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Abstract: Diabetes mellitus, one of the most common endocrine-metabolic disorders, has caused
significant morbidity and mortality worldwide. To avoid sugar digestion and postprandial
hyperglycemia, it is necessary to inhibit α-glucosidase, a digestive enzyme with an important
role in carbohydrate digestion. The criteria for the selection of alkaloids are based on their in vitro
and in vivo activities on glucose modulation. The current study assessed the bonding potential of
isolated alkaloids with the targeted protein. For this purpose, the 3D structure of the target protein
(α-glucosidase) was reproduced using MODELLER 9.20. The modeled 3D structure was then validated
and confirmed by using the RAMPAGE, ERRAT, and Verify3D online servers. The molecular docking
of 32 alkaloids reported as α-glucosidase inhibitors, along with reference compounds (acarbose and
miglitol), was done through MOE-Dock applied in MOE software to predict the binding modes of
these drug-like compounds. The results revealed that nummularine-R and vindoline possess striking
interactions with active site residues of the target protein, and were analogous to reference ligands.
In conclusion, the current study provided a computational background to the α-glucosidase inhibitors
tested. This novel information should facilitate the development of new and effective therapeutic
compounds for the treatment of diabetes mellitus.

Keywords: α-glucosidase; plant alkaloids; molecular docking; new drug discovery

1. Introduction

The digestive enzyme, α-glucosidase, has an important role in carbohydrate digestion and
is responsible for the biosynthesis of glycoproteins. Several α-glucosidases can not only perform
the hydrolysis of oligosaccharides and artificial α-glycosides with α-glycosidic bonds, but can
also hydrolyze α-glucans such as glycogen and water-soluble starch [1–3]. α-glucosidase is the
primary enzyme for digestion of carbohydrates in the small intestine. α-glucosidase is different from
β-glucosidase because it acts on the 1,4-α bond [4–7]. For cellular growth and development in plants,
glucose produced by the activity of these enzymes is used as a major energy source [8]. These enzymes
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are also inherent to various plant tissues, such as seeds, leaves, fruit, and roots. In the absence of
α-amylase, α-glucosidase starts the breakdown of natural starch granules in different parts of plants
such as barley seeds and pea chloroplasts [8–10]. The therapeutic potential of alkaloids has long been
recognized for the treatment of various human disorders [11–14].

Alongi et al., 2018 [2] showed that conophylline 1 isolated from the leaves of Ervatamia microphylla
exhibits significant antidiabetic effects in streptozotocin-induced diabetic rats [15]. Compounds 2–5
were isolated from the leaves of Murraya koenigii [3,4]. Compounds 6–8 were isolated from the stems
of Tinospora cordifolia [16,17]. Compounds 9–11 were reported by Flanagan et al., 1978 [5] from the
leaves of Catharanthus roseus. Compounds 12–14 were isolated from whole plant extracts of Ziziphus
oxyphylla [18,19]. Compounds 15–21 were isolated from the roots and rhizomes of Berberis lyceum,
Coptidis rhizome, and Coptis japonica [20–22] and compound 22 was isolated from the roots of Berberis
brevissima and Berberis parkeriana [23]. Compounds 23–26 were reported by Arinaminpathy et al. [6]
to be from the leaves of Tecoma stans. Compounds 27–31 were reported from seed extracts of Nigella
glandulifera [7]. Brassica oleracea var. capitata seeds contain compound 32 [15–21,23–26].

An advantage of in silico approaches in structure-based drug design is that they minimize the
time as well as the cost of developing ideas for new targets and potential lead compounds [8].

The aim of this research article was to assess the interaction of these reported antidiabetic alkaloids
with target proteins such as α-glucosidase and to find novel information on active sites of α-glucosidase
for the development of effective inhibitors.

2. Methodology

2.1. Target Sequence Retrieval

The protein sequence of human α-glucosidase with accession no. ABI53718.1 was downloaded
from the NCBI (National Centre for Biotechnology Information) database in a FASTA format (a
text-based format for representing nucleotide or peptide sequences with single-letter codes). The FASTA
sequence of the protein was used for subsequent analysis to build the homology model.

2.2. Template Selection and Alignment

The query sequence was then used in the BLASTp program by the NCBI by selecting the Protein
Data Bank (PDB) to identify homologs in the PDB (RCSB Protein Databank). We selected three
templates with the PDB IDs 5KZW, 5NN4, and 5NN3 with 99% identity (https://www.rcsb.org) [9,10]
for alignment and sequence identity of target protein structure prediction. Chimera 1.13 (developed
by the resource for Biocomputing, Visualization, and Informatics at the University of California, San
Francisco, CA, USA with support from NIH P41-GM103311) was used for target–template alignment
and superposition.

2.3. Homology Modeling

The protein sequence was subjected to homology modeling using MODELLER 9.20 (maintained
by Ben Webb at the department of Biopharmaceutical Sciences and Pharmaceutical Chemistry, and
California Institute for Quantitative Biomedical Research, Mission, CA, USA). Through sequence
alignment against those of previously known crystal structures, the template structure was predicted.
Modeled structures per protein are generated by the MODELLER and one structure was chosen on the
basis of root mean square deviation (RMSD) between the template and generated models.

2.4. Validation of the Modeled Structure

The obtained modeled structure of the query protein was verified for its stereo-chemical quality by
using RAMPAGE (http://mordred.bioc.cam.ac.uk/~{}rapper/rampage.php), Verify3D (http://servicesn.
mbi.ucla.edu/Verify3D/), and ERRAT (https://servicesn.mbi.ucla.edu/ERRAT/) servers to check the
quality of the predicted structure.

https://www.rcsb.org
http://mordred.bioc.cam.ac.uk/~{}rapper/rampage.php
http://servicesn.mbi.ucla.edu/Verify3D/
http://servicesn.mbi.ucla.edu/Verify3D/
https://servicesn.mbi.ucla.edu/ERRAT/


Biomolecules 2019, 9, 544 3 of 17

2.5. Active Site Prediction

The active site was predicted by using the site finder option of using MOE (Molecular Operating
Environment) software. The site finder option was used to calculate possible active sites inα-glucosidase
from the 3D atomic coordinates of the receptor. Calculations were made to determine potential sites
for ligand binding and docking, and restriction sets for rendering partial molecular surfaces [27].

2.6. Alkaloids Selection

Alkaloids are one of the most studied and widely distributed classes of secondary metabolites.
The selection criteria for these alkaloids is based on their in vitro and in vivo activities on glucose
inhibition. Plant alkaloids constitute 16.5% of reported natural products, and comprise almost 50%
of plant-derived natural products of pharmaceutical and biological significance. About 35.9% of
the reported alkaloids have been tested biologically in 20 or more assays as being pharmaceutically
significant [11].

2.7. Preparation of Ligand for Docking Analysis

All the ligands or molecules involved in our study were collected from the available literature.
All these molecular structures were reproduced in Chem-Draw ultra-version 12.0.2.1076 (2010) and
then all ligands were saved in mol format with the aim to open these files in MOE after structure
preparation, and these were protonate 3D at a temperature of 300 ◦C and pH 7 and energy minimized
through MOE, using default parameters. The MMFF94× force field was used with no periodicity and
the constraints were maintained at the rigid water molecule level.

2.8. Preparation of Protein and Molecular Docking

The modeled structure of α-glucosidase was 3D protonated and then energy minimization was
performed using the MOE software with default parameters as mentioned above. For molecular
docking, receptors were subjected and polar hydrogens were added. While performing docking,
the ligand atom was selected and rescoring1 was set at London dG and rescoring2 at GBVI/WSA
dG, running so as to note the ligand interaction with protein. Protein-ligand docking score, ligand
properties, and 2D and 3D structures were saved.

3. Results

3.1. Target-Template Alignment

The target sequence of α-glucosidase that was aligned with 5KZW by the Chimera software
showed 99% similarities. During alignment the target protein (α-glucosidase) was superimposed on
the template sequence (5KZW) shown in Figure 1. Results of target protein and template sequence
alignment are in Figure 2.
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Figure 1. Superposition of target (red) and template (green). 

 

Figure 2. Alignment of target protein with the template. 

Figure 1. Superposition of target (red) and template (green).

Biomolecules 2019, 9, 544 4 of 17 

 

Figure 1. Superposition of target (red) and template (green). 

 

Figure 2. Alignment of target protein with the template. 
Figure 2. Alignment of target protein with the template.



Biomolecules 2019, 9, 544 5 of 17

3.2. Homology Modeling

The homology model of the target protein, α-glucosidase, was accomplished with MODELLER
9.20. The 3D structure of the protein was modeled for further docking studies. The 3D modeled
structure of the protein is shown in Figure 3.
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3.3. Validation of the Modeled Structure

The modeled structure validated by RAMPAGE, showing stereo-chemical verification, and the
verified 3D structure by ERRAT, are shown in Figure 4. For protein structure verification,
a Ramachandran plot was drawn with MOE, as shown in Figure 5.
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3.4. The Ramachandran Plot

The plot shows:

(i) Number of residues in the favored region (~98.0% expected): 898 (94.32%)
(ii) Number of residues in the allowed region (~2.0% expected): 49 (5.1%)
(iii) Number of residues in the outlier region: 5 (0.52%).

3.5. Active Site Prediction

After sequence alignment, formation of the 3D structure and the verification of its active site, for
ligands in the target protein, was predicted with the MOE software. The active site of the target protein
was comprised of amino acids GLU174, THR175, AR178, GLU196, THR197, PRO198, ARG199, VAL200,
HIS201, SER202, ARG203, ALA204, PRO205, GLN352, LEU355, ASP356, VAL357, VAL358, GLY359,
TYR360, ARG608, VAL718, ALA719.

3.6. Preparation of Protein and Molecular Docking

Proteins were prepared for molecular docking by 3D protonation, energy minimization and
prediction of active site for ligands, keeping the parameters at their defaults. Next, ligands were
docked with the target protein (α-glucosidase) while using MOE software. The docking results
suggested that Nummularine-R was the most potent of the tested compounds, with a docking score of
−14.5691 followed by Vindoline with a docking score of −13.2250. In addition to these two compounds,
Conophyline, Epiberberine, glutamic acid, and mahanimbilylacetate also showed favorable results.
The docking results, along with ligand structure and their properties, are shown in Table 1.
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Table 1. Ligand chemical structures, their properties, and docking scores.

Plant Molecular Structures Activity Docking Score Ref.

Ervatamia
microphylla

(leaves)
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(Whole plant) 

 

Nummularine-R 14 

In vitro Anti-diabetic 
Control the 

postprandial 
hyperglycemia 

−14.5691 [6] 

Berberis lyceum 

(Root) 

 
Berberine 15 

In vitro Anti-diabetic 
Hypoglycemic 

Activity 
−10.5667 [7] 

Coptis japonica 
(Root) 

 
Columbamine 16 

In vitro Anti-diabetic 
Aldose Reductase 
Inhibitory Activity 
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postprandial
hyperglycemia

−14.5691 [6]
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Groenlandicine 20 

In vitro Anti-diabetic  −7.0817 [3,4] 

Coptis chinensis 
(Rhizome) 

 
Jateorrhizine 21 

In vitro Anti-diabetic −11.4544 [3,4] 

Coptis japonica 
(Root) 

 
Dehydrocheilanthifoline 22 

In vitro Anti-diabetic 
Aldose Reductase 
Inhibitory Activity 

−10.8606 [3] 

Tecoma stans 
(Leaves) 

 
5β-hydroxyskitanthine 23 

In Vivo and 
In Vitro Potent 

stimulating effect on 
the basal glucose 

uptake rate 

−10.2216 [8] 

Tecoma stans 
(Leaves) 

 
Boschnlakine 24 

In Vivo and 
In Vitro Potent 

stimulating effect on 
the basal glucose 

uptake rate 

−7.6929 [8] 

Tecoma stan (Leaves) 

 
Tecomine 25 

In Vivo and 
In Vitro Potent 

stimulating effect on 
the basal glucose 

uptake rate 

−9.1085 [8] 

Tecoma stans 
(Leaves) 

 
Tecostanine 26 

In Vivo and 
In Vitro Potent 

stimulating effect on 
the basal glucose 

uptake rate 

−9.9845 [8] 
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In Vitro PTP1B 
inhibitory activity 

- [9] 
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Nigelladines B 28 

In Vitro PTP1B 
inhibitory activity 
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In Vivo and 
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Pyrroloquinoline 31 
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inhibitory activity 

−9.4846 [9] 

Brassica oleracea var. 
capitate (Seed) 

 
2,3-Dicyano-5,6-diphenylpyrazine 

32 

Antidiabetic activity −9.6067 [10] 

34 

 

 −15.4423  

Nigelladines A 27

In Vitro PTP1B
inhibitory activity - [9]
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inhibitors are usually recommended for diabetic patients to decrease postprandial hyperglycemia
caused by the breakdown of starch molecules in the small intestine [32]. The use of plants or
plant-based substances may be a suitable source of α-glucosidase inhibitors because of their low price
and comparatively greater safety, with a low frequency of serious gastrointestinal side effects [33].

The docked alkaloids also exhibit inhibitory potential against other hydrolase enzymes in the
same class. Previous reports [21] shows that alkaloids such as berberine and palmatine inhibit aldose
reductase activity at lower concentrations, losing their inhibitory potential at higher concentrations.
On the other hand, coptisine, epiberberine, and groenlandicine showed reasonable inhibitory potential.
Nigelladines A–C, pyrroloquinoline and nigellaquinomine have shown strong protein tyrosine
phosphatase inhibitory activity [25].

Among the 10 differencing docking alkaloids, nummularine-R was found to be the most potent of
the tested compounds with a docking score of −14.5691, followed by Vindoline with a docking score of
−13.2250. Both these compounds have good inhibitory activity and their docking score is in the region
of certain standard ligands, such as miglitol (−15.4423) and acarbose (−14.7983). Furthermore, both
these ligands exhibited a good interaction with α-glucosidase. The most potent ligand, nummularine-R,
formed four hydrogen interactions with the Gln121, Met122, Arg331, and Gly546 active amino acid
residues. Gln121 was observed to make a polar hydrogen bond, with the oxygen atom double bonding
with the piperidine moiety of the ligand. Arg331 formed polar hydrogen bonds with the Nitrogen atom
of the pentene ring of the ligand. Met122 showed acidic hydrogen interactions, whereas Gly546 showed
basic hydrogen interactions with the oxygen atom double bonding with the piperidine moiety of the
same ligand. These interactions are shown in Figure 6A. Ala93, Ala97, Gln121, and Trp126 formed
three Hydrogen and one arene-arene interaction with the ligand. Ala93 showed greasy hydrogen
interaction with the nitrogen of the benzene ring, with a bond length of 3.07 Å, while Gln121 showed
greasy hydrogen interaction with the hydrogen of the benzene ring, with a bond length of 3.01 Å.
Ala97 demonstrated a basic hydrogen bond with an oxygen atom double bonding with the piperidine
moiety of the ligand with a bond length of 3.07 Å. Trp126 exhibited an arene-arene bond with a bond
length of 3.89 Å with the benzene ring of the inhibitor. All these interactions are shown in Figure 6B.Biomolecules 2019, 9, 544 13 of 17 
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The reference compound Miglitol revealed four hydrogen bonds with Met122, Arg275 and Arg331
of the target protein active site residue. Met122 formed two acidic hydrogen bonds with the hydrogen
and oxygen of the same phenol moiety, while Arg331 bound via polar hydrogen interaction with the
oxygen of the benzene ring of the phenol moiety of the ligand. Arg275 formed a polar hydrogen
bond with the oxygen atom, double bonding with the piperidine moiety of the same compound.
All these bonds are shown in Figure 6C. Another reference compound, Acarbose, showed seven
hydrogens, Ala93, Ile98, Gln121, Met122, Arg275, Pro545 and one arene-cation interaction with
Trp126 of the target protein. Ala93 and Met122 formed greasy and acidic hydrogen bonds with the
nitrogen of the benzene ring. Met122 also formed acidic hydrogen with the carbon backbone of the
benzene ring. Gln121 formed a greasy hydrogen interaction with the carbon of the benzene backbone.
Arg275 exhibited a polar hydrogen bond with the OH group of the phenol moiety, similarly Pro545
possessed greasy hydrogen and Ile98 formed basic hydrogen interactions with the target protein.
Trp126 exhibited an arene-cation bound with the carbon backbone of the ligand. All these bonds are
shown in Figure 6D. The 3D interaction of the most potent ligands (nummularine-R and Vindoline) and
standard (Acarbose and Miglitol) with target protein are shown in Figures 7–10, respectively. Similarly,
these docking results were consistent and in full agreement with the in vitro anti-diabetic activity
previously reported [18,19]. In addition to nummularine-R and Vindoline, Conophyline, Epiberberine,
Glutamic acid and Mahanimbilylacetate also showed good interactions with the target protein, with
docking scores of −12.6274, −12.9822, −12.6023, −12.9971, −12.7703, respectively.Biomolecules 2019, 9, 544 14 of 17 
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5. Conclusions

The molecular docking of 32 alkaloids isolated from various plants, along with the standard
compounds acarbose and miglitol, were docked to α-glucosidase by using MOE-Dock applied in
MOE software to predict the binding modes of these drug-like compounds. The results showed that
nummularine-R and Vindoline possessed striking interactions with active site residues of the target
protein, α-glucosidase, and were analogous to reference ligands. Taken together, the current study
provides a computational background for several α-glucosidase inhibitors. Future studies should more
carefully examine the clinical efficacy of these compounds, thus facilitating the development of novel
resources for the treatment of diabetes mellitus.
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