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Abstract: Cancer is a devastating disease that has claimed many lives. Natural bioactive agents
from plants are gaining wide attention for their anticancer activities. Several studies have found that
natural plant-based bioactive compounds can enhance the efficacy of chemotherapy, and in some
cases ameliorate some of the side-effects of drugs used as chemotherapeutic agents. In this paper,
we have reviewed the literature on the anticancer effects of four plant-based bioactive compounds
namely, curcumin, myricetin, geraniin and tocotrienols (T3) to provide an overview on some of the
key findings that are related to this effect. The molecular mechanisms through which the active
compounds may exert their anticancer properties in cell and animal-based studies also discussed.
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1. Introduction

Cancer is one of the leading causes of death in the world. Cancer burden is measured based on
cancer incidence and mortality. The International Agency for Research on Cancer (IARC) reported the
5-year global cancer prevalence of worldwide burden of 27 cancers for the year 2008 to be 28.8 million
with 12.7 million new cancer cases and 7.6 million cancer deaths [1]. Some of the major cancer
cases reported were lung (1.61 million), breast (1.38 million) and colorectal (1.23 million) cancers [2].
In addition, it was estimated that there would be 14.1 million new cancer cases and 8.2 million deaths in
2012 worldwide [3]. According to a recent global cancer statistic, there will be 18.1 million new cancer
cases and 9.6 million cancer deaths [4], with lung cancer being the leading cause of death followed by
breast, colorectal, stomach and liver cancer (Table 1) [4].

Table 1. Cancer global statistics 2018.

Cancer Types Deaths New Cases

Lung 1.76 million 2.09 million
Stomach 782,685 1.03 million

Liver 781,631 841,080
Breast 626,679 2.02 million
Colon 551,269 1.09 million

Esophagus 508,585 572,034
Pancreas 432,242 458,918
Prostate 358,989 1.27 million

Source: [4]
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Cancers could result from inflammatory processes that are driven by rapid growth of intrinsic
(self) origin. Some of the common hallmark features of cancers are shown in Figure 1. These include the
ability of cancer cells to (i) evade apoptosis [5]; (ii) induce angiogenesis [6]; (iii) replicate limitlessly [7,8];
(iv) produce growth signals that are self-sufficient [9]; (v) be insensitive to anti-growth signals [10];
and (vi) invade tissue and metastasis [11,12]. These attributes allow the cancer cells to have limitless
growth, prolonged survival and the ability to invade tissues. If these processes are not inhibited,
the cancer cells can continue to grow and invade and eventually kill the cancer patient.
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Activation of host immune system is a natural way for cancer patients to fight this disease. 
Several studies have shown that cells of the immune system can recognize and destroy tumor cells 
[18]. The process through which the immune system carries out this function is known as 
immunosurveillance [19]. As shown in Figure 2, continuous immunosurveillance takes place in the 
body to help the immune system to deal with “rogue” or abnormal cells. The outcome of this response 
is regulated by a process known as immunoediting. Cancer immunoediting refers to the dual role 
played by the immune system in host protection and promotion of tumor growth. Cancer 
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At present, various therapeutic approaches such as surgery, chemotherapy drugs and/or radiation
are used to treat cancers. Whilst the chemotherapeutic drugs used in the treatment of cancer can
provide temporary relief to the cancer patients and help prolong their life [13–15], many of these drugs
exhibit side-effects [16,17].

2. Anti-Tumor Immune Responses

Activation of host immune system is a natural way for cancer patients to fight this disease.
Several studies have shown that cells of the immune system can recognize and destroy tumor
cells [18]. The process through which the immune system carries out this function is known as
immunosurveillance [19]. As shown in Figure 2, continuous immunosurveillance takes place in
the body to help the immune system to deal with “rogue” or abnormal cells. The outcome of this
response is regulated by a process known as immunoediting. Cancer immunoediting refers to the
dual role played by the immune system in host protection and promotion of tumor growth. Cancer
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immunoediting consists of three phases, which are elimination, equilibrium and escape [20,21]. If the
immune system is appropriately activated, tumor growth can be inhibited and they can be destroyed.
However, in some situations, the immune system may can promote tumor progression through chronic
inflammation [22] and/or suppression of anti-tumor immune responses [23].
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During the elimination phase (Figure 2), the innate and adaptive arms of the host immune system
work hand-in-hand to destroy cancer cells before these cells can be clinically detected [24]. Many effector
T-lymphocyte subsets and cytokines play key roles in eliminating tumor cells. Tumor cells that cannot
be destroyed in the elimination phase can enter the equilibrium phase. The main role of the equilibrium
phase is to prevent outgrowth of the tumor by enabling editing of tumor immunogenicity. In addition,
T-helper-1 (Th1) cells as well as some of the cytokines that these cells produce (e.g., interleukin-12
(IL-12) and interferon-gamma (IFN-γ)) help to maintain tumor cells in a state of immune-mediated
dormancy. However, maintaining immune cells constantly in this phase may allow emergence of
unstable tumor cells that can overcome some of the barriers imposed by the anticancer immune
responses. One of the reasons for this could be expression of new molecules on the tumor cells due to
mutations, which are no longer recognized by the receptors of these lymphocytes [25]. In addition,
the tumor cells may secrete mediators that could induce an immunosuppressive state within the tumor
microenvironment [26]. When this happens, the tumor cells are no longer susceptible to the host
immune system, enabling them to avoid the elimination and equilibrium phases and enter the escape
phase. In the escape phase, tumor progression is no longer blocked by the host immune system and
the tumor can be detected clinically [27].
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3. Plant-Derived Active Compounds and Their Mechanism of Action

There are several studies which have reported on various natural bioactive compounds that have
anticancer [28–30] and/or immune-modulating effects [31,32]. Some of these anticancer agents possess
mutagenic, teratogenic and/or oncogenic properties, which can impair antibody synthesis and also
cell-mediated immune responses [33]. In the scientific literature, there is an increasing number of
reports which show that many phenolic compounds have potential inhibitory effects on cancer invasion
and metastasis [34–37]. A number of plant-based bioactive compounds with anticancer activities have
been identified in the past decade (Table 2).

Table 2. Anticancer activities of selected natural bioactive compounds.

Target Cancer Compounds Biological Activity Dosage/Concentration Ref.

Breast
Fucoxanthin Anticancer 10 µM [38]
Punicalagin Anticancer 10 mg/mL [39]
Curcumin Apoptosis 5–50 µg/mL [40]

Lung
Anthocyanin Anti-proliferative 400 µg/mL [41]
Triterpenoids Anticancer 22.4 µmol/L [42]

Saponin Anticancer, apoptosis 50 µg/mL [43]

Pancreatic

Genistein Anticancer 60 µM [44]
Garcinol Anti-proliferative 7 µM [45]

Limonoids Anti-proliferative 18–42 µM [46]
Crocin Apoptosis 10 g/L [47]

Colorectal

Carotenoids Anti-proliferative 250 µg/mL [48]
B-sitosterol Anticancer, apoptosis 266.2 µM [49]

Saponin Anticancer 5, 10 or 20 mg/kg [50]
Genistein Anti-proliferative 50 µM [51]

Prostate
Gallic acid Anticancer 100 µg/mL [52]

Neobavaisoflavone, psoralidin Apoptosis 50 µM [53]
Rhodioflavonoside Apoptosis 80 µg/mL [54]

Ovarian
Corilagin Apoptosis 20–40 µM [55]

Gallic acid Anti-proliferation 40 µM [56]
Ellagic acid Anti-metastasis 50 mg/kg [57]

Blood
Epigallocatechin gallate Apoptosis 3–25 µg/mL [58]

Rosavin Anticancer 8 µg [59]

In this short review, the anticancer effects of four bioactive compounds (curcumin, myricetin,
geraniin and tocotrienols) will be discussed. For this review, published papers reporting on the
anticancer effects of these four bioactive compounds (curcumin, myricetin, geraniin and tocotrienols)
that are indexed in PubMed and/or Google Scholar were selected to be included in this review. These
four bioactive compounds were chosen for this review as these compounds are the putative anticancer
natural products that we are currently working with to develop bioactive cocktails that have more
potent anticancer activities.

4. Curcumin

Diferuloylmethane, better known as curcumin (Figure 3) is major bioactive compound derived
from an East-Indian plant known as Curcuma longa. This plant is native to the Southeast Asian region and
belong to the Zingiberacae family [60]. Curcumin consists of curcuminoids compounds, which is made
up from several chemicals such as curcumin, desmethoxycurcumin and bis-demethoxycurcumin [61].
Approximately 2–5% curcumin in turmeric is responsible for the yellow color as a flavoring and
coloring agent in foods.
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Curcumin was found to have low bioavailability due to insufficient absorption and fast elimination
from the body, which was one of the limitations of this bioactive compound. Researchers have used
several approaches to increase the bioavailability of curcumin including nanoparticles [62], piperine [63],
phospholipid complexes [64] and liposomes [65]. Synthetic analogs of curcumin and polyphenolic
curcumin analogs have been shown to have inhibitory effects against mushroom tyrosinase [66].
Among the 61 reported curcumin compounds, four compounds (E10, F10, FN1 and FN2) were reported
to inhibit prostate, pancreas and colon cancer cells with IC50 lower than 1 µM [67]. Curcumin has been
shown potent anticancer properties on human cancers including lung, pancreatic, melanoma, prostate,
head and neck, breast, colorectal and ovarian cancer [68–75]. Curcumin exerts anticancer effects through
several mechanisms, which affect regulation of cell growth and apoptosis. For instance, curcumin can
inhibit angiogenesis [76] as well as inhibit their proliferation and metastasis [77], decrease chronic
inflammation [78] and combat mutated cancer cells [77]. Bisdemethoxycurcumin showed excellent
inhibitory effects with an IC50 value of 23.0 µM whilst the D2 analog showed potent inhibitory effects
at 8.2 µM [79]. A curcumin analog, namely CUR3d, inhibited proliferation of liver cancer cells at
100 µmol/L, which was reported to be due to downregulation of PI3K/Akt and inhibition of the
NFκB pathway, which is responsible for cancer cell growth [80]. Another curcumin analog, WZ35,
was reported to have potent cytotoxic effects on prostate cancer cells with a very low IC50 value (2.2 µM)
when compared with curcumin (20.9 µM) [81]. In another study, curcumin at 10 µM induced apoptosis
in MCF-7 human breast cancer cells, which was reported to take place via the expression of wild type
p53 [82]. Exposure to curcumin, increased expression of p53 and Bax, which triggered apoptosis in these
cells. In a xenograft mouse model, it was shown that a low dose of curcumin (20 µg/kg) reduced the
progression of breast cancer [83]. In another study, supplementation of curcumin (1 g/kg) significantly
inhibited growth and metastasis to liver of colorectal cancer cells [84]. Similar anticancer effects were
also reported in aggressive papillary thyroid carcinoma, where a dose-dependent effect of curcumin
was reported. Higher concentrations of curcumin (12.5, 25, 50 and 100 µM) inhibited migration of K1
papillary thyroid cancer cells by downregulating metalloproteinase-9 (MMP-9) expression [85].

5. Myricetin

Myricetin (3,5,7,3′,4′,5′-hexahydroxyflavone cannabiscetin) is a bioflavonoid (Figure 4) widely
found in food sources such as vegetables, tea, berries, red wine and medicinal plants. It was first isolated
from the bark of the Myrica nagi Thunb, Myricaceae in 1896 with molecular formulae of C15H10O8 [86].
Myricetin has been credited for its therapeutic effects in cardiovascular disease [87], cancer [88],
and diabetes mellitus [89,90]. Being lipophilic compounds, myricetin has poor solubility in water
but can be solubilized in organic solvents such as acetone, dimethylformamide, dimethylacetamide
and tetrahydrofuran.

Myricetin is stable at pH 2 and its degradation depends on pH and temperature [91]. A recent
study showed that microemulsion formulation can improve the solubility of myricetin 1225 times
greater than water and also enhance its anti-proliferative activity against human liver cancer cells
(HepG2) [92]. Myricetin is a promising anti-carcinogen and chemo preventive agent with therapeutic
potential reported in ovarian [93], colon [94], skin [95], liver [96] and breast [97] cancers. Cell-based
studies have shown that myricetin inhibited proliferation of T24 bladder cancer cells by inducing cell
cycle arrest at the G2/M phase by downregulating cyclin B1 and cyclin-dependent kinase cdc2 [98].
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In addition, myricetin induced apoptosis in T24 cells by modulating Bcl-2 family protein and activating
caspase 3 pathways. Similar findings (i.e., cell cycle arrest and induction of apoptosis) were observed
in cervical cancer cells following combination treatment with myricetin (60 µM), methyl eugenol and
cisplatin [99]. In a rat model, tumor progression was inhibited when the rats were fed with 100 mg/kg of
myricetin, which was found to be due to inhibition of the p21 activated kinase-1 (PAK1) [100]. A recent
study showed that myricetin may exert anti-metastatic effects by downregulating the expression of
MMP2 and/or MMP9 in breast cancer cells [101].
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6. Geraniin

Geraniin is a dehydroellagitannin (Figure 5) found in geraniums and regarded as main active
compounds in various medicinal plants. It was first identified from Geranium thunbergii [102] and
belongs to the Sapindaceae, Gereniaceae, Nymphaeaceae and Elaeocarpaceae families [102,103].
Geraniin has been credited to possess high antioxidant, antibacterial, anti-hyperglycemic, anti-viral and
anticancer activities [104–108]. The hydrolyzed compounds from geraniin were identified as gallic
acid, corilagin, and ellagic acid. As shown in Figure 5, geraniin contains galloyl groups with additional
hydroxyl structure to ortho-dihydroxy groups, which have high nitrogen oxide (NO) scavenging ability.
Corilagin and gallic acid contain galloyl group also contribute to the intrinsic antioxidant activities of
geraniin [109].
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Geraniin isolated from fruit of Emblica (Phyllantus emblica L.) was found to have an anticancer effect
on MCF-7 human breast cancer cells [110]. Cell-based assays using murine splenocytes showed that
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geraniin inhibited proliferation of MCF-7 human breast cancer cells with IC50 value of 13.2 µg/mL [110].
Similarly, geraniin extracted from Phyllanthus urinaria Linn was reported to have anti-proliferative
and pro-apoptotic effects on MCF-7 cells with IC50 value 9.94 µM [111]. Geraniin triggered apoptosis
by activating the p38 MAPK signaling pathway [111]. Epithelial–mesenchymal transition (EMT) is
reported to play an important role in cancer metastasis [112]. Geraniin inhibited transforming growth
factor beta-1 (TGF-β-1)-induced EMT in lung cancer cells by increasing the expression of E-cadherin
and inhibiting expression of Snail, a transcription factor crucial for induction of EMT [113]. In addition,
activation of Smad-2 was inhibited in TGF-β-1-induced EMT, suggesting that geraniin may play a role
in preventing metastasis and EMT in TGF-β-1-induced signaling pathway [113].

7. Tocotrienol

Vitamin E encompass two major class of fat-soluble antioxidants namely tocopherols and
tocotrienols (T3) [114]. There are eight dietary components identified to be a member of the vitamin E
family, which are tocopherols (α, β, γ, δ) and tocotrienols (α, β, γ, δ) [115]. The chemical structure of
tocotrienols and its various isoforms are shown in Figure 6.Biomolecules 2019, 9, x FOR PEER REVIEW 8 of 16 
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The major sources of dietary tocopherols are plant oils such as wheat-germ oil, safflower-seed
oil, maize oil, soya bean oil [116], whilst the main sources of tocotrienol are palm oil, rice bran oil,
and palm kernel oil [117]. Tocotrienols are main phytonutrients found in palm oil and can be found in
the palm oil fraction known as tocotrienol-rich fraction (TRF) [118]. TRF contains three main isoforms
of tocotrienol, which are αT3 (29%), γT3 (28%) and δT3 (14%) isomers [119]. Tocotrienols are reported
to possess anti-thrombotic [120], antioxidant [121], neuroprotective [122] and cardio-protective [123]
activities as well as immune modulatory [124,125] properties. Both cell-based and experimental
model studies have suggested that tocotrienols also possess anti-tumor properties as these compounds
can inhibit proliferation of many cancer cell lines including prostate [126], breast [127], skin [128],
colon [129], stomach [130], pancreatic [131], liver [132] and lung [133] cancers. The anticancer effects
induced by tocotrienol are reported to be mediated through apoptosis [134], anti-angiogenesis [135],
anti-proliferative [136] and/or immunoregulation [125]. Tocotrienol isoforms inhibited proliferation
of human breast cancer cells in the following order: αT3 < TRF < γT3 < δT3 [137]. In addition,
daily supplementation of 1 mg of TRF was reported to inhibit tumor growth in a syngeneic murine
model of breast cancer [31,124,137]. A similar observation was also reported in a xenograft athymic
mouse model of breast cancer where a significant delay in the onset of breast cancer in mice fed with



Biomolecules 2019, 9, 758 8 of 15

1 mg TRF was observed [138]. This delay was reported to be due to down-regulation of the c-myc
oncogene in the breast cancer cell and upregulation of the CD59 glycoprotein precursor gene, which was
responsible for immune regulation. In another study, supplementation with δT3 inhibited proliferation
and migration of lung cancer cells in a dose- and time-dependent manner [139]. This inhibition
was due to inhibition of NFκB activity and signaling via the NOTCH-1 pathway by δT3. In another
study, daily supplementation of 1 mg TRF was reported to inhibit growth of breast cancer in mice as
well as reduce the levels of vascular endothelial growth factor (VEGF) in serum [135]. In addition,
murine breast cancer cells (4T1) cells treated with TRF or δT3 were found to induce marked inhibition
of IL-8 and VEGF genes, which play important roles in tumor development [140]. These findings
suggest that TRF also possesses anti-angiogenesis activity. In the same mouse model of breast cancer,
it was shown that daily supplementation with TRF may exert anticancer effects by upregulating the
expression of the IL24 gene [140].

8. Conclusions

Natural products have the potential to serve as chemotherapeutic as well as chemopreventive
agents in the treatment of cancer. The bioactive compounds derived from many natural plant sources
could be a possible means to provide protection against cancer or used as a treatment approach
against cancer. Curcumin and tocotrienols show much promise to be developed as chemopreventive
and/or novel therapeutic agents in the fight against cancer as there are many studies that show that
these bioactive agents possess potent anticancer activities. Although there are some studies that have
demonstrated how these compounds exert anticancer effects, the exact target remains elusive. Hence,
more work needs to be carried out to know to understand exactly how these compounds act as this
information would be useful in developing therapeutic cocktails made up of various bioactive agents
that can target different molecules to produce better therapeutic effects.
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