostatic attraction, van der Waals forces, receptor–ligand and hydrophobic 
interactions that neutralizes the surface charge (potential) of the bacterial cell, which leads to the 
enhanced production of ROS [41]. The produced ROS may create some electron holes on the surface 
of bacterial cells, which facilitate the entry of ZnO NP and Ams both. The free radicals generated by 
ZnO NP may oxidize the ESBL enzyme of K. pneumoniae, which is responsible for the resistivity 
towards Ams [55,56]. ZnO NP hampers the ESBL enzyme present in the cytoplasm and also changes 
the permeability of the cell wall of bacteria. This in turn might enhance the entry of Ams into K. 
pneumoniae cells, and allow for the antibiotic to perform its own mechanism of action i.e., inhibition 
of cell wall synthesis by irreversibly binding to the active site of transpeptidase enzyme [57]. Hence, 
both ZnO NP and Ams works synergistically against the Ams-resistant K. pneumoniae.  

Earlier, Pati et al., (2014) reported the increased killing of BCG using a combination of 
rifampicin and ZnO-NPs [58]. For the mechanism of antibacterial activity of the formulated 
nanoantibiotics, Pati et al., (2014) hypothesized that ZnO-NPs may facilitate the transport of 
rifampicin inside the mycobacterial cells by altering cell membrane permeability and thereby killing 
of mycobacteria by rifampicin’s mode of action of RNA synthesis inhibition [58]. The membrane 
integrity of K. pneumoniae in the presence of a nanoantibiotic was studied by cell wall disruption and 
identified by the analysis of scanning electron microscopy technique. SEM analysis assists in the 
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prediction that ZnO NPs that interact with the microbial surface may lead to the disruption of the 
cell membrane. 

The material safety data sheet in accordance with Occupational Safety and Health 
Administration (OSHA) and American National Standards Institute (AN.S.I) says that ZnO NP LD50 

is 8437 mg/kg in rats, i.e., 8437 mg of ZnO NP per kg weight of NPs causes death in 50% of rats, 
which reflects the toxicity of ZnO NPs at higher concentrations. The present study demonstrates that 
49.9 μg/mL of ZnO NPs and 33.6 μg/mL concentration of ampicillin/sulbactam were used to 
formulate the nanoantibiotic. The formulated nanoantibiotic was subjected to MIC analysis and it 
was found that 6.25 μg/mL of this formulation, i.e., ZnO NP–Ams nanoantibiotic, was sufficient to 
inhibit the growth of K. pneumoniae. Hence, it can be assumed that the toxicity profile of this 
combination of nanoantibiotic will be very low in humans. However, in vitro and in vivo studies are 
still required to justify and substantiate this assumption.  

4. Conclusion 

In the recent past, a plethora of efforts have been made to overcome the emerging problem of 
antibiotic resistance against various bacterial diseases, and advances in the field of 
nanobiotechnology may offer a great opportunity for research in this field. Thus, studies based on 
the combination of antibiotic agents and nanomaterials are of great promise. In the present study, for 
the first time, we report a significant improvement and reversal of antibacterial activity of Ams 
against Ams-resistant K. pneumoniae in the presence of ZnO NPs (25 nm in size) using the 
RSM-coupled GA formulation optimization technique. Due to the potential synergistic effect of ZnO 
NP with Ams, ZnO NP may be considered as a valuable adjuvant in the case of Ams-resistant K. 
pneumoniae. The application of RSM-GA optimization has significantly enhanced the antibacterial 
activity of the formulated ZnO NP–Ams nanoantibiotic. The antibacterial activity of the formulated 
and optimized ZnO NP–Ams was increased by 15% when compared with the unoptimized 
combination. However, further studies related to pharmacokinetics, tissue distribution and 
excretion of the proposed nanoantibiotic, along with the elucidation of their mechanistic action, are 
warranted for the development of safe, efficient, cost-effective, and targeted therapy. Additionally, 
future in silico studies are required to study the chemical interactions between an antibiotic 
moiety–ZnO NP combination. 

5. Materials and Methods 

5.1. Bacterial Strains, Culture Conditions and Antibiotics 

Six bacterial strains, Bacillus pumilus MTCC 1607, Streptococcus aureus MTCC 902, Escherichia coli 
MTCC 1304, Klebsiella pneumoniae MTCC 3384, Pseudomonas aeruginosa MTCC 741 and Salmonella 
typhi MTCC 537, were grown at 160 rpm in nutrient broth (NB) at 32 °C. Seventeen antibiotics discs 
named Amikacin (Ak) 30 μg, Ampicillin (A) 10 μg, Ampicillin/Sulbactam (Ams) 10/10 μg, 
Amoxyclav (Ac) 30 μg, Ceftazidime (Ca) 30 μg, Cephotaxime (Ce) 30 μg, Ciprofloxacin (Cf) 5 μg, 
Clindamycin (Cd) 2 μg, Co- Trimoxazole (Co) 25 μg, Erythromycin (E) 15 μg, Gentamycin (G) 10 
μg, Nalidixic acid (Na) 30 μg, Netillin (Nt) 30 μg, Nitrofurantoin (Nf) 300 μg, Penicillin G (P) 10 
units, Tobramycin (Tb) 10 μg and Vancomycin (Va) 3 μg, were procured from HiMedia 
Laboratories Pvt. Ltd., India. 

5.2. Antibiotic Resistance Profile of Bacterial Strains 

The antibiotic resistance profile of the microbes was examined using a modified Kirby–Bauer 
disk Diffusion method [59]. A bacterial lawn was prepared on NA plates using the working solution 
of the bacterial suspension containing 106 CFU/mL (according to McFarland standards). The disks of 
seventeen antibiotics were placed on the plates; the plates were incubated overnight at 32 ± 2 °C and 
the zone of inhibition (mm) was measured. 



Biomolecules 2019, 9, 764 13 of 18 

5.3. Minimum Inhibitory Concentration of Antibiotic Against Different Bacterial Strains  

The minimum inhibitory concentration (MIC) of antibiotics against the microbial strains (as 
mentioned in Section 2.1) was determined by the broth dilution method using NCCLS protocol [60]. 
The stock concentration of antibiotic (1 mg/mL) was prepared in Dimethyl sulfoxide (DMSO) for the 
study. One-hundred μg/mL antibiotic concentration was taken as the initial concentration and it was 
further diluted up to 0.3906 μg/mL. The inoculated sets were incubated at 30 ± 2 °C for 18–24 h. The 
lowest concentration that inhibits the bacterial growth was recorded as the MIC value. All the 
experiments were performed in triplicate. 

5.4. Activity of ZnO NP against Different Bacterial Strains 

Chemically synthesized ZnO NP of 25 nm in size was purchased from Reinste Nanoventures 
Private Limited, New Delhi, India. ZnO NPs used in the present study were synthesized by using 
the method of Moballegh et al., (2007) [61]. ZnO NPs synthesized by this method are well reported to 
possess overall positive surface charge.61 ZnO NPs are known to have high isoelectric point, hence in 
aqueous medium at lower and near physiological pH the overall charge on the surface of ZnO NP is 
positive [47]. It has solubility in the ultrapure water. ZnO NP suspension of 1 mg/mL concentration 
was prepared in MilliQ water followed by continuous stirring for proper mixing. The antimicrobial 
activity of the NP was determined by using the agar disc diffusion method. Discs with different 
concentrations (200, 100, 50 and 25 μg) were prepared from the stock suspensions and used for 
examining the zone of inhibition. 

5.5. Formulation and Optimization of Nanoantibiotics 

The nanoantibiotic (ZnO NP–Ams) was formulated according to the method given by 
Hussein-Al-Ali et al., (2014) with minor modifications [38]. Ams (1 mg/mL) solution was made in 
ultra-pure MilliQ water. Likewise, the colloidal solution of ZnO NP (1 mg/mL) was also prepared. 
The nanoantibiotic (ZnO NP–Ams) was prepared by mixing both the solutions. The above solution 
mix was stirred at 120 rpm at room temperature for 24 h to facilitate the formulation of 
nanoantibiotic. The formulation and optimization studies of nanoantibiotic were performed in two 
stages. In the first stage, the components having a significant effect on the formulation were 
identified by using one-factor-at-a-time (OFAT) experiments. In the second stage, the optimum 
values of these components for the formulation of nanoantibiotic were determined by the Central 
Composite Design (CCD) of Response Surface Methodology (RSM) and Genetic Algorithm (GA). 

Table 4 shows the CCD design of three test variables (ZnO NP concentration, Ams 
concentration, and conjugation time of ZnO NP–Ams in coded and uncoded units) that affects the 
formulation of nanoantibiotic. The coded units are the values that are mentioned in the design (−2, 
−1, 0, +1, +2), whereas the uncoded units are the values that were actually taken in the experiments. 
All the three test variables were varied at five levels (−2, −1, 0, +1, +2). Each row of CCD represents 
the separate experimental runs. The statistical software Statistica 10.0 was used to perform 
regression and graphical analysis of the results obtained from CCD. A second-order polynomial 
response equation comprising of linear, quadratic and interaction terms showing an empirical 
relationship between the nanoantibiotic effect and the test variables was obtained on applying the 
RSM.  

Y = b°+ b1·X1+ b2·X2+ b3·X3+ b4·X12 + b5·X22 + b6·X32 + b7·X1X2+ b8·X1X3+ b9·X2X3 (4) 

where Y is the zone of inhibition in mm, b is the coefficient term, X1 = concentration of ZnO 
nanoparticles, X2 = concentration of Ams antibiotics and X3 = interaction time between nanoparticle 
and antibiotic. 
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5.6. GA Optimization 

The genetic algorithm approach was also used to optimize the formulation and production of 
the nanoantibiotic. Genetic algorithm program of MATLAB suite/tool was used for the optimization 
of the model generated via RSM. The input parameters which were considered in ‘ga’ function were 
as follows-Population Type: 'double Vector'; Pop Init Range: [2×1 double]; population Size: 200; elite 
count: 2; crossover fraction: 1; migration direction: 'forward'; migration interval: 20; migration 
fraction: 0.2000; generations: 100; time limit: Inf; fitness limit: -Inf; stall gen limit: 50; stall time limit: 
20; initial population: []; initial scores: []; plot interval:1; creation fcn: @gacreationuniform; fitness 
scaling fcn: @fitscalingrank; selection fcn: @selectionstochunif; Crossover Fcn: @crossoverscattered; 
mutation fcn: {[1×1 function_handle] [1] [1]}; hybrid fcn: []; display: 'off'; plot fcns: {[1×1 
function_handle] [1×1 function_handle]}; output fcns: []; vectorized: 'off'. 

The optimized results were also validated in the lab by measuring the zone of inhibition (mm) 
of the optimized ZnO NP–Ams nanoantibiotic against K. pneumoniae. Besides, the minimum 
inhibitory concentration of the optimized nanoantibiotic against K. pneumoniae was also determined 
by the broth dilution method as established by NCCLS guidelines. 

5.7. Estimation of Reactive Oxygen Species 

ROS was measured by using an oxidation-sensitive fluorescent probe 2, 7-dichloro dihydro 
fluorescein diacetate (DCFH-DA) [62]. The bacterial cells were harvested from the overnight grown 
culture by centrifugation at 3000 rpm for 5 min. The cells were washed twice and resuspended in NB 
medium. The cells were exposed to DCFH-DA (working concentration 10 μM) for 30 min at 32 °C in 
the dark. Further, the cells were diluted to a concentration of 5.0 × 108 cell/mL. A volume of 200 μL of 
this suspension was kept in each well of 96 well plate so that each well contained nearly 1.0 × 108 
cells/well. The ZnO NP: Ams nanoantibiotic was formulated by using the optimized concentration 
ratio. The cells were treated with different concentrations of optimized nanoantibiotic formulations 
(10 to 100 μg/mL) for different incubation (1 to 34 h, with a gap of 2 h each) periods at 32 °C. After 
the incubation, the fluorescence intensity of DCFH-DA was observed for ROS production by 
fluorescence spectrophotometer at an excitation wavelength of 488 nm and an emission wavelength 
of 535 nm. 

5.8. Scanning Electron Microscopic Examinations 

Scanning electron microscopy (SEM) was performed for K. pneumoniae cells treated at IC50 value 
concentration of ZnO NP and Ams, separately, and optimized formulation of ZnO NP–Ams 
nanoantibiotic for determining the morphological alterations, if any. The treated cells of K. 
pneumoniae were fixed with 2.5% glutaraldehyde in a phosphate buffer having pH 7.2. The samples 
were post-fixed in 1% osmium tetroxide, afterwards dehydrated through an ascending ethanol 
series, critical point dried and coated with Au–Pd (80:20) using a Polaron E5000 sputter coater, 
keeping the cut surface of the beads facing upwards on the stubs. The samples were checked at an 
accelerating voltage of 25 kV in FEI Quanta 250 using a SE detector. 
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