Lobatamunsolides A-C, Norlignans from the Roots of *Pueraria lobata* and their Nitric Oxide Inhibitory Activities

in Macrophages

Mun Seok Jo¹, Jae Sik Yu¹, Joo Chan Lee¹, Seoyoung Lee², Young-Chang Cho², Hyun-Ju Park¹, and Ki Hyun Kim^{1,*}

¹School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea

²College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea

Supporting Information Contents:

Figure S1. The HR-ESIMS data of 1	S3
Figure S2. The UV spectrum of 1	S4
Figure S3. The ¹ H NMR spectrum of 1 (CD ₃ OD, 850 MHz)	S5
Figure S4. The ¹ H- ¹ H COSY spectrum of 1	S6
Figure S5. The HSQC spectrum of 1	S7
Figure S6. The HMBC spectrum of 1	S8
Figure S7. The HR-ESIMS data of 2	
Figure S8. The UV spectrum of 2	
Figure S9. The ¹ H NMR spectrum of 2 (CD ₃ OD, 850 MHz)	S11
Figure S10. The ¹ H- ¹ H COSY spectrum of 2	
Figure S11. The HSQC spectrum of 2	S13
Figure S12. The HMBC spectrum of 2	S14
Figure S13. The HR-ESIMS data of 3	S15
Figure S14. The UV spectrum of 3	
Figure S15. The ¹ H NMR spectrum of 3 (CD ₃ OD, 850 MHz)	S17
Figure S16. The ¹ H- ¹ H COSY spectrum of 3	S18
Figure S17. The HSQC spectrum of 3	
Figure S18. The HMBC spectrum of 3	S20
General Experimental Procedures	S21
Extraction and Isolation	S22
Acid Hydrolysis and Determination of the Absolute Configuration of Sugar Moieties	S23
Computational Analysis	S24

Figure S1. The HR-ESIMS data of 1

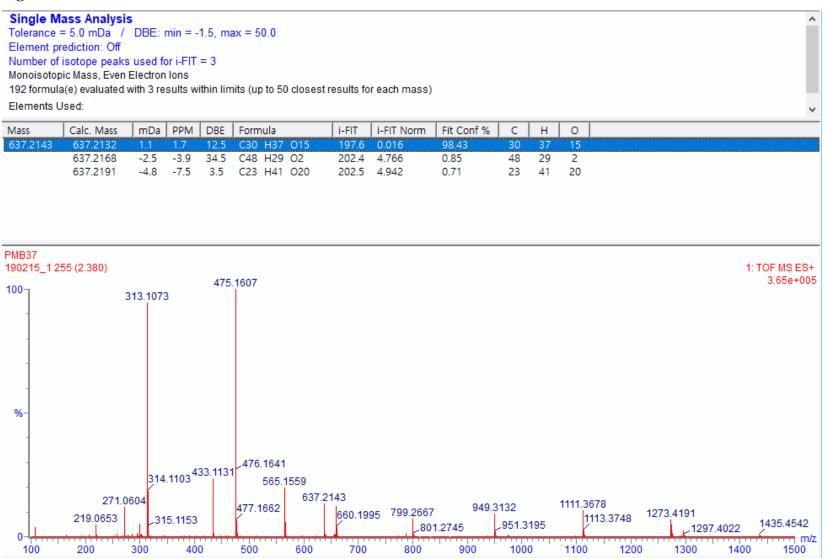
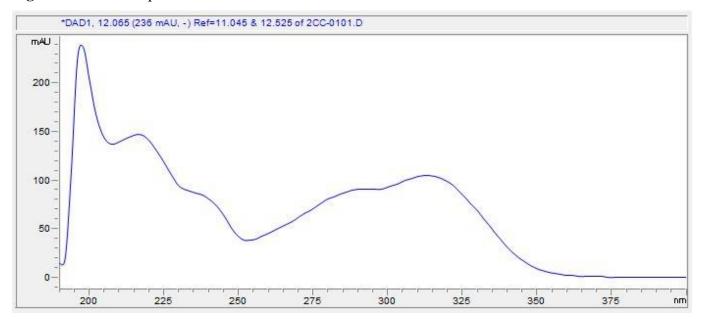
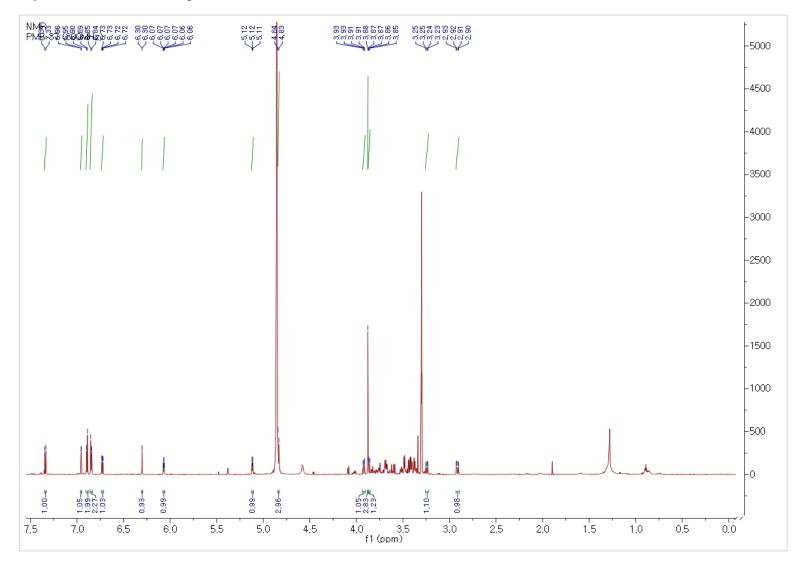





Figure S2. The UV spectrum of 1

Figure S3. The ¹H NMR spectrum of **1** (CD₃OD, 850 MHz)

S5

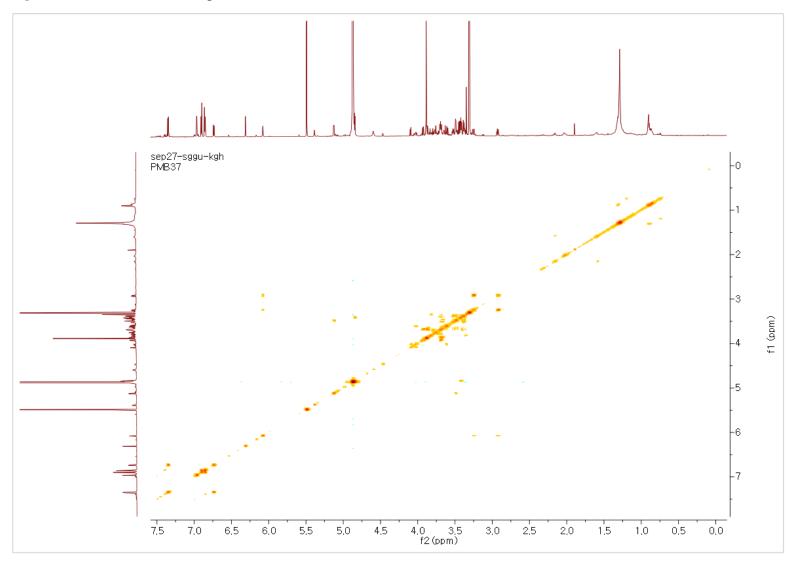


Figure S5. The HSQC spectrum of 1

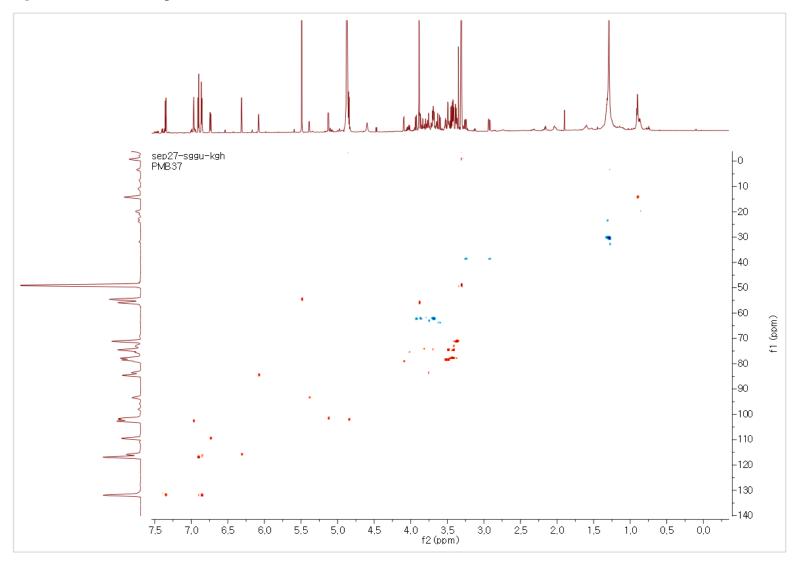
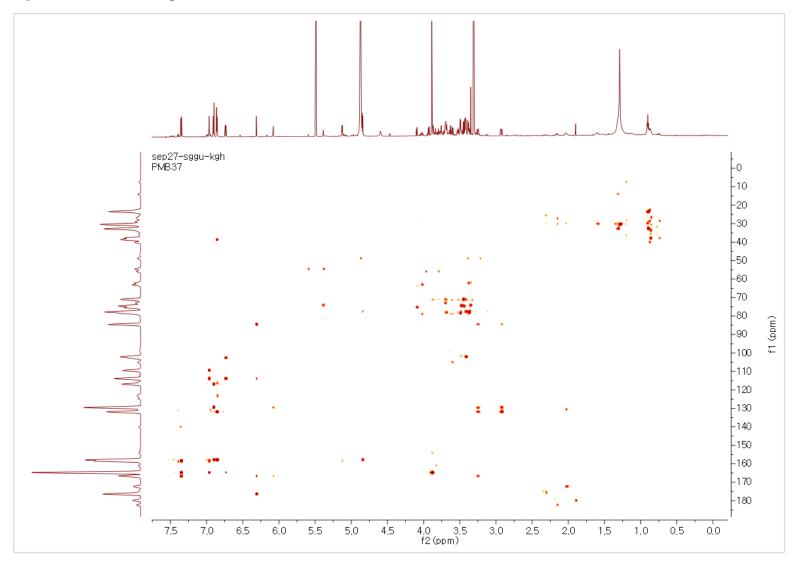



Figure S6. The HMBC spectrum of 1

Figure S7. The HR-ESIMS data of 2

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3 Monoisotopic Mass, Even Electron Ions 182 formula(e) evaluated with 3 results within limits (up to 50 closest results for each mass)

Elements Used:

N	/lass	Calc. Mass	mDa	PPM	DBE	Formula	i-FIT	i-FIT Norm	Fit Conf %	С	н	0	
(507.2018	607.2027	-0.9	-1.5	12.5	C29 H35 O14	275.2	0.001	99.94	29	35	14	
		607.2062	-4.4	-7.2	34.5	C47 H27 O	287.4	12.216	0.00	47	27	1	
		607.1968	5.0	8.2	21.5	C36 H31 O9	282.6	7.440	0.06	36	31	9	

 \mathbf{A}

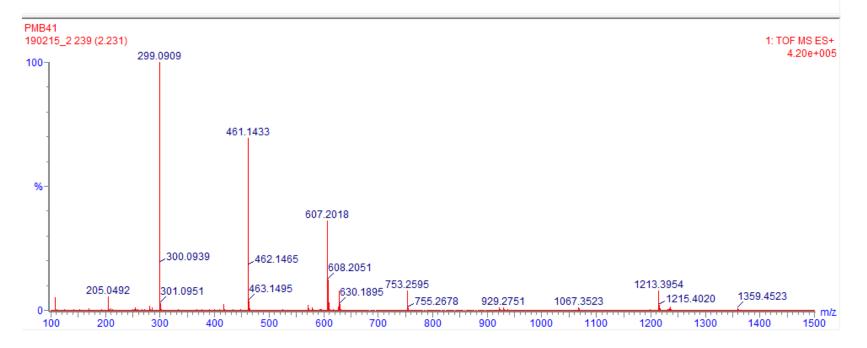
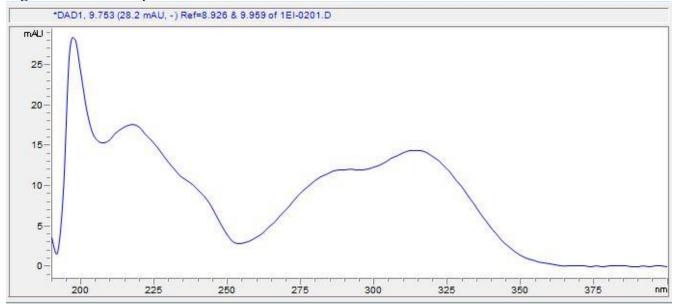
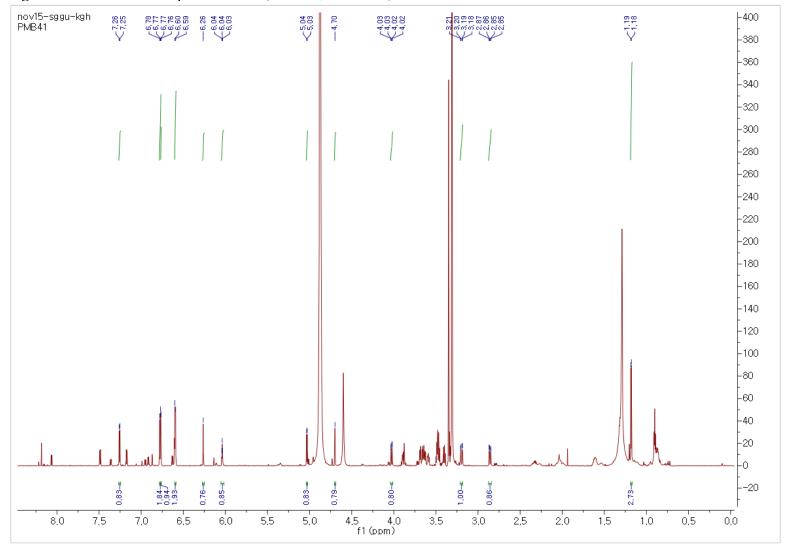




Figure S8. The UV spectrum of 2

Figure S9. The ¹H NMR spectrum of **2** (CD₃OD, 850 MHz)

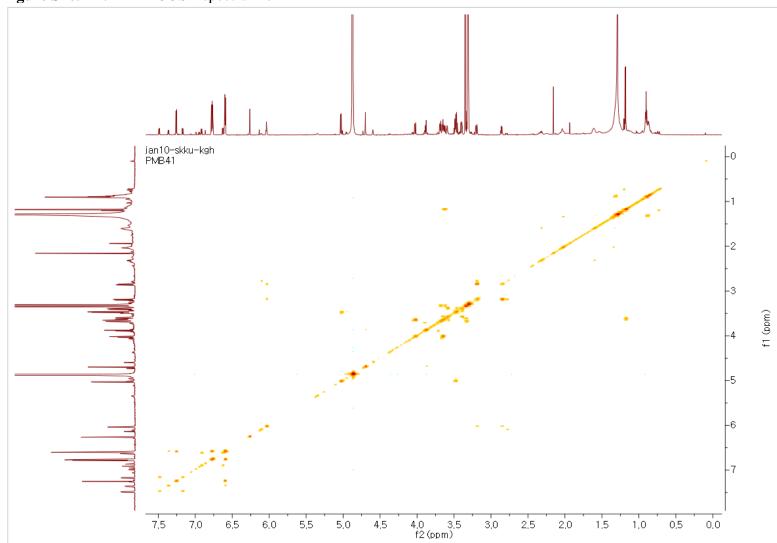
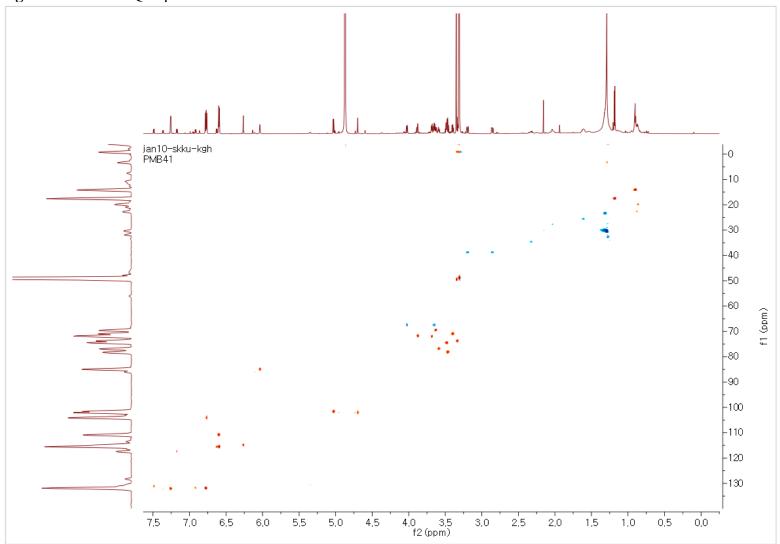



Figure S10. The ¹H-¹H COSY spectrum of 2

Figure S11. The HSQC spectrum of 2

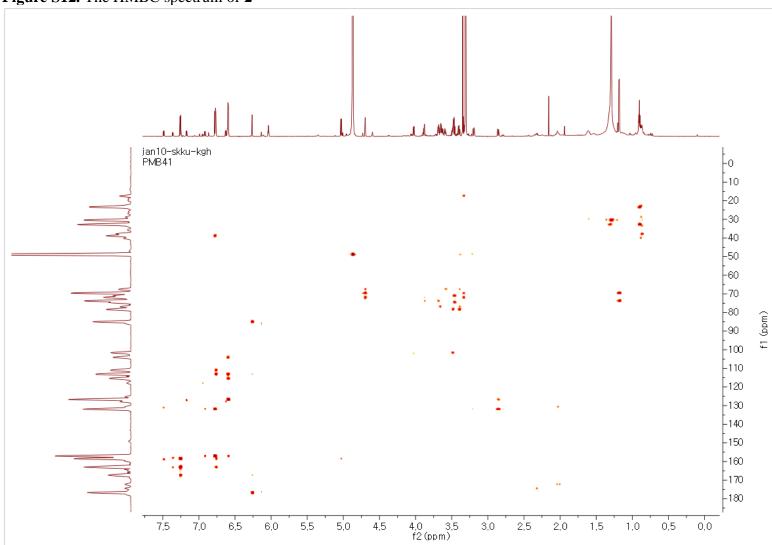
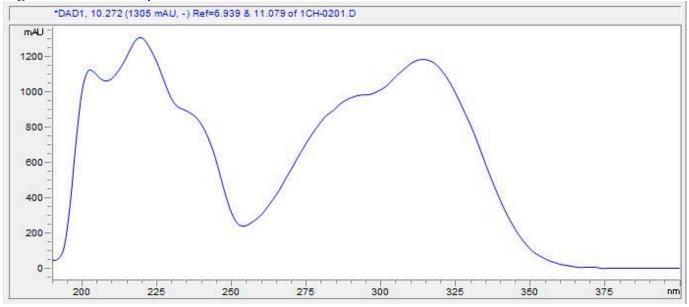
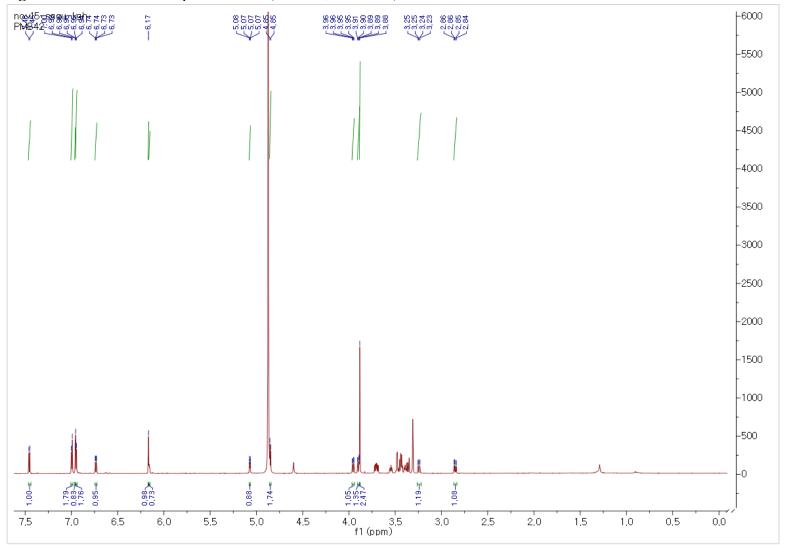



Figure S12. The HMBC spectrum of 2


Figure S13. The HR-ESIMS data of 3

	13. The HK		wis u		5											
	lass Analysis				50.0											^
	= 5.0 mDa /	DBE: I	min = -	1.5, ma	ix = 50.0											
	rediction: Off		:	2												
	isotope peaks			= 3												
	pic Mass, Even E a(e) evaluated w			ithin lim	ite (up to E(roculto fo	r aach maca)								
		nun z re	suits wi		its (up to st	ciosest	results to	reach mass)								
Elements U	Used:															~
Mass	Calc. Mass	mDa	PPM	DBE	Formula		i-FIT	i-FIT Norm	Fit Conf %	С	Н	0				
637.2126	637.2132	-0.6	-0.9	12.5	C30 H37		314.6	0.000	100.00	30	37	15				
	637.2168	-4.2	-6.6	34.5	C48 H29	02	325.7	11.075	0.00	48	29	2				
DMD 40																
PMB42 190215_3 2	57 (2 209)															1: TOF MS ES+
190215_52		13.1066														9.19e+005
100ך	5	13.1000	·													
1																
				475.	1596											
-																
%-																
		314	1095		476 4600											
-		2			_476.1630	637.2	2126									
107.0	492 219.064	6 24	5 4404		477.1645		,638.216	1 700 2624	949.3	3107		1111.36	77	1273.4158	2	
	7752 215.004	~ _31	5.1121				660.1	1 976 799.2631	889.2866	,952.3				1273.4100	' 1	435.4694
0-4 4-444 100	200	300	400	n	500	600	700	800	900	100	0	1100	1200	130	0 14	
100	200	300	400	0	500	000	700	000	900	100	0	1100	1200	130	0 141	00 1000

Figure S15. The ¹H NMR spectrum of **3** (CD₃OD, 850 MHz)

Figure S16. The ${}^{1}\text{H}{}^{-1}\text{H}$ COSY spectrum of **3**

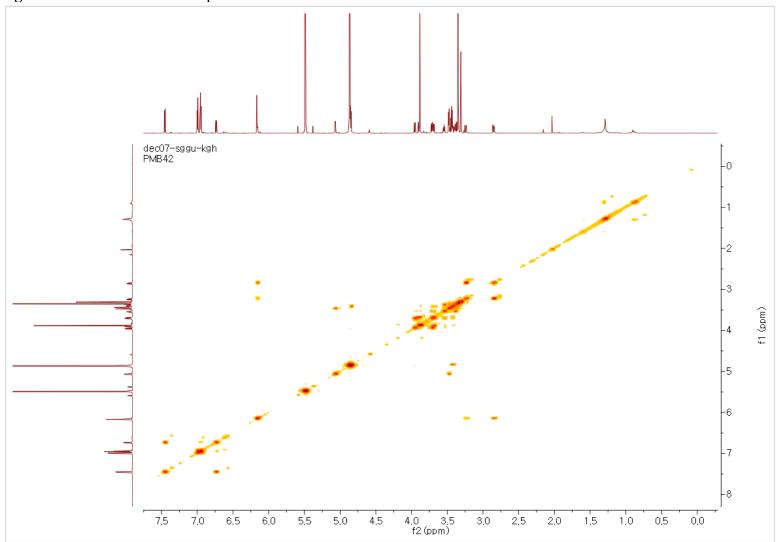


Figure S17. The HSQC spectrum of 3

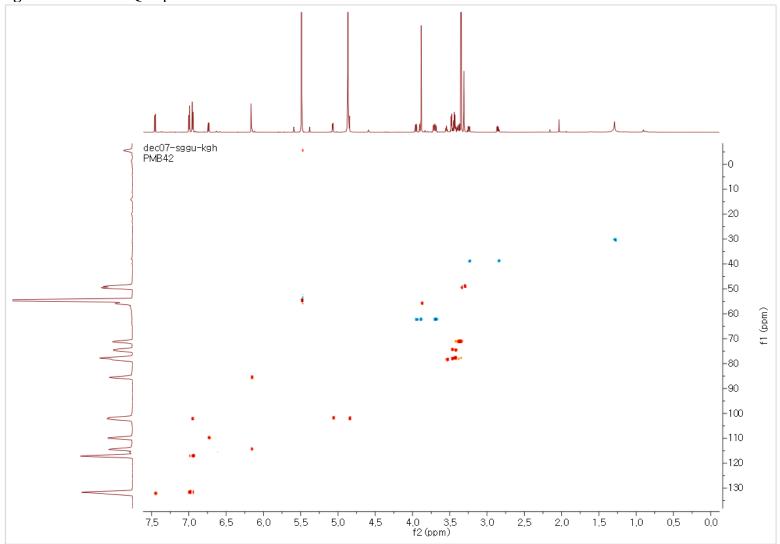
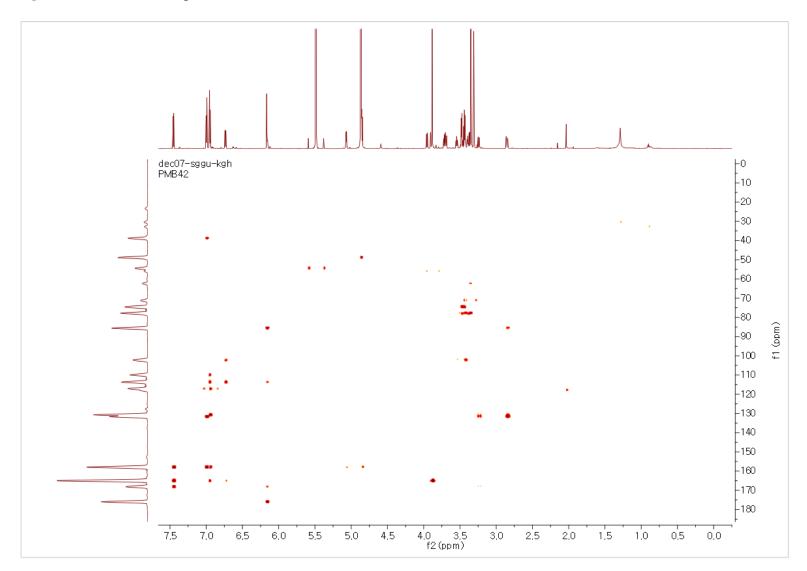



Figure S18. The HMBC spectrum of 3

S20

General Experimental Procedures. Optical rotations were measured using a JASCO P-2000 polarimeter (JASCO, Easton, MD, USA). Ultraviolet (UV) spectra were acquired using an Agilent 8453 UV-visible spectrophotometer (Agilent Technologies, Santa Clara, CA, USA). Electronic circular dichroism (ECD) spectra were measured using a JASCO J-1500 spectropolarimeter (JASCO). Infrared (IR) spectra were recorded using a Bruker IFS-66/S FT-IR spectrometer (Bruker, Karlsruhe, Germany). Nuclear magnetic resonance (NMR) spectra were recorded using a Bruker AVANCE III HD 850 NMR spectrometer with a 5 mm TCI CryoProbe operating at 850 MHz (¹H) and 212.5 MHz (^{13}C) , with chemical shifts given in ppm (δ) for ¹H and ¹³C NMR analyses. All HRESIMS data were obtained using a Waters Xevo G2 QTOF mass spectrometer and a Synapt G2 HDMS quadrupole time-of-flight (TOF) mass spectrometer (Waters). Preparative high-performance liquid chromatography (HPLC) was performed using a Waters 1525 Binary HPLC pump with a Waters 996 Photodiode Array Detector (Waters Corporation, Milford, MA, USA) and an Agilent Eclipse C_{18} column (250 × 21.2 mm, 5 μ m; flow rate: 5 mL/min; Agilent Technologies). Semi-preparative HPLC was performed using a Shimadzu Prominence HPLC System with SPD-20A/20AV Series Prominence HPLC UV-Vis detectors (Shimadzu, Tokyo, Japan) and a Phenomenex Luna C_{18} column (250 × 10 mm, 5 μ m; flow rate: 2 mL/min; Phenomenex, Torrance, CA, USA). LC/MS analysis was performed using an Agilent 1200 Series HPLC system equipped with a diode array detector and a 6130 Series ESI mass spectrometer using an analytical Kinetex C₁₈ 100 Å column (100 × 2.1 mm, 5 μ m; flow rate: 0.3 mL/min; Phenomenex). Silica gel 60 (230-400 mesh; Merck, Darmstadt, Germany) and RP-C₁₈ silica gel (Merck, 230-400 mesh) were used for column chromatography. The packing material for molecular sieve column chromatography was Sephadex LH-20 (Pharmacia, Uppsala, Sweden). Thin-layer chromatography (TLC) was performed using precoated silica gel F_{254} plates and RP-C₁₈ F_{254s} plates (Merck), and spots were detected under UV light or by heating after spraying with anisaldehyde-sulfuric acid.

Extraction and Isolation. The dried *P. lobata* roots (500 g) were extracted using 80% MeOH (20 h \times 3) at room temperature. The extract was finely filtered and evaporated under reduced pressure using a rotary evaporator to obtain the MeOH extract (206.7 g), which was suspended in distilled water (700 mL). This extract was then solvent-partitioned using hexane, dichloromethane (CH₂Cl₂), ethyl acetate (EtOAc), and *n*-butanol (BuOH). Solvent partitioning resulted in four layers of hexane (4.5 g), CH₂Cl₂(0.9 g), EtOAc (18.1 g), and BuOH (110 g) soluble fractions. Upon comparison with a house-built UV library, LC/MS analysis data of the four fractions obtained through solvent partitioning indicated the presence of norlignans in the BuOH soluble fraction.

The BuOH soluble fraction (110 g) was subjected to HP-20 column chromatography (CC) using water and MeOH to obtain water soluble and MeOH soluble fractions. The MeOH fraction was chromatographed on silica gel (CH₂Cl₂/MeOH/H₂O, 9:3:0.5 to 1:1:0, v/v/v), yielding four subfractions (B1 - B4). Fraction B3 (18.1 g) was then subjected to C₁₈ reversed-phase silica gel CC (MeOH/H₂O, 40:60 to 100:0) to yield two subfractions (B31 and B32). Subfraction B31 (14.6 g) was fractionated using HP-20 CC (MeOH/H₂O, 0% to 100% MeOH) to afford six subfractions (B311 - B316). Subfraction B315 (1.1 g) was separated by silica gel CC (CH₂Cl₂/MeOH/H₂O, 5:1:0.15 to 1:1:0.2, v/v/v) to yield seven subfractions (B3151 - B3157). Using a Sephadex LH-20 column (100% MeOH), subfraction B3153 (163 mg) was divided into four subfractions (B31531 – B31534). Subfraction B31531 (15.6 mg) was purified by semi-preparative HPLC (2 mL/min, 22% aqueous CH₃CN) using a phenyl-hexyl column to yield compound **4** (t_R 33.0 min, 4.6 mg). Subfraction B31533 (75.6 mg) was separated by semi-preparative

HPLC (2 mL/min, 16% aqueous CH₃CN) to obtain compounds **5** (t_R 24.0 min, 1.3 mg) and **9** (t_R 28.9 min, 0.8 mg). Subfraction B3154 (288.2 mg) was purified by semi-preparative HPLC (flow rate of 2 mL/min, 16% CH₃CN/H₂O) to obtain four subfractions (B31541 - B31544). Subfraction B31543 (22.0 mg) was, then, separated by semi-preparative HPLC (flow rate of 2 mL/min, 13% CH₃CN/H₂O) to yield compound **3** (t_R 91.0 min, 1.8 mg). Subfraction B31544 (68.8 mg) was purified by semi-preparative HPLC (flow rate of 2mL/min, 15% CH₃CN/H₂O) to obtain compounds **1** (t_R 46.1 min, 2.5 mg), **2** (t_R 51.6 min, 4.0 mg), and **6** (t_R 55.2 min, 6.1 mg). Preparative HPLC (5 mL/min, 30% to 100% aqueous MeOH) using a C₁₈ column was performed to fractionate subfraction B3155 (144.4 mg), and 5 subfractions were obtained. Among them, subfraction B31553 (43.6 mg) was purified by semi-preparative HPLC (2 mL/min, 16% aqueous CH₃CN) to yield compounds **7** (t_R 32.4 min, 7.2 mg) and **8** (t_R 38.7 min, 6.6 mg).

Acid Hydrolysis and Determination of the Absolute Configuration of Sugar Moieties. The absolute configuration of the sugar moieties was determined using an LC/MS-UV-based method. Compounds 1-3 (1.0 mg of 1; 1.0 mg of 2; 0.5 mg of 3) were hydrolyzed in the presence of 1 N HCl at 80°C for 2 h, individually, and EtOAc was used for extraction. Each aqueous layer was neutralized through repeated evaporation using a vacuum evaporator and dissolved in anhydrous pyridine (0.5 mL) with the addition of L-cysteine methyl ester hydrochloride (1.0 mg). After the reaction mixture was heated at 60°C for 1 h, *o*-tolylisothiocyanate (50 µL) was added to it, and it was kept at 60°C for 1 h. Each reaction product was evaporated using a vacuum evaporator and dissolved in MeOH. Then, the dissolved reaction products of compound 1 [MeOH/H₂O, 3:7 \rightarrow 7:3 gradient system (0 - 30 min), 100% MeOH (31 - 41 min), 0% MeOH (42 - 52 min); 0.3 mL/min]

and compounds 2 and 3 [MeOH/H₂O, 1:9 \rightarrow 7:3 gradient system (0 - 30 min), 100% MeOH (31 - 41 min), 0% MeOH (42 - 52 min); 0.3 mL/min] were directly analyzed by LC/MS using an analytical Kinetex C18 100 Å column (100 mm × 2.1 mm i.d., 5 µm). The sugar moiety of 1 was identified as D-glucopyranose based on the comparison of its retention time with that of an authentic sample (t_R : D-glucopyranose 23.0 min). The sugar moieties of 2 were identified as D-glucopyranose and L-rhamnopyranose based on the comparison of their retention times with those of authentic samples (t_R : D-glucopyranose 18.4 min, L-rhamnopyranose 20.2 min). The sugar moiety of 3 was identified as D-glucopyranose by comparison of its retention time with that of an authentic sample (t_R : D-glucopyranose 18.4 min).

Computational Analysis. To acquire the conformational optimization of **1a/1b**, computational DFT calculations were carried out. The first structural energy minimization of **1a/1b** was performed using Avogadro 1.2.0 with a UFF force field. The ground-state geometries of **1a/1b** were then established by Tmolex 4.3.1 with DFT settings (B3-LYP functional/M3 grid size), geometry optimization options (energy 10^{-6} hartree, gradient norm $|dE/dxyz| = 10^{-3}$ hartree/bohr), and the basis set def-SV(P) for all atoms. The calculated ECD spectra of optimized structures were acquired using B3LYP/DFT functional settings with the basis set def2-TZVPP for all atoms. The obtained CD spectra were simulated by overlying each transition, where σ is the width of the band at 1/e height and ΔE_i and R_i are the excitation energies and rotatory strengths for transition *i*, respectively. In the present study, the value of σ was 0.10 eV.

$$\Delta \epsilon(E) = \frac{1}{2.297 \times 10^{-39}} \frac{1}{\sqrt{2\pi\sigma}} \sum_{A}^{i} \Delta E_{i} R_{i} e^{[-(E - \Delta E_{i})^{2}/(2\sigma)^{2}]}$$