

**Supplemental Material** 



| Donor       | Acceptor    | Occupancy (>30%) |
|-------------|-------------|------------------|
| HIS121-Side | ASP192-Side | 84.22%           |
| HIS127-Main | ASP192-Side | 78.02%           |
| LEU82-Main  | VAL35-Main  | 70.98%           |
| GLU9-Main   | ARG26-Main  | 67.28%           |
| ARG254-Side | SER248-Main | 65.68%           |
| SER236-Side | GLU103-Side | 63.84%           |
| ILE10-Main  | ARG3-Main   | 63.49%           |
| THR205-Side | TYR201-Main | 62.99%           |
| SER236-Main | GLU103-Side | 62.69%           |
| ARG51-Side  | GLU47-Side  | 62.64%           |
| ALA36-Main  | LYS23-Main  | 62.24%           |
| ARG24-Main  | ASP12-Main  | 62.14%           |
| TYR78-Main  | VAL39-Main  | 61.94%           |
| ARG128-Main | ASP192-Side | 60.49%           |
| HIS27-Main  | CYS32-Main  | 59.69%           |
| VAL114-Main | LEU110-Main | 58.09%           |
| ARG268-Side | GLU238-Side | 56.44%           |
| ARG58-Side  | GLU70-Side  | 56.09%           |
| PHE34-Main  | VAL25-Main  | 55.29%           |
| VAL25-Main  | PHE34-Main  | 55.09%           |
| SER195-Side | TYR176-Main | 55.04%           |
| VAL5-Main   | TYR8-Main   | 54.40%           |
| LYS37-Main  | ILE80-Main  | 53.90%           |
| ILE80-Main  | LYS37-Main  | 53.70%           |
| SER229-Main | PRO209-Main | 52.70%           |
| LEU72-Main  | TYR79-Main  | 52.25%           |
| TYR79-Main  | LEU72-Main  | 52.15%           |
| ILE38-Main  | LYS21-Main  | 52.05%           |
| HIS121-Main | VAL117-Main | 51.40%           |
| ARG118-Side | ASP258-Side | 51.25%           |
| ARG152-Side | ASP49-Side  | 51.05%           |
| ASN64-Side  | LEU143-Main | 50.10%           |

**Supplemental Table S1.** H-bonds found in LmJean3 kinase domain at least in 30% of the trajectory.

| Donor       | Acceptor    | Occupancy (>30%) |
|-------------|-------------|------------------|
| ARG26-Main  | GLU9-Main   | 49.85%           |
| LYS23-Main  | ALA36-Main  | 49.75%           |
| LEU137-Main | GLY88-Main  | 48.95%           |
| ARG254-Side | ARG190-Main | 47.45%           |
| LYS41-Main  | ASN76-Main  | 46.30%           |
| ILE81-Main  | GLU70-Main  | 45.75%           |
| ARG268-Side | ASP264-Side | 45.50%           |
| HIS127-Side | SER146-Main | 45.30%           |
| VAL39-Main  | TYR78-Main  | 44.41%           |
| HIS27-Side  | THR30-Side  | 42.81%           |
| VAL22-Main  | GLY15-Main  | 41.16%           |
| ASN134-Side | ASP129-Main | 40.61%           |
| ARG190-Side | GLU252-Side | 39.96%           |
| LEU143-Main | GLN112-Side | 38.76%           |
| ILE199-Main | SER195-Main | 37.91%           |
| ILE69-Main  | ILE81-Main  | 37.91%           |
| VAL35-Main  | LEU82-Main  | 37.36%           |
| LEU110-Main | VAL106-Main | 37.26%           |
| ALA107-Main | GLU103-Main | 36.76%           |
| LYS41-Side  | GLU47-Side  | 36.76%           |
| VAL66-Main  | ILE145-Main | 36.51%           |
| GLU103-Main | GLU103-Side | 35.26%           |
| GLN112-Side | ALA108-Main | 35.01%           |
| LYS21-Side  | GLY17-Main  | 34.52%           |
| ILE145-Main | ASN64-Main  | 33.37%           |
| GLN67-Main  | GLU83-Side  | 33.07%           |
| SER146-Side | ASP147-Side | 33.07%           |
| LEU247-Main | CYS243-Main | 32.72%           |
| ILE111-Main | ALA107-Main | 31.82%           |
| LEU11-Main  | ARG24-Main  | 31.82%           |
| ILE28-Main  | ASP7-Main   | 31.72%           |
| VAL14-Main  | VAL22-Main  | 30.22%           |

**Supplemental Table S1.** H-bonds found in LmJean3 kinase domain at least in 30% of the trajectory.



**Supplemental Figure S1.** Schematic representation of the cloning approach to generate the expression vectors: A) pXG-LmJean3-mCherry12, B) pXG-GFP<sup>2+</sup>-LmJean3, and C) pXG-Hyg-LmJean3.

| Primer      | Sequence $(5' \rightarrow 3')$   |
|-------------|----------------------------------|
| J3NotI-Fw   | attgcggccgcATGCGGCGAGTCGGCGACTAC |
| J3NotI-Rv   | ttgcggccgcCTAAACGTCTCCGCAGTATCC  |
| J3XStop-Fw  | acggtacaagtATGgGGCGAGTCGGCGACTAC |
| J3XStop-Rv  | gaactagtAACGTCTCCGCAGTATCCACC    |
| <b>J3SF</b> | aacccgggagtATGGGGCGAGTCGGCGACTAC |
| J3SR        | tacccgggCTAAACGTCTCCGCAGTATCC    |

**Supplemental Table S2.** Primer sequences used for the construction of expression plasmids.

\* Lower-case letters indicate added restriction enzyme sites.

| Gene          | Forward sequence $(5' \rightarrow 3')$ | Reverse sequence $(5' \rightarrow 3')$ |
|---------------|----------------------------------------|----------------------------------------|
| Jean3         | AGCCGCCTCCACAGGGAAAG                   | GACGTACGCAATGCACCCCA                   |
| lpha-tubulin  | ATGCGTGAGGCTATCTGCATCCACAT             | TAGTGGCCACGAGCGTAGTTGTTCG              |
| ABCH1         | CGGGTTTGTCTTTCAGTCGT                   | CACCAGAGAGCATTGATGGA                   |
| ABCA3         | ACGGGAACGGTAACATTGCT                   | GGCACAGCATCGAAATCGTC                   |
| ATPase 1-like | CTGTGCAACACAGTTCAGCC                   | TTGATGAGGCGATAGCCGAC                   |
| ABCC2         | GCAGCCCCATGATGTTTATT                   | TCCGTTGCCTTCACTAGCTT                   |
| MRPA          | CGCTTATCACCGACTGACGA                   | CCACCGCCTCCAAATCAGTA                   |
| GAPDH         | ACCACCATCCACTCCTACA                    | CGTGCTCGGGATGATGTTTA                   |



**Supplemental Figure S2.** *LmjF.22.0810* orthologs are highly conserved. A) *LmjF.22.0810* orthologs from *L. infantum, L. braziliensis, L. mexicana, T. brucei,* and *T. cruzi* sequence alignment. Agreements are highlighted. The table below the alignment indicates the percentage of conserved nucleotides found. B) Chromosomal surroundings of *LmjF.22.0810*. Top lane shows *L. major* chromosome 22 sequence positions. Splice site and Poly A sites are portrayed, as are both genes in the chromosome at both sides of *LmjF.22.0800* and *LmjF.22.0820*). The bottom line displays EMBOSS 6.5.7 protein coding prediction.



**Supplemental Figure S3. LmJean3 sequencing study.** Primers Jean3 (qPCR; **Supplemental Table S3**) were used to confirm *LmJean3* sequence from *L. major* (Lv39c5) parasites. Red arrow denotes the thymidine substitution found at position 282 (C282T).

٨

ATP

| A                            | site 256/                                                                                                                                                                                                                                                                   |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              | Ser/Thr Kinase domain Disordered region                                                                                                                                                                                                                                     |
| 1                            | Activation segment                                                                                                                                                                                                                                                          |
| D                            | y yo yo yo to to to to to to to to                                                                                                                                                                                                                                          |
| Lmjean3<br>Frame 1           | ATGATGCEGCEGAGTCGGCGACTACGAAATCCTCGGATGTGGGGGGGAGGGCGAGGTGAAAGGTGAAACGAGTGCAAGGTGCAACGTACTACTACTGGGTGCAATGTT<br>M M R R V R H I C C C GATCGGTGCAAGGTGCAAGGTGCAAGGTGAAACGAAGGTGAAACGAGTCGCCACATACCTACTACTGGGTGCAATGTT<br>C C C C C C C C C C C C C C C C C C C               |
| Regions                      | ATP-binding site                                                                                                                                                                                                                                                            |
| Subdomains                   | 110 120 130 140 150 160 170 180 190 200                                                                                                                                                                                                                                     |
|                              | Ser/Thr kinase domain                                                                                                                                                                                                                                                       |
| Frame 1<br>Motifs            | ark x x x x x x x x x x x x x x x x x x x                                                                                                                                                                                                                                   |
| Regions                      | ATP-binding site                                                                                                                                                                                                                                                            |
| Subdomains                   | III         IV           210         220         230         240         250         260         270         280         290         300                                                                                                                                    |
| LmJean3<br>Frame 1<br>Motifs | Servine Kinssedomain<br>A TTGAGATTCTGGAAAGCAACAACAACTACTACATTATACTGGAGGCGCTGTGATCTATGGGTGGTGATTTGTGCGACATCATCGTGGGTATGGATCGGCCCTTGCA<br>L E P V M G D L C D I V G M D R P L C P<br>V X X X X X X X G                                                                        |
| Regions                      |                                                                                                                                                                                                                                                                             |
| Subdomains                   | IV         V           310         320         330         340         350         360         370         380         390         400                                                                                                                                      |
| LmJean3<br>Frame 1<br>Motifs | Ser/Thr Kinsse domain<br>GAGCAAGATGTAGCGGCCCTTTTAATCCAGCTTGTGGCAGGGGTGCGCGCGC                                                                                                                                                                                               |
| Regions                      | Catalytic loop                                                                                                                                                                                                                                                              |
| Subdomains                   | VI         VI           41/0         42/0         43/0         44/0         45/0         45/0         47/0         48/0         49/0         5/0         5/                                                                                                                 |
| LmJean3<br>Frame 1<br>Motifs | SEVITIC KINSE GOMBIN<br>CTGGGAAACCGATGGTGTGTGAAGATCTCTGACTTTGGGCTGAGCCGCCTCCACAGGGAAAGCAACTTTCAAGCGAGCACAAACGAGTACGCACACACGCCT<br>L G T D G V L K I S D F G L S R L H R E S N F Q A S T N E Y A H T L                                                                       |
| Regions                      | Activation loop           Catalycic loop         Activation segment                                                                                                                                                                                                         |
| Subdomains                   | <u>vu</u><br>570 530 540 550 550 570 580 590 600 610                                                                                                                                                                                                                        |
| LmJean3<br>Frame 1<br>Motifs | Ser/The kinase domain<br>A CA GGA A C C T C G C A T A C C T G G G G G C C T T T C G G G G G C C T T T C G G G G                                                                                                                                                             |
| Regions                      | Activation loop                                                                                                                                                                                                                                                             |
| Sabdomans                    | 620 630 640 650 660 670 680 690 700 710                                                                                                                                                                                                                                     |
| LmJean3<br>Frame 1<br>Motifs | Servina vinese domain<br>ACGCAGAACTITCCGTTCGGCTCCACCACTGATCCTCACGCCTTGGAGGTTCGTATTCGCAACGGAGAAGTTTCCGTAATGCCTTCCTCCGTTAGTGCGGAC<br>Q N F P F G S T T D P H A L E V R I R N G E V S V M P S S V S A E<br>T Q N F P F G S T T D P H A L E V R I R N G E V S V M P S S V S A E |
| Regions                      |                                                                                                                                                                                                                                                                             |
| Subdomains                   | 720 730 740 750 760 770 790 800 810                                                                                                                                                                                                                                         |
| LmJean3<br>Frame 1<br>Motifs | Servitir kinase domain<br>GCAAAGAACTTGTGCCAAGTGGCTCTTGTCTCGCGGGCGG                                                                                                                                                                                                          |
| Regions                      | EF-hand                                                                                                                                                                                                                                                                     |
| Subdomains                   | <u>کا کی</u><br>870 830 840 850 850 850 850 900 910                                                                                                                                                                                                                         |
| LmJean3<br>Frame 1<br>Motifs | GRETATCTTARAATGACAGGGAACCGAAAGGCGCGGAACATGAACGAATTCAGCTCGGGGTCAGGGAAGAAGCTCGGTCCGGTCCGGTCCGGTCCGGTCCGGTCCGGTCCG<br>H G A N M N C T F C G C C C C C C C C C C C C C C C C C                                                                                                  |
| Regions                      | Disordered region EF-hand                                                                                                                                                                                                                                                   |
| Subdomains                   |                                                                                                                                                                                                                                                                             |
| LmJean3<br>Frame 1           |                                                                                                                                                                                                                                                                             |
| Regions                      | Disordered region                                                                                                                                                                                                                                                           |
| Subdomains                   |                                                                                                                                                                                                                                                                             |
| LmJean3<br>Frame 1           | vězvýscešcvěceševěcegevěceð zeši eved críge sved ccíce sved cešev treve se state state state state state state<br>                                                                                                                                                          |
| Motifs                       | Disordered region                                                                                                                                                                                                                                                           |
| Subdomains                   | EF-hand                                                                                                                                                                                                                                                                     |

EE-band

EE hand

Supplemental Figure S4. *LmjF.22.0810* encodes a putative Ser/Thr kinase and contains all the essential motifs and residues required for protein kinase activity among its 11 kinase subdomains. *LmjF22.0810* sequence and the predicted protein translation product (frame 1) are shown. Each track displays the conserved motifs, regions, or subdomains of a catalytically active kinase. The invariant (gray boxes) and nearly invariant (gray squares) residues are annotated.



**Supplemental Figure S5. LmJean3 phosphorylation sites prediction. A)** The plot illustrates residue positions on the *X*-axis, while on the *Y*-axis the phosphorylation potential of each residue is drawn as green (serine) and blue (threonine) lines. Only serine and threonine residues that exceed the threshold (0.50) were considered phosphorylation sites. **B)** The 372 amino acids from the LmJean3 sequence are shown. Serine and threonine residues with a score greater than the threshold are plotted on the dotted line.

| #  | WEBSEQUENCE | Length: 426     |              |          |     |
|----|-------------|-----------------|--------------|----------|-----|
| #  | WEBSEQUENCE | Number of predi | .cted TMHs:  | 2        |     |
| #  | WEBSEQUENCE | Exp number of A | As in TMHs:  | 39.19509 |     |
| #  | WEBSEQUENCE | Exp number, fir | st 60 AAs:   | 39.17402 |     |
| #  | WEBSEQUENCE | Total prob of N | I-in:        | 0.00087  |     |
| #  | WEBSEQUENCE | POSSIBLE N-term | ı signal seq | lence    |     |
| WI | EBSEQUENCE  | TMHMM2.0        | outside      | 1        | 9   |
| WI | EBSEQUENCE  | TMHMM2.0        | TMhelix      | 10       | 27  |
| WI | BSEQUENCE   | TMHMM2.0        | inside       | 28       | 33  |
| WI | EBSEQUENCE  | TMHMM2.0        | TMhelix      | 34       | 53  |
| WI | EBSEQUENCE  | TMHMM2.0        | outside      | 54       | 426 |



**Supplemental Figure S6.** *L. braziliensis* **Jean3 transmembrane helices prediction.** The prediction for the 426 amino acids from LbJean3 sequence is shown. The plot illustrates the predicted location of the intervening loop regions: The X-axis displays the residue positions, while the Y-axis shows the probability for each residue to be part of a membrane helix. The number of predicted transmembrane helices (TMH) was 2. The figure and the predictions were plotted by the TMHMM Server (<u>http://www.cbs.dtu.dk/services/TMHMM/</u>).

|         | 1                  | 10                        | 20                                  | 30                        | 40                               | 50                        | 60                         | 70                           | 80                            |
|---------|--------------------|---------------------------|-------------------------------------|---------------------------|----------------------------------|---------------------------|----------------------------|------------------------------|-------------------------------|
|         | 8                  | 17                        | 27                                  | 37                        | 44                               | 54                        | 64                         | 74                           | 84                            |
| LmJean3 | YELDV              | /GEG <mark>AYSKVK</mark>  | RVREIPECCMF                         | VAKIVPKT-                 |                                  | RLEISILRRL                | KHKŃIVQLIE                 | ESTNNYYI                     | LEPVMGGDLCD                   |
| LdJean3 | YELDV              | /GEG <mark>A</mark> YSKVK | RV <b>RH</b> IP <b>TG</b> CMF       | VA <mark>KIV</mark> PKT-  |                                  | RLEISILRRL                | K H K N I VQL I E          | LESTNNYY I                   |                               |
| LbJean3 | YELDV              | /GEG <mark>A</mark> YSKVK | RV <b>RH</b> TP <b>TG</b> CMF       | VAKI VPKT-                |                                  | RLEISVLRRL                | KHKNIVQLIE                 | LESTNNYYI                    |                               |
| SOS2    | <b>yev</b> grt     | GEGTFAKVK                 | FARNTDICDNV                         | AIKIMAKST                 | ILKN <b>RM</b> VDQ               | KREISIMK IV               | RHPNIVRLYE                 | VLASPSKIYI                   | VLE FVTGGELFD                 |
| CIPK23  | YELGRTI            | GEGTFAKVK                 | FA <b>RN</b> VEN <b>G</b> DNV       | A I <b>kvi</b> dkek       | (VLKN <b>KM</b> IAQ              | KREISTMKLI                | KHPNVIRMFE                 | VMASKTKIYF                   | VLEFVTGGELFD                  |
| Snf1    | <b>ΥΟ Ι</b> ΥΚΤΙ   | GEGSFGKVK                 | LAYHTTTCQKV                         | al <b>ki ink</b> kv       | /LAKSD <b>NQ</b> GR              | EREISYLRLL                | RHPHIIKLYD                 | VIKSKDELIM                   | VIEYA-GNELFD                  |
|         | 90                 | 100                       | 110                                 | 120                       | 130                              | 140                       | 150                        | 160                          | 170                           |
|         | 94                 | 104                       | 114                                 | 124                       | 134                              | 144                       | 154                        | 164                          | 174                           |
| LmJean3 | IVGMD              | PEPERDVAA                 | lli <b>qlv</b> ag <b>v</b> ra       | CHRNGVAHR                 | DLKPENLLLG                       | IDGMLKISDF                | GLSRLHRESN                 | IFQASTNE <b>Y</b> A <b>H</b> | ILT <b>GT</b> LA <b>YLAPE</b> |
| LdJean3 | VGMD               | P E P E Q D VAA           | llI <b>qlva</b> g <mark>v</mark> ra | CHRNGVAHF                 | RDLKPENLLLG                      | TDGMLKISDF                | GLSRLHRESN                 | FQASTNE <b>Y</b> A <b>H</b>  | TLTGTLAYLAPE                  |
| LbJean3 | VGMD               | PEPEQDVAA                 | lli <b>qlv</b> ag <mark>v</mark> rv | CHCNGVAHR                 | DLKPENLLLG                       | TDG <mark>MLKISD</mark> F | GLSRLHRESN                 | FQASTSE <b>Y</b> A <b>H</b>  | ILTGTLAYVAPE                  |
| SOS2    | RVHKG              | E ESESRK                  | yfq <b>qlv</b> da <b>v</b> ah       | CHCK <b>GV</b> YHR        | DLKPENLLL                        | INGNLKVSDF                | GLSALPQE                   | GVELLR                       | ITCGTPNYVAPE                  |
| CIPK23  | K S S NG           | - KEDEARK                 | YFQ <b>QLI</b> NA <b>V</b> DY       | CHSR <b>GV</b> YHF        | DLKPENLLLD                       | ANGALKVSDF                | GLSALPQQ                   | VREDGLL <b>H</b>             | ITCGTPNYVAPE                  |
| Snf1    | YVQRDK             | -MSEQEARR                 | ffq <b>qiisav</b> ey                | CHRHKIVHE                 | RDLKPENLLLD                      | ehln <mark>vk Iadf</mark> | GLSNIMT                    | DGNFLK                       | ISCGS PNYAAPE                 |
|         | 180                | 190                       | 200                                 | 210                       | 220                              | 230                       | 240                        | 250                          | 260 263                       |
|         | 184                | 193                       | 203                                 | 213                       | 223                              | 233                       | 243                        | 253                          | 266                           |
| LmJean3 | VFG <b>G</b> -S    | DAFRADIWS                 | MGCTAYVLLTQ                         | NF <b>PF</b> GST <b>T</b> | PHALEVRIRN                       | GEVSVMPSSV                | SAEAKNLCKW                 | LLSPRPEDRPI                  | FL DAVAQHDFF                  |
| LdJean3 | V F G <b>G -</b> S | DAF RAD IWS               | MGCIAYVLLTQ                         | NF <b>PF</b> GST <b>T</b> | PHALEVRIRN                       | GEVSIMPSSV                | SAEAKNLCKW                 | LLSPRPEDRP                   | EL DAVAQHD F F                |
| LbJean3 | VFG <b>G-</b> S    | DAFRAD WS                 | MGCIAYVLLTQ                         | NF <b>PF</b> GST <b>T</b> | PHALEFRIRN                       | GEVSIMPSSV                | SPEAKNLCKW                 | LLS LR <b>PEDR</b> P         | IL DAVAQHDFF                  |
| SOS2    | V L S <b>G</b> QG  | DGSA <mark>AD WS</mark>   | CGVILFVILAG                         | Y L P F S - E T C         | L P G <b>L</b> Y R <b>KI</b> N A | ABFS-CPPWF                | SAEVKFLIHR                 | DPNPKTRI                     | QG KKDPWF                     |
| CIPK23  | VINNKG             | DGAKADLWS                 | CGVILF <b>VLM</b> AG                | YLPFE-DSN                 | LTSLYKKIFK                       | ABFU-CPPWF                | SASAKK <mark>L</mark> I KR | DPNPATRI                     | FAEVIENEWF                    |
| Snf1    | VISCKL             | AGP EV <b>DVWS</b>        | CGVILYVMLCR                         | RLPFD-DES                 | SI PVLFKNUS <b>N</b>             | GVYN-LPKFL                | SPGAAGL IKR                | MLIVNPLNRI                   | SIHE MQDDWF                   |

Supplemental Figure S7. Multiple sequence alignment of the kinase domain sequences from LmJean3, LdJean3, LbJean3, CIPK24/SOS22, and Snf1. Kinase domain sequences from *L. major Jean3* (XP\_001683232), *L. donovani* Jean3 (XP\_003860813), *L. braziliensis* Jean3 (XP\_001564994), *A. thaliana* CIPK24/SOS2 (CCH26589), *A. thaliana* CIPK23 (NP\_564353), and *S. cerevisiae* Snf1 (NP\_010765). Residues are colored on the basis of their similarity under a BLOSUM62 score matrix [97]. Alignment was performed using the ClustalW iterative algorithm [53] implemented in Geneious v9.1.7 [36].



Supplemental Figure S8. ANOLEA and GROMOS quality estimation and DSSP defined secondary structure of LmJean3 model. The atomic empirical mean force potential (ANOLEA) was used to assess the packing quality of the models. The y-axis of the plot represents the energy of each amino acid of the protein chain. Negative energy values (in green) represent favorable energy environment, whereas positive values (in red) indicate unfavorable energy environment for a specific amino acid. GROMOS is a general-purpose molecular dynamics computer simulation package for the study of biomolecular systems and can be applied to the analysis of conformations obtained by experiment or by computer simulation. The y-axis of the plot represents the energy for each amino acid of the protein chain. Negative energy values (in green) depict a favorable energy environment, whereas positive values (in red) illustrate an unfavorable energy environment for a given amino acid. The DSSP program defines secondary structure, geometrical features, and solvent exposure of proteins, given atomic coordinates in Protein Data Bank (PDB) format. At the bottom, the protein sequence of LmJean3 is shown.



**Supplemental Figure S9. Monitoring of MD trajectories. A)** Time evolution of the RMSD of all protein C $\alpha$  backbone atoms. **B)** Time evolution of the RMSD of the catalytically relevant residues from LmJean3 (K37, E53, R128, D129, and D147). The red line indicates the running averages with a length of 100 ps.

|                                 | LmJean3 |
|---------------------------------|---------|
| Modelled residues               | 275     |
| RMSD (Å)                        | 1.87    |
| ERRAT (%)                       |         |
| Overall quality factor          | 98.11   |
| QMEAN6 (Z-score)                |         |
| Overall Z-score                 | -0.42   |
| Cβ interaction                  | -0.73   |
| All-atom interaction            | -0.33   |
| Solvation                       | -0.43   |
| Torsion                         | -0.09   |
| Secondary structure agreement   | 0.47    |
| Solvent accessibility agreement | -0.51   |
| SolvX                           |         |
| Overall score                   | -95.20  |
| Verify 3D (%)                   |         |
| $3D-1D \text{ score} \ge 0.2$   | 92.36   |
| ANOLEA (%)                      |         |
| High energy amino-acids         | 5.45    |
| Ramachandran plot (%)           |         |
| Most favored regions            | 88.40   |
| Additional allowed regions      | 10.80   |
| Generously allowed regions      | 0.80    |
| Disallowed regions              | 0       |

**Supplemental Table S4.** LmJean3 global quality estimation.

| Donor  | Acceptor | COM distance (<4.0 Å) | Frames | Occupancy (%) |
|--------|----------|-----------------------|--------|---------------|
| LYS131 | ASP129   | $2.80 \pm 0.23$       | 1970   | 98.45         |
| LYS37  | ASP147   | $3.03 \pm 0.52$       | 1650   | 82.46         |
| LYS144 | GLU83    | $3.11 \pm 0.32$       | 1941   | 97.01         |
| ARG254 | GLU180   | $3.30 \pm 0.07$       | 2002   | 100.00        |
| LYS21  | GLU16    | $3.41 \pm 0.78$       | 1756   | 87.71         |
| ARG152 | GLU53    | $3.53 \pm 0.44$       | 1715   | 85.66         |
| ARG250 | ASP253   | $3.62 \pm 0.88$       | 1886   | 94.21         |
| LYS41  | GLU73    | $3.65 \pm 0.37$       | 1931   | 96.45         |
| ARG224 | GLU220   | $3.70 \pm 0.46$       | 1999   | 99.85         |
| ARG4   | GLU9     | $3.93 \pm 0.85$       | 1711   | 85.46         |

**Supplemental Table S5.** Predicted salt bridges in LmJean3 kinase domain. For each identified salt bridge, the average center of mass (COM) distance between each residue, the number of frames, and their persistence during the trajectory were calculated.





| Site | Dscore | SiteScore | Size<br>(site<br>points) | Volume<br>(ų) | exposure | enclosure | contact | phobic <sup>b</sup> | philic <sup>b</sup> | balance <sup>b</sup> | don/acc <sup>c</sup> |
|------|--------|-----------|--------------------------|---------------|----------|-----------|---------|---------------------|---------------------|----------------------|----------------------|
| А    | 1.025  | 1.045     | 184                      | 502.84        | 0.575    | 0.765     | 0.982   | 0.464               | 1.145               | 0.405                | 0.779                |
| В    | 0.848  | 0.916     | 77                       | 228.09        | 0.609    | 0.707     | 0.969   | 0.258               | 1.230               | 0.210                | 0.739                |
| С    | 0.791  | 0.795     | 57                       | 100.50        | 0.676    | 0.613     | 0.815   | 0.772               | 0.878               | 0.879                | 0.602                |
| D    | 0.629  | 0.750     | 48                       | 76.49         | 0.484    | 0.660     | 0.899   | 0.295               | 1.282               | 0.230                | 0.423                |
| E    | 0.587  | 0.620     | 30                       | 99.13         | 0.746    | 0.560     | 0.696   | 0.500               | 0.811               | 0.617                | 0.609                |

Supplemental Table S6. LmJean3 SiteMap property values and Dscore<sup>a</sup>.

<sup>a</sup>Druggability score.

<sup>b</sup>These properties, labeled "phob" and "phil", measure the relative hydrophobic and hydrophilic character of the site. The "balance" property expresses the ratio of the two.

<sup>c</sup>Indicates the degree to which a well-structured ligand might be expected to donate, rather than accept, hydrogen bonds.

## 17 of 22

Supplemental Table S7. LmJean3 site B docking results\*.

| Rank | ZINC ID  | Chemical Name               | Chemical<br>Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DockScore | Penalties | HBPenalª | ExposPenal <sup>b</sup> | RotPenal <sup>c</sup> | EpikStatePe<br>nalty <sup>d</sup> |
|------|----------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|----------|-------------------------|-----------------------|-----------------------------------|
| 1    | 60183170 | Paromomycin                 | $(0, \dots, 1) \mapsto (0, $ | -11.46    | 0.00      | 0.00     | 0.17                    | 0.13                  | 0.00                              |
| 2    | 71928289 | Neomycin<br>stereoisomer A  | $ \begin{array}{c} u_{0, -1} & \cdots & u_{0} \\ u_{0, -1} & \cdots & u_{0} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -10.93    | 0.00      | 0.00     | 0.10                    | 0.11                  | 0.00                              |
| 3    | 04096846 | Rutin                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -10.84    | 0.00      | 0.00     | 0.04                    | 0.09                  | 0.00                              |
| 4    | 60183167 | Paromomycin<br>stereoisomer |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -10.66    | 0.00      | 0.00     | 0.19                    | 0.13                  | 0.00                              |
| 5    | 71928290 | Neomycin<br>stereoisomer B  | $(\mathbf{y}_{1}^{(i)}, \mathbf{y}_{2}^{(i)}) \in \mathbf{y}_{1}^{(i)}, \mathbf{y}_{2}^{(i)} \in \mathbf{y}_{2}^{(i)}, \mathbf{y}_{2}^{(i)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -10.24    | 0.00      | 0.00     | 0.79                    | 0.08                  | 0.00                              |

\*Chemical compounds are ranked according to their docking score. Penalties for each ligand are included in the table.

<sup>a</sup>Penalty for ligands with large hydrophobic contacts and low H-bond scores.

<sup>b</sup>Penalty for solvent-exposed ligand groups; cancels van der Waals terms.

<sup>c</sup>Rotatable bond penalty.

<sup>d</sup>Epik state penalties for ionization or tautomeric states that dock in preference to the most common state at physiological pH.

0

## 18 of 22

Supplemental Table S7. LmJean3 site B docking results\*.

|      |          |                            | Chemical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |           |                      |                         |                              | EpikStatePe        |
|------|----------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|----------------------|-------------------------|------------------------------|--------------------|
| Rank | ZINC ID  | Chemical Name              | Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DockScore | Penalties | HBPenal <sup>a</sup> | ExposPenal <sup>b</sup> | <b>RotPenal</b> <sup>c</sup> | nalty <sup>d</sup> |
| 6    | 03977803 | Diosmin<br>stereoisomer    | n de la construction de la cons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -9.66     | 0.00      | 0.00                 | 0.08                    | 0.09                         | 0.00               |
| 7    | 71928292 | Neomycin<br>stereoisomer C | $\underset{u_{i}}{\overset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\overset{\cdots}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{u_{i}}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{\underset{u_{i}}{u_{u_{i}}}{\underset{u_{i}}{u_{i}}{\underset{u_{i}}{u_{u_{i}}{u_{i}}{\underset{u_{i}}{u_{u_{i}}{u_{u_{i}}{u_{u_{i}}{u_{u_{u_{u_{u}}{u_{u_{u}}{u_{u_{u}}}{u_{u_{u_{u}}{u_{u_{u}}{u_{u_{u}}{u_{u_{u}}{u_{u_{u}}{u_{u_{u}}{u_{u_{u_{u}}{u_{u_{u_{u}}{u_{u_{u}}{u_{u_{u}}{u_{u_{u}}{u_{u_{u}}{u_{u_{u}}{u_{u_{u}}{u_{u_{u}}{u_{u_{u}}}{$ | -9.58     | 0.00      | 0.00                 | 0.39                    | 0.11                         | 0.00               |
| 8    | 03794794 | Mitoxantrone               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -9.14     | 0.00      | 0.00                 | 0.20                    | 0.52                         | 0.00               |
| 9    | 08214692 | Tobramycin                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -9.06     | 0.00      | 0.00                 | 0.02                    | 0.19                         | 0.00               |
| 10   | 04098512 | Diosmin                    | n, č, č, n<br>n, č, č, n<br>n, č, č, n<br>n, č, n, č, n,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -9.05     | 0.00      | 0.00                 | 0.00                    | 0.09                         | 0.00               |
| 11   | 33359835 | Amikacin<br>stereoisomer   | $ \begin{array}{c} w_{1} & \bigoplus_{i=1}^{n} w_{i}, \\ w_{i} & w_{i}, \\ w_{i} & w_{i}, \\ w_{i} & w_{i}, \\ w_{i} & w_{i}, $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -9.04     | 3.00      | 0.00                 | 0.05                    | 0.19                         | 0.00               |

\*Chemical compounds are ranked according to their docking score. Penalties for each ligand are included in the table.

<sup>a</sup>Penalty for ligands with large hydrophobic contacts and low H-bond scores.

<sup>b</sup>Penalty for solvent-exposed ligand groups; cancels van der Waals terms.

<sup>c</sup>Rotatable bond penalty.

<sup>d</sup>Epik state penalties for ionization or tautomeric states that dock in preference to the most common state at physiological pH.

1







3

Supplemental Figure S10. Generation of *LmJean3*-overexpressing parasites. A) The rate of
overexpression of *Jean3* was measured by qPCR in the control (pXG-*Hyg*) and *LmJean3*-overexpressing
(LmJ3OE; pXG-*LmJean3*) strains. B) The cell cycle distribution of control and LmJ3OE parasites was
evaluated by FACS analysis. The percentage of cells found in each phase of the cell cycle was similar
between the control and LmJ3OE samples. C) The growth of control and LmJ3OE parasites was
evaluated for 120 h. The growth curves of the two strains displayed analogous shape and distribution.
Data are represented as the means (± SD) from three independent experiments (\*\* P<0.01).</li>

11



Supplemental Figure S11. Gene expression analysis in LmJ3OE and control parasites. The
 expression of genes of the ABC-transporter family (*LmjF*.11.1240, *LmjF*.11.0040, *LmjF*.13.1530,
 *LmjF*.23.0220, *LmjF*.23.0250), α-tubulin, and PCNA were quantified by qPCR. Bars represent the means
 (± SEM) from three independent experiments (ns, non-significant, \*\*\* P<0.001).</li>





**Supplemental Table S8.** Drug activity profile of *L. major* cell lines. Promastigotes were grown as described in *Materials and Methods* for 48 and 72 h at 26 °C in the presence of increasing drug concentrations. Half-maximal effective concentrations (EC<sub>50</sub>) were measured using an MTT-based assay. Results are expressed as means [± standard deviation (SD)] from three independent experiments.

|                | EC <sub>50</sub> (μM) mean ± SD |                   |                     |                      |  |  |  |
|----------------|---------------------------------|-------------------|---------------------|----------------------|--|--|--|
| Compound       | рХС                             | G-Hyg             | pXG-LmJean3         |                      |  |  |  |
|                | 48h                             | 72h               | 48h                 | 72h                  |  |  |  |
| Paromomycin    | $67.57 \pm 8.49$                | $120.00 \pm 9.45$ | 224.00 ± 44.85 (**) | 210.60 ± 11.60 (***) |  |  |  |
| Geneticin      | $2.37\pm0.41$                   | $2.55 \pm 0.53$   | 4.87 ± 0.29 (***)   | 5.24 ± 0.63 (**)     |  |  |  |
| Amphotericin B | $0.09 \pm 0.02$                 | $0.16 \pm 0.02$   | 0.05 ± 0.01 (*)     | 0.10 ± 0.004 (*)     |  |  |  |
| Miltefosine    | $8.57 \pm 1.11$                 | $8.82 \pm 0.70$   | 5.97 ± 0.38 (*)     | 5.83 ± 1.39 (*)      |  |  |  |

p values <0.05 were considered statistically significant (\*p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001).



