biomolecules m\py

Article

Gossypol Suppresses Growth of
Temozolomide-Resistant Glioblastoma
Tumor Spheres

Hee Yeon Kim "2, Byung Il Lee >**(, Ji Hoon Jeon !, Dong Keon Kim !, Seok-Gu Kang >,

Jin-Kyoung Shim %, Soo Youl Kim !, Sang Won Kang 2 and Hyonchol Jang 1-4*

1 Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea;

74790@ncc.re.kr (H.Y.K.); jh6107@hanmail.net (J.H.].); kimdk@ncc.re.kr (D.K.K.);
kimsooyoul@gmail.com (5.Y.K.)

Department of Life Science, Ewha Womans University, Seoul 03760, Korea; Kangsw@ewha.ac kr
Division of Precision Medicine, Research Institute, National Cancer Center, Goyang 10408, Korea;
bilee@ncc.re.kr

Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and
Policy, Goyang 10408, Korea

Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of
Medicine, Seoul 03722, Korea; seokgu9@gmail.com (S.-G.K.); nanjk2@yuhs.ac (J.-K.S.)

*  Correspondence: hjang@ncc.re kr; Tel.: +82-31-920-2239; Fax: +82-31-920-2006

t These authors contributed equally to this work.

check for
Received: 19 September 2019; Accepted: 8 October 2019; Published: 10 October 2019 updates

Abstract: Temozolomide is the current first-line treatment for glioblastoma patients but, because
many patients are resistant to it, there is an urgent need to develop antitumor agents to treat
temozolomide-resistant glioblastoma. Gossypol, a natural polyphenolic compound, has been studied
as a monotherapy or combination therapy for the treatment of glioblastoma. The combination of
gossypol and temozolomide has been shown to inhibit glioblastoma, but it is not clear yet whether
gossypol alone can suppress temozolomide-resistant glioblastoma. We find that gossypol suppresses
the growth of temozolomide-resistant glioblastoma cells in both tumor sphere and adherent culture
conditions, with tumor spheres showing the greatest sensitivity. Molecular docking and binding energy
calculations show that gossypol has a similar affinity to the Bcl2 (B-cell lymphoma 2) family of proteins
and several dehydrogenases. Gossypol reduces mitochondrial membrane potential and cellular ATP
levels before cell death, which suggests that gossypol inhibits several dehydrogenases in the cell’s
metabolic pathway. Treatment with a Bcl2 inhibitor does not fully explain the effect of gossypol on
glioblastoma. Overall, this study demonstrates that gossypol can suppress temozolomide-resistant
glioblastoma and will be helpful for the refinement of gossypol treatments by elucidating some of the
molecular mechanisms of gossypol in glioblastoma.
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1. Introduction

Glioblastoma, the most aggressive primary malignant brain tumor with a median survival
of 15 months, is currently treated with a first-line combination of surgery, radiation therapy,
and temozolomide (TMZ) [1]. Although TMZ improves the median survival of patients by only two-
and one-half months compared to radiotherapy alone [2], no other drugs have been developed that
can improve patient survival better than TMZ [3]. Its main limitation impeding patient survival is that
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over 50% of TMZ-treated patients do not respond to TMZ [4]. Thus, there is an urgent need to find
novel candidates to treat TMZ-resistant glioblastoma.

Gossypol is a natural polyphenolic compound extracted from cotton plants and its R-(—)-enantiomer
also is known as AT-101 (or (—)-gossypol) [5-7]. Gossypol has been studied for its potential as an
antitumor agent in various cancers, including breast cancer [8,9], lung cancer [10,11], colon cancer [12],
bladder cancer [13], and pancreatic cancer [14]. Additionally, many clinical trials using gossypol to
treat cancer have been conducted or are in progress (Table 1). Regarding glioblastoma, a number
of studies and clinical trials have been conducted that use gossypol alone or in combination for the
treatment of patients. Gossypol induced cell death in glioblastoma cell lines [15,16] and showed
a low, but measurable, response rate in heavily pretreated, poor-prognosis patients with recurrent
glioblastoma [17]. The combination of gossypol with TMZ [18-20], phenformin [21], or arsenic
trioxide [22] showed significant suppression of glioblastoma cell lines or patient-derived glioblastoma
tumor spheres (TSs). It is still unclear, however, whether gossypol effectively inhibits TMZ-resistant
glioblastoma so further studies are needed before gossypol can be used in clinical practice.

Table 1. Completed and ongoing clinical trials of gossypol to treat cancer.

Status Study Title Phase Main Targets Tumor Type

Gossypol in Treating Patients with Progressive or Recurrent
Glioblastoma Multiforme
Gossypol (AT-101) and Temozolomide With or Without
Completed  Radiation Therapy in Treating Patients with Newly Diagnosed Phase 1 Bcl-2 family Glioblastoma
Glioblastoma Multiforme
Gossypol Acetic Acid in Treating Patients with Recurrent,

Completed Phase 2 Bcl-2 family Glioblastoma

Completed =~ Metastatic, or Primary Adrenocortical Cancer that Cannot be Phase 2 unclear Adrenf)corncal
carcinoma
Removed by Surgery
R-(-)-Gossypol Acetic Acid, Cisplatin, and Etoposide in Small-cell lung cancer.
Completed Treating Patients with Advanced Solid Tumors or Phase 1 Bcl-2 family & !
advanced solid tumor

Extensive-Stage Small-Cell Lung Cancer

Gossypol Combined with Docetaxel and Cisplatin Scheme in

Unknown Advanced Non-Small-Cell Lung Cancers with APE1 Phase 3 APE1
High-Expression
Withdrawn Tarceva and AT-101 for Patients with Advanced Non-Small-Cell Phase 1 Bcl-2 family
Lung Cancer
R-(—)-Gossypol Acetic Acid with Lenalidomide and

Suspended Dexamethasone in Treating Patients with Relapsed Phasel/2 Bcl-2 family

Symptomatic Multiple Myeloma
R-(—)-Gossypol Acetic Acid in Treating Patients with Recurrent

Extensive-Stage Small-Cell Lung Cancer
Erlotinib and AT-101 in Advanced Non-Small Cell Lung Cancer
Terminated (NSCLC) Patients with Epidermal Growth Factor Receptor Phase 2 Bcl-2 family
(EGFR) Activating Mutations

Non-small-cell lung
cancer

Non-small-cell lung
cancer

Recurrent plasma cell

myeloma

Completed Phase 2 Bcl-2 family Small-cell lung cancer

Non-small-cell lung
cancer

Active, not Lenalidomide and AT-101 in Treating Patients with Relapsed . Chronic lymphocytic
recruiting B-Cell Chronic Lymphocytic Leukemia Phasel/2 Bel-2 family leukemia
Phase 2 Safety and Efficacy Study of AT-101 in Combination . . Chronic lymphocytic
Completed with Rituximab in Patients with Chronic Lymphocytic Leukemia Phase 2 Bel-2 family leukemia
R-(-)-Gossypol and Androgen Ablation Therapy in Treating .
Completed Patients with Newly Diagnosed Metastatic Prostate Cancer Phase 2 Bel-2 family Prostate cancer
Safety and Efficacy Study of AT-101 in Combination with .
Completed Docetaxel and Prednisone in Men With HRPC Phasel/2 Bcl-2 family Prostate cancer
An Open-Label, Single-Center, Phase 1/ 2 Study of Esophageal or
Terminated Chemoradiotherapy and AT-101 in Patients with Locally Phasel/2 Bcl-2 family Gastroesophageal
Advanced Esophageal or Gastroesophageal Junction Cancer junction cancer
Gossypol, Paclitaxel, and Carboplatin in Treating Patients with
Completed Solid Tumors That Are Metastatic or Cannot Be Removed Phase 1 unclear Lymphoma
by Surgery
A Randomized Phase 2 Study of AT-101 in Combination with . Non-small-cell lung
Completed Docetaxel in Relapsed/Refractory Non-Small-Cell Lung Cancer Phase 2 Bel-2 family cancer
A Study Comparing AT-101 in Combination with Docetaxel and
Prednisone Versus Docetaxel and Prednisone in Men with . Hormone refractory
Completed Chemotherapy-Naive Metastatic Hormone Refractory Prostate Phase 2 Bel-2 family prostate cancer
Cancer (HRPC)
Study of AT-101 in Combination with Topotecan in .
Completed Relapsed/Refractory Small-Cell Lung Cancer Phasel1/2 Bcl-2 family Small-cell lung cancer
Terminated A Study of AT-101 in Combination with Docetaxel in Squamous Phase 2 Bcl-2 family Head and neck

Cell Carcinoma of the Head and Neck
Safety & Efficacy Study of AT-101 in Combination w/
Completed Rituximab in Previously Untreated Grade I-II Follicular Phase 2 Bcl-2 family Follicular lymphoma
Non-Hodgkin’s Lymphoma
Phase IT Safety and Efficacy Study of Single-agent AT-101 in
Patients with Relapsed or Refractory B-cell Malignancies

Squamous cell carcinoma

Completed Phase 2 Bcl-2 family Lymphoma
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Table 1. Cont.

Status Study Title Phase Main Targets Tumor Type
Active, not Chemotherapy and Bcl-xL Inhibitor (AT-101) for Organ .
recruiting Preservation in Adults with Advanced Laryngeal Cancer Phase 2 Bel-2 family Laryngeal cancer

A Study of Single-Agent AT-101 in Men with Hormone

Completed Refractory Prostate Cancer

Phasel/2 Bcl-2 family Prostate cancer

Completed or ongoing clinical trials using gossypol in cancer treatment and their reported mode of action were
summarized using ClinicalTrials.gov (https://clinicaltrials.gov/). Data were downloaded on 5th September 2019.
Bcl-2: B-cell lymphoma 2.

Gossypol inhibits various proteins, including the Bcl2 (B-cell lymphoma 2) family of proteins [6,23,24],
lactate dehydrogenases [25,26], malate dehydrogenases [25,26], isocitrate dehydrogenases [26],
glyceraldehyde dehydrogenases [26], aldehyde dehydrogenases [27,28], and APEX1 (Apurinic/
Apyrimidinic endodeoxyribonuclease 1) [29]. Despite having many targets, most clinical trials
attempting to use gossypol as an anticancer agent have considered gossypol to be an inhibitor of
the Bcl2 family of proteins (Table 1). Considering the case of glioblastoma, it appears that the main
targets of gossypol are the Bcl2 family proteins [15,16,19], several dehydrogenases [17], and aldehyde
dehydrogenase [21]. Since understanding the molecular mechanism is critical for drug improvement,
it is important to clarify the main targets of gossypol in glioblastoma.

We show that gossypol ((+)-gossypol, a racemic mixture of R and S enantiomer) effectively
suppresses the growth of TMZ-resistant patient-derived glioblastoma cells and that both the Bcl2
family proteins and various dehydrogenases are important targets of gossypol in glioblastoma.

2. Materials and Methods

2.1. Cell Culture and Reagents

Cultures of patient-derived TS13-18 and TS13-20 cells has been described previously [30]. Briefly,
both cell lines were established directly from male patients with IDH1 (Isocitrate dehydrogenase 1)
wild-type primary World Health Organization (WHO) grade 4 glioblastomata. While the MGMT
(O%-alkylguanine DNA alkyltransferase) gene promoter in TS13-18 was unmethylated, the same
promoter in TS13-20 was methylated. Glioblastoma TS cells and their differentiated counterparts were
cultured as previously described [30]. Briefly, TS cells were cultured in growth media at 37 °C in a 5%
CO;, humidified incubator. The differentiated counterparts were cultured under the same conditions
but supplemented with 10% heat-inactivated fetal bovine serum (FBS; #5SH30084.03; HyClone, Logan,
UT, USA). Growth media consisted of DMEM/F-12 (#10-0900cv; HyClone) supplemented with 1x
B27 (#17504-044; Invitrogen, San Diego, CA, USA), 20 ng/mL basic fibroblast growth factor (#£0291;
Sigma—-Aldrich, St. Louis, MO, USA), 20 ng/mL epidermal growth factor (#£9644; Sigma-Aldrich), and 1%
penicillin-streptomycin (#15140-122; Invitrogen). Gossypol (#G8761) and TMZ (#12577) were purchased
from Sigma—Aldrich and ABT-263 (#A3007) was obtained from APEXBIO (Boston, MA, USA).

2.2. Limiting Dilution Assays

Cells were dissociated as single cells using Accutase (#561527; BD Biosciences, San Jose, CA, USA)
and were serially diluted from 50 to 5 cells per well in 16 replicates into 96-well clear flat bottom
ultra-low binding microplates (#3474; Corning, Corning, NY, USA) in growth media with or without
gossypol or TMZ. Following two weeks, empty wells were counted. Extreme limiting dilution analysis
was performed using the software ELDA (Extreme limiting dilution analysis) [31].

2.3. Detection of Apoptosis

Cells were treated with gossypol (10 uM) for the indicated periods. Then, 1 x 10° cells were
stained with an annexin V-FITC/propidium iodide (PI) detection kit (#LS-02-100; BioBud, Seongnam,
Korea). Apoptotic cells were analyzed using a FACSVerse flow cytometer (BD Biosciences) in the Flow
Cytometry Core Facility (National Cancer Center, Goyang, South Korea).
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2.4. Western Blot

Western blot was performed as previously described [32]. Anti-caspase-3 (#9662) and anti-PARP
(Poly (ADP-ribose) polymerase; #9542) antibodies were purchased from Cell Signaling Technology
(Danvers, MA, USA). The Anti-B-actin (#A2228) antibody was purchased from Sigma—Aldrich.

2.5. Binding Energy Calculation

Docking models for various target protein structures and the gossypol complex were generated
using the Glide-SP module from the Schrédinger Suite software package (version 2016-1; Schrodinger,
LLC, New York, NY, USA) and their binding free energies were calculated using the Prime MM/GBSA
(Molecular Mechanics—Generalized Born Surface Area) module. The binding free energy AGping was
calculated using the equation AGpind = Geomplex — (Gprotein + Giigand)- Regarding IDH1 and IDH2,
the protein-ligand binding energy was calculated for two different ligand binding pockets (inhibitor or
NADP binding sites).

2.6. Image-Based Quantification of Sphere and Cell Numbers

Images of spheres and differentiated cells were obtained and quantified as previously described [30,33].
Briefly, images were obtained using a Cyation-3 cell imaging multimode microplate reader with a
x4 objective (Bio-Tek, Winooski, VT, USA). Considering the case of differentiated cells, cells were
incubated with DAPI (2 ug / ml) for 20 min at room temperature before obtaining images. Images were
analyzed using the Image] program. Colonies >10 um in diameter were considered sphere cells.

2.7. Measurement of Mitochondrial Membrane Potential

Mitochondrial membrane potential (MMP) was measured by flowcytometry as previously
described [33] using the TMRE-Mitochondrial Membrane Potential Assay Kit (#ab113852; Abcam,
Cambridge, UK). Briefly, cells were dissociated to single cells using trypsin/EDTA and incubated with
TMRE (100 nM), then analyzed by FACSVerse flow cytometry (BD Biosciences).

2.8. Measurement of ATP Level

The ATP level was measured using the CellTiter-Glo Luminescent Cell Viability Assay kit (#G7572;
Promega, Madison, WI, USA) as per the manufacturer’s instructions, as previously described [33].
2.9. Cell Viability Assay

Cell viability was determined using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide) assay (#0793; AMRESCO, Solon, OH, USA) according to the manufacturer’s instructions.
Briefly, an MTT solution was added to cells that had been treated with or without gossypol (10 uM)
for three days, and then incubated at 37 °C to form purple formazan. Formazan was dissolved with
dimethyl sulfoxide and absorbance was measured at 570 nm using a microplate reader (#89429-538;
Molecular Devices, San Jose, CA, USA).

2.10. Statistical Analysis

Statistical analyses were performed as previously reported [33]. Data were presented as the
mean + standard deviation, and p-values were calculated using the Student’s t-test. All data were
representative of at least three separate experiments.

3. Results

3.1. Gossypol Suppresses Growth of Temozolomide-Resistant Glioblastoma Cells

We first tested whether glioblastoma TS cells, TS13-18 (with unmethylated MGMT gene promoter)
and TS13-20 (with methylated MGMT gene promoter), were responsive to TMZ. Following two weeks
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of TMZ treatment up to a concentration of 200 uM, there were no apparent changes in TS size and
number (Figure 1A). A limiting dilution assay also showed that TMZ treatment up to a concentration
of 200 uM did not affect TS formation, and even 500 pM of TMZ did not completely block TS formation
(Figure 1B). Since stemness of glioblastoma is one of the major causes of glioblastoma resistance to
TMZ [34], we tested whether resistance to TMZ was reduced by differentiation of TS cells. Serum
addition for seven days caused TS cells to adhere to the culture plate and reduce stemness [30].
We named these cells Diff13-20 and Diff13-18, respectively. Differentiated cells showed no apparent
cell death from TMZ treatment up to a concentration of 100 uM (Figure 1C). A limiting dilution assay
showed no significant change from TMZ treatment up to 200 uM, and even 500 uM of TMZ did not
completely kill differentiated cells (Figure 1D). These data showed that TS13-18 and TS13-20 cells,
which were established directly from male patients with IDH1 wild-type primary WHO grade 4
glioblastomata, were resistant to TMZ treatment.
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Figure 1. Gossypol suppresses temozolomide-resistant glioblastoma cells. (A) Tumor spheres (TS)13-20
and TS13-18 glioblastoma sphere cells were treated with the indicated concentrations of temozolomide
(TMZ) for 14 days. Bright field images of the cells were taken and a representative image of three
independent experiments is shown. (B) Limiting dilution assays were performed for TS13-20 and
TS13-18 cells treated with the indicated concentrations of TMZ. (C) TS13-20 and TS13-18 glioblastoma
sphere cells were differentiated by the addition of serum for seven days and named Diff13-20 and
Diff13-18, respectively. Differentiated cells were treated with TMZ for 14 days and bright field images
of the cells are shown. (D) Limiting dilution assays were performed for Diff13-20 and Diff13-18 cells
treated with the indicated concentrations of TMZ. (E-H) The same experiments as in (A-D) were
performed using gossypol rather than TMZ.
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Next, we investigated whether the growth of TMZ-resistant glioblastoma cells could be inhibited
by gossypol. A two-week treatment of 5 uM gossypol clearly inhibited TS size and number (Figure 1E).
A limiting dilution assay also showed that 5 uM gossypol significantly reduced TS formation and
that TS formation was completely blocked by treatment with 10 uM gossypol for TS13-20 and 20 uM
gossypol for TS13-18 (Figure 1F). The growth of differentiated glioblastoma cells also was inhibited by
gossypol, but at a slightly higher concentration than TS; Diff13-20 cells were inhibited by gossypol
at 10 uM and Diff13-18 cells were inhibited at 25 uM (Figure 1G). A limiting dilution assay showed
that 25-50 uM gossypol was required to completely inhibit differentiated cells (Figure 1H). These data
suggest that gossypol can inhibit effectively the growth of TMZ-resistant glioblastoma cells, and that
glioblastoma TS cells are more sensitive to gossypol than their differentiated counterparts.

3.2. Gossypol Induces Apoptosis in Both Glioblastoma Tumor Spheres and Differentiated Cells

To determine the mechanism of glioblastoma cell death caused by gossypol, we checked whether
gossypol treatment induced apoptosis of glioblastoma cells. Gossypol-treated TS13-20 cells showed
upregulation of early apoptosis in a time-dependent manner as determined by flow cytometry of
annexin V-positive and PI-negative fractions (Figure 2A,B). Gossypol-treated TS13-20 cells showed
decreased uncleaved caspase-3 and PARP and increased cleaved PARP, which clearly showed that
gossypol induced apoptosis of glioblastoma TS (Figure 2C). Gossypol-treated Diff13-20 cells showed
similar phenomena (Figure 2D-F). These results suggest that gossypol induces apoptosis of glioblastoma
in both three-dimensional TS cell culture and two-dimensional adherent cell culture.
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Figure 2. Gossypol causes apoptosis in both glioblastoma tumor sphere and differentiated cells.
(A,B) TS13-20 cells were treated with gossypol (10 uM) for the indicated periods. Then, cells were
stained using an annexin V kit (BD Biosciences). The percentages of early apoptotic cells were analyzed
by flow cytometry (FACSVerse; BD Biosciences) and are indicated as the mean + standard deviation
(n = 3). *p <0.05 relative to day 0. (C) TS13-20 cells were treated with gossypol (10 uM) for four
days. Protein levels of uncleaved caspase-3 and PARP, and cleaved PARP were analyzed by western
blot. 3-Actin (ACTB) was used as a loading control. (D-F) The same experiments as in (A-C) were
performed using Diff13-20 instead of TS13-20. **p <0.01 relative to day 0. The numbers below the blot
images in (CF) indicate the relative expression normalized by 3-Actin.
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3.3. The Mode of Action of Gossypol in Glioblastoma

Although gossypol has been shown to interact with various proteins, including the Bcl2 family
of proteins [6] and dehydrogenases [25-28], several studies on the role of gossypol in glioblastoma
assumed Bcl2 family proteins to be the main targets of gossypol [15,16,19]. Additionally, most clinical
trials of gossypol as a cancer treatment have made the same assumption (Table 1). To clarify the
mode of action of gossypol in glioblastoma, we first selected genes among the potential targets of
gossypol that were highly expressed in glioblastoma using previously reported TS13-20 and TS13-18
RNA-sequencing results [30]. Potential targets of gossypol in glioblastoma TS were BCL2L2 (Bcl2
like 2), MCL1 (Myeloid cell leukemia 1), APEX, and several dehydrogenases (Figure 3). Regarding
the selected genes, we performed an in silico calculation to estimate how strongly the proteins could
bind to gossypol. Molecular docking and a combined MM/GBSA binding energy calculation showed
that gossypol had a similar binding affinity for the Bcl2 family proteins and several dehydrogenases
(Figure 3 and Supplementary Figure S1).
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BCL2 } amey
BCL2A1 1 Gene name Binding energy  Relative expression (FPKM)
BCL2L1 — LDHA - 70.39 cals/mol
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Figure 3. Gossypol can bind to various dehydrogenases as well as to BCL2 family proteins.
The expression levels of potential gossypol target genes were obtained from previously published
RNA-sequencing data of TS13-2- and TS13-18 [30]. Binding energies were calculated for docking
structures of gossypol-BCL2 family (BCL2L2 and MCL1), gossypol-dehydrogenases (ALDH, LDH,
MDH, IDH, and GAPDH), and gossypol-APEX using the MM/GBSA method. The Protein Data
Bank entries used for the docking and MM/GBSA binding energy calculations were 4CIM (BCL2L2),
40Q5 (MCL1), 1004 (ALDH?2), 4QGK (ALDH3A2), 2W8N (ALDH5A1), 4ZVX (ALDH7A1), 2H5G
(ALDH18A1),4ZVV (LDHA) 110Z (LDHB), 2DFD (MDH2), 5DE1 (IDH1), 4JA8 (IDH2), 1USF (GAPDH),
and 5DFI (APEX1), respectively. FPKM; Fragments per kilobase of transcript per million.
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Treatment with ABT-263, an inhibitor of Bcl2 family proteins, resulted in the inhibition of both
TS513-20 and Diff13-20 (Figure 4A,B). However, Diff13-20 was more sensitive to ABT-263 than TS13-20
(Figure 4A,B), which was inconsistent with the finding that TS13-20 was more sensitive to gossypol
than Diff13-20 (Figure 1E-H). Additionally, gossypol treatment for 24 h significantly reduced MMP
in TS13-20 cells (Figure 4C) and decreased cellular ATP levels before cell death (Figure 4D,E). This
finding indicates that gossypol regulates mitochondrial function in glioblastoma cells. Considering the
results of the binding energy calculations, it is likely that gossypol regulates MMP and ATP levels by
inhibiting important dehydrogenases in the cell’s metabolic pathway.
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Figure 4. The function of gossypol as a BCL2 family inhibitor does not explain fully the mode of
action of gossypol in glioblastoma. (A,B) TS13-20 and Diff13-20 cells were treated with the indicated
concentrations of ABT263, a BCL2 inhibitor, for 7 days. A bright field image of the cells was taken
using a Cytation 3 microplate reader (BioTek). The number of spheres or cells were quantified as
described in Section 2 (n = 3). ** p < 0.01, * p < 0.05, NS (not significant) p > 0.05 relative to the
number of cells in the ABT-263 untreated condition. (C) TS13-20 cells were treated with the indicated
concentrations of gossypol for 24 h. The mitochondrial membrane potential (MMP) was investigated
by tetramethylrhodamine ethyl ester staining followed by flow cytometry (FACSVerse; BD Biosciences).
Values indicate the mean + standard deviation (n = 3). ** p < 0.01, *** p < 0.001 relative to the gossypol
untreated condition. (D) Diff13-20 cells were treated with gossypol (10 uM) for the indicated periods
and cellular ATP levels were determined using an ATP assay kit. Values indicate the mean + standard
deviation (n = 3). ** p < 0.01. (E) Diff13-20 cells were treated with gossypol (10 uM) for three days,
and cell viability was determined using the MTT assay. Values indicate the mean + standard deviation
(n=3). NSp > 0.05.

Overall, our study demonstrates that gossypol can suppress the growth of TMZ-resistant
glioblastoma cells in both three-dimensional TS and two-dimensional adherent culture conditions,
and the mode of action of gossypol in glioblastoma is not restricted to the inhibition of Bcl2
family proteins.

4. Discussion

TMZ resistance is a major obstacle to improving the outcomes in patients with glioblastoma.
The primary mechanisms underlying TMZ resistance are thought to be an overexpression of
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O°-methylguanine methyltransferase (MGMT) and a lack of a DNA repair pathway [4]. Methylation
of the MGMT gene promoter has been demonstrated to be the strongest prognostic marker for TMZ
susceptibility, and the added benefit of TMZ chemotherapy appears to be largely restricted to this
subgroup [35]. The MGMT gene promoters in TS13-18 and TS13-20, however, were unmethylated and
methylated, respectively, and both were resistant to TMZ treatment (Figure 1A-D). Thus, the two cell
types used in this study represented TMZ-resistant glioblastoma regardless of MGMT status.

Cancer stemness is another mechanism associated with TMZ resistance [36]; however, the TMZ
resistance of both cell types was too high to identify whether the TS or differentiated cells were
more resistant. Gossypol inhibited both TS13-18 and TS13-20, but somewhat higher concentrations
were required for the differentiated cells (Figure 1E-H). Since TS formation is affected by both cancer
stemness and cancer cell viability, there is a limit to linking reduced TS formation to reduction of
cancer stemness. Additionally, TMZ has been reported to induce dormant stem cell-like cells and
gossypol (AT-101) has shown a high cytotoxic effect against glioblastoma cells with low TMZ effect
when combined with TMZ [19]. Given this report and the results of this study, gossypol is likely to
reduce cancer stemness, but more stringent evidence is required.

The mechanism of gossypol-induced cell death is controversial. Gossypol caused apoptosis
in patient-derived TMZ-resistant glioblastoma, as determined by annexin V staining, followed by
flowcytometry and cleavage of caspase-3 and PARP by western blot (Figure 2). Consistent with our
results, gossypol (AT-101) induced apoptosis in U251 and U343 cell lines [37] and in GS-5 glioma stem
cells [22]; however, gossypol (AT-101) induced autophagic cell death in U343 [15,38] and enhanced
radiation induced autophagy in the U87 MG cell line [39]. Given that glioblastoma stem cells generally
are resistant to chemotherapy [40] and autophagy is associated with stem-like phenotypes [41], further
research is needed to clearly determine whether gossypol can reduce glioblastoma stemness.

According to several completed phase 1/2 clinical trials, gossypol does not cause serious side effects
in various types of cancer patients (Table 1), suggesting that gossypol will be clinically available in the
near future. Gossypol monotherapy and combination therapy, however, have shown marginal effects
in various clinical trials (Table 1), suggesting that improvements in gossypol or new combinations are
needed. To achieve these goals, it is necessary to clarify the molecular target of gossypol when it shows
anticancer activity. Although most clinical trials have considered gossypol’s main target to be the Bcl2
family of proteins (Table 1), gossypol also has been shown to inhibit various dehydrogenases. Granting
there is solid evidence that gossypol inhibits individual proteins for several target proteins, it is unclear
which targets are inhibited more sensitively and which ones are most associated with its anticancer
effects. Calculating the binding energy of gossypol to its targets after molecular docking showed that
gossypol likely binds Bcl2 family proteins and several dehydrogenases with similar affinity. ABT-263,
an inhibitor of Bcl2 family proteins, did not reproduce gossypol’s effects in TMZ-resistant glioblastoma.
These results suggest that the role of gossypol as an inhibitor of various dehydrogenases should
be considered when improving gossypol and designing combination therapies, and more intensive
studies of its molecular mechanisms are needed.

To conclude, gossypol can suppress the growth of TMZ-resistant glioblastoma, and its role as
an inhibitor against various proteins should be considered fully for the improvement of gossypol
monotherapy and combination therapies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/9/10/595/s1,
Figure S1: Molecular docking results of interaction between gossypol and potential target proteins.
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