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Abstract: The sporadic form of inclusion body myositis (IBM) is the most common late-onset
myopathy. Its complex pathogenesis includes degenerative, inflammatory and mitochondrial aspects.
However, which of those mechanisms are cause and which effect, as well as their interrelations,
remain partly obscured to this day. In this review the nature of the mitochondrial dysregulation
in IBM muscle is explored and comparison is made with other muscle disorders. Mitochondrial
alterations in IBM are evidenced by histological and serum biomarkers. Muscular mitochondrial
dynamics is disturbed, with deregulated organelle fusion leading to subsequent morphological
alterations and muscle displays abnormal mitophagy. The tissue increases mitochondrial content
in an attempt to compensate dysfunction, yet mitochondrial DNA (mtDNA) alterations and mild
mtDNA depletion are also present. Oxidative phosphorylation defects have repeatedly been shown,
most notably a reduction in complex IV activities and levels of mitokines and regulatory RNAs are
perturbed. Based on the cumulating evidence of mitochondrial abnormality as a disease contributor,
it is therefore warranted to regard IBM as a mitochondrial disease, offering a feasible therapeutic
target to be developed for this yet untreatable condition.
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1. Introduction

Sporadic inclusion body myositis (IBM) is a rare condition, yet the most common inflammatory
muscle disease in patients over 50 years old, with an annual incidence between 1 and 8 per million [1].
Most patients present initially with slowly progressive weakness of legs, arms, fingers and wrists.
They report frequent falls or difficulty getting up out of a chair, weakened grip strength, some also
experience difficulty swallowing. The disorder has a male predominance and is typically characterized
by slowly progressive combined proximal and distal muscle weakness. Patient mobility decreases
and patients develop fatigue due to declining muscle strength. Walking progressively becomes more
difficult, which may render patients wheelchair-bound some 10 to 15 years after the onset of symptoms.

The muscle fibre degeneration displayed in IBM is more advanced than can be expected from
the patient’s age. Muscle fibres contain the typical vacuoles rimmed with granular basophilic
material and inclusions containing ubiquitinated modified proteins (Figure 1). Aggregates are
composed of amyloid precursor protein-derived amyloid-β peptides, hyperphosphorylated tau,
apolipoprotein E, α-synuclein and p62/Sequestosome 1 [2], clearly pointing to defective proteostasis
as an underlying disease mechanism. In addition, endomysial inflammation accumulates and
autoaggressive cytotoxic T-cells interact with human leukocyte antigen (HLA)-I-positive muscle fibres,
creating foci of surrounded and invaded nonnecrotic myofibres [3]. In IBM patients, no significant
clinical improvement can be gained by immunosuppressive treatments [4], which sparked the idea
that the degenerative features of the disease are presumably more relevant clinically. However,
the autoimmune nature of IBM has become more solid after the recognition of anti-cytosolic
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5′-nucleotidase 1A (anti-cN1A) autoantibodies, which can be detected in 30% to 60% of patients [5].
It is becoming more and more clear that inflammation and degeneration are not separate entities in
IBM and that inflammation may induce or aggravate the observed muscle degeneration. Sporadic
inclusion body myositis is an acquired disease, yet genetic predisposition to IBM involving the Human
Leukocyte Antigen—DR isotype β1 (HLA-DRB1) genotype has been described [6].
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Figure 1. Histological features of sporadic inclusion body myositis muscle. Histological characteristics 
in a quadriceps muscle biopsy from a male 73 years old patient diagnosed with sporadic inclusion 
body myositis. (a) Modified Gomori trichrome stain reveals several vacuoles in a muscle fibre 
(asterisk). (b) Congo red stain detected under fluorescent light visualizes a muscle fibre with 
inclusions containing β-amyloid (asterisk). (c) Immunostaining of the ubiquitin-binding scaffold 
protein and autophagy receptor p62/sequestosome1 (3'-Diaminobenzidine stain, brown) shows 
sarcoplasmic p62-immunoreactive aggregates in a muscle fibre (arrow). (d) Haematoxylin and  eosin 
stain showing autoaggressive inflammatory cells targeting a nonnecrotic muscle fibre (arrow). 
Magnification ×785 before reduction. 

Understanding of mitochondrial health in these patients has been shadowed due to 
mitochondrial alterations receiving an amount of attention much inferior to degenerative and 
inflammatory changes. This review wants to turn that table, focusing in particular on mitochondrial 
alterations in IBM, revealing how mitochondrial abnormalities contribute to muscle degeneration 
and weakness in this as yet untreatable disease. The compelling histological, biochemical and 
molecular evidence of disrupted mitochondrial function is described hereunder. 

2. Altered Mitochondrial Appearance 

The first clues of mitochondrial dysfunction in IBM came from histological studies. Light 
microscopic evaluation of histochemical stains offers evidence of aberrant mitochondrial 
proliferation and functional defects [7]. Electron microscopy most conclusively reveals ultrastructural 

Figure 1. Histological features of sporadic inclusion body myositis muscle. Histological characteristics
in a quadriceps muscle biopsy from a male 73 years old patient diagnosed with sporadic inclusion
body myositis. (a) Modified Gomori trichrome stain reveals several vacuoles in a muscle fibre
(asterisk). (b) Congo red stain detected under fluorescent light visualizes a muscle fibre with inclusions
containing β-amyloid (asterisk). (c) Immunostaining of the ubiquitin-binding scaffold protein and
autophagy receptor p62/sequestosome1 (3’-Diaminobenzidine stain, brown) shows sarcoplasmic
p62-immunoreactive aggregates in a muscle fibre (arrow). (d) Haematoxylin and eosin stain showing
autoaggressive inflammatory cells targeting a nonnecrotic muscle fibre (arrow). Magnification ×785
before reduction.

Understanding of mitochondrial health in these patients has been shadowed due to mitochondrial
alterations receiving an amount of attention much inferior to degenerative and inflammatory changes.
This review wants to turn that table, focusing in particular on mitochondrial alterations in IBM,
revealing how mitochondrial abnormalities contribute to muscle degeneration and weakness in this as
yet untreatable disease. The compelling histological, biochemical and molecular evidence of disrupted
mitochondrial function is described hereunder.

2. Altered Mitochondrial Appearance

The first clues of mitochondrial dysfunction in IBM came from histological studies. Light
microscopic evaluation of histochemical stains offers evidence of aberrant mitochondrial proliferation
and functional defects [7]. Electron microscopy most conclusively reveals ultrastructural mitochondrial
abnormalities, which include enlargement, loss of cristae of the inner mitochondrial membrane and
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paracrystalline inclusions. All these changes are, however, regarded as unspecific degenerative changes
also associated with normal aging.

In addition, the distribution of mitochondria within the cells is altered in IBM muscle.
Mitochondria are known to form a complex network that is constantly undergoing fusion and fission
processes, allowing dynamic exchange of components. Mitofusins (MFN) mediate fusion of the outer
mitochondrial membrane, while optic atrophy 1 (OPA1) governs fusion of the inner mitochondrial
membrane [8]. Network disruption and increased mitochondrial fusion have been proposed in IBM.
In evidence, MFN1 increases 1.7-fold (p < 0.05) at the protein and 4.2-fold (p < 0.001) at the messenger
RNA (mRNA) level compared to control [9]. But another study reported OPA1 and MFN2 mRNA
levels reduced 37% respectively. 31% [10]. Hence, complex disruption of the fusion/fission equilibrium,
more so than upregulation of individual fusion components, could be at the heart of mitochondrial
network disturbances.

3. Mitochondrial DNA Alterations

Mitochondrial DNA (mtDNA) sequence changes and clonal expansion of mtDNA deletions in
individual muscle fibres [11,12] have been associated with IBM, though at relatively low abundance,
and mtDNA depletion has repeatedly been described. Regardless of an increased mitochondrial
content reported in muscle from 30 IBM patients, the amount of mtDNA dropped 36% in comparison
to control tissues [10]. Another study confirmed that mtDNA copy numbers are significantly lower
in IBM muscle than in controls [13]. These changes are thought to be due mostly to problems in
mtDNA maintenance. Sporadic inclusion body myositis has also been shown to accumulate mtDNA
deletions [13,14], of which the majority localizes to the direct repeats between nucleotides 8470
and 13447 [15]. In this respect, the mtDNA replication and maintenance factors come into view,
including nuclear DNA-encoded DNA polymerase γ (POLG). DNA polymerase γ organizes the
replication and repair of the mtDNA. Heterozygous POLG variants were present in 31% of IBM patients
tested, with POLG variants more common in IBM patients with histological signs of mitochondrial
deficiency [16]. Another important enzyme for mtDNA replication is the ribonucleoside-diphosphate
reductase subunit M2B (RRM2B), which generates nucleotide precursors. Genetic defects in RRM2B
lead to mtDNA depletion and IBM muscle displays higher variant frequencies than control muscle [16].

4. Mitochondrial Proliferation and Oxidative Phosphorylation Defects

Mitochondrial overload can be visualized with the Gomori trichrome stain, revealing the
characteristic ragged red fibres under the microscope (Figure 2). This complex histological stain allows
to differentiate connective tissue and fibrils (green) and nuclei (purple), from the endoplasmic reticulum
(ER) and mitochondria (red). Due to massive subsarcolemmal accumulation of abnormal mitochondria,
the contour of the muscle fibre appears irregular, causing a “ragged” aspect. Older compared to
younger healthy subjects display 0.3 versus 0.02% ragged red fibres (p < 0.0001), while the frequency of
ragged red fibres increases further to 1% in IBM patients. Frequencies in other inflammatory myopathy
patients are similar to age-matched normal control subjects [17]. Ragged red fibres are often abundant
in myoclonic epilepsy with ragged red fibres (MERRF), a mitochondrial disease caused by mutations in
the mtDNA, of which the MT-TK gene is most commonly affected. Ragged red fibres are also prevalent
in mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) and
Kearns–Sayre syndrome (KSS). In the ragged red fibres of heteroplasmic mtDNA defects, a high
percentage of mutant genomes is found [18], suggesting that mitochondrial defects are the cause
of the abnormal mitochondrial proliferation, reflecting a failed attempt to compensate activity loss.
This compensatory increase of the cell’s mitochondrial load seems also to occur in IBM. In evidence,
gene expression of the master regulator of mitochondrial biogenesis, peroxisome proliferator-activated
receptor γ coactivator-1 α (PGC-1α), is significantly higher in IBM compared to control muscle [19].
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Mitochondria are the main site of energy production in the cell. The process of oxidative
phosphorylation (OXPHOS) uses electrons, gained by substrate oxidation through a chain of
multiprotein complexes, to pump protons across the inner mitochondrial membrane. A proton
gradient is generated and its force is used by the fifth and last OXPHOS complex to produce adenosine
triphosphate (ATP). Perturbed OXPHOS activity can lead to ATP shortage, hence limiting energy
consuming cellular processes. This results in excessive reactive oxygen species (ROS) generation
and subsequent oxidative stress. Focal defects in OXPHOS are conspicuous in IBM muscle tissues.
Scattered cytochrome c oxidase (COX) deficient fibres, although variable in amount, can be recognized
in virtually all patient tissues [20]. These fibres with reduced COX (the fourth OXPHOS complex)
activity, usually display normal succinate dehydrogenase (the second OXPHOS complex) staining.
The percentage of COX deficient fibres correlates with the relative amount of mtDNA deletions [16].
Enzymatic studies confirm COX defects, detecting 30% decreased activities in IBM muscle when
normalized to citrate synthase activity [10]. This phenomena appears an exaggerated form of the decay
associated with normal muscle aging.

Sporadic inclusion body myositis is characterized by important changes in the proteome and
transcription of genes associated with OXPHOS and mitochondrial function is affected in patients.
This deregulation is illustrated by widespread changes in mRNA expression profiles as compared
to healthy muscle [21]. In addition, the profile of untranslated RNAs is altered as well. Changes
in levels of non-coding microRNAs (miRNAs) are recognized, the latter are important regulators of
gene transcription, translation and mRNA turnover. In IBM muscle, miR-1 and miR-133 levels are
markedly reduced [22]. miR-1 has been described to enter the mitochondria and stimulate translation of
mtDNA-encoded transcripts [23]. miR-133-deficient mice display disturbed mitochondrial biogenesis,
hence lower mitochondrial mass, leading to exercise intolerance [24]. Another class of regulatory
RNAs are the long non-coding RNAs. Upregulation of long non-coding RNA 19 (H19), long
non-coding myogenic differentiation antigen (lncMyoD), nuclear enriched abundant transcript 1
(NEAT1), plasmacytoma variant translocation 1 (PVT1), maternally expressed gene 3 (MEG3) and
metastasis associated lung adenocarcinoma transcript 1 (MALAT1) have been reported in IBM
muscle [21]. Several of these long non-coding RNAs are regulators of mitochondrial function. H19 and
MALAT1 have been firmly linked to mitochondrial apoptotic pathways [25]. Mitochondrial stress
alters NEAT1 expression resulting in nuclear retention of mitochondrial proteins and vice versa, NEAT1
depletion disrupts mitochondrial dynamics [26].
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5. Dysfunctional Mitophagy

Cellular maintenance requires the elimination of dysfunctional elements and aberrant
mitochondria do not escape surveillance by this removal-of-the-unwanted program. The disintegration
of mitochondria by autophagy termed mitophagy, is initiated when unc-51-like autophagy activating
kinase 1 (ULK1) comes into action, recruiting the Phosphatidylinositol-4,5-bisphosphate 3-kinase
(PI3K III) nucleation and Phosphatidylinositol 3-phosphate (PI3P) binding complexes. The first
contains a set of proteins that include Beclin1 and B-cell lymphoma 2 (Bcl2), the latter contains several
autophagy-related proteins (ATGs). Autophagy-related (ATG) proteins, in a joint effort with 1A/B-light
chain 3 (LC3), create autophagosomes that engulf targeted mitochondria and fuse with lysosomes.
Sporadic inclusion body myositis is strongly associated with abnormal clearance and degradation of
damaged mitochondria, hence the abundant changes to autophagy/mitophagy markers. Increased
levels of the Bcl2 family protein B-cell lymphoma 2/adenovirus E1B 19kD-interacting protein 3 (BNIP3)
can be shown both at the protein (2.5-fold, p < 0.05) and mRNA (3.2-fold, p < 0.01) level. Also, physical
association of BNIP3 with LC3 [9] and accumulation in the aggregates [27] has been evidenced.
Inefficient mitophagy in IBM muscle, leading to accelerating mitochondrial dysfunction, points to the
tissue’s inability to perceive and respond adequately to the rampant mitochondrial stress underlying
the disease.

6. Inflammation and Mitokines

Mitochondrial dysfunction and inflammation are linked via the activities of cytokines.
The pro-inflammatory cytokines interleukin (IL)1-β and tumor necrosis factor α (TNF-α), which are in
IBM abundantly present, are potent regulators of mitochondrial function [28]. In a cohort of 16 IBM
patients, significant association of mitochondrial abnormalities with severity of inflammation and
muscle fibre atrophy was noted [29], further suggesting a causative link between mitochondrial
dysfunction and inflammation. Tumor necrosis factor -α-induced oxidative stress opens the membrane
permeability transition pore, which leads to the uncontrolled transport of substances in and out of the
mitochondria [30]. Pro-inflammatory cytokines further hamper tissue regeneration by suppressing the
transcription of myogenic miRNAs, including miR-1 and miR-133a/b [22].

Mitokines are diffusible molecules released from cells in response to mitochondrial stress.
A subgroup of mitokines are derived from the mtDNA and include humanin, an exercise-responsive
peptide encoded by the MT-RNR2 gene [31]. Another class of mitokines are metabolic cytokines,
of which fibroblast growth factor 21 (FGF-21) is the best studied. Fibroblast growth factor 21 regulates
energetic metabolism and expression levels are elevated in mitochondrial diseases [32]. Secretion of
FGF-21 is induced during mitochondrial stress via the stress-activated transcription factor 4 (ATF4).
Fibroblast growth factor 21 produced by muscle cells has been described to promote mitochondrial
biogenesis and has positive regulatory effects on the glucose and lipid metabolism [33]. Normal [14,34]
or only slightly increased [32] FGF-21 values have been reported in IBM sera. Another study reported
increased FGF-21 in IBM plasma but the increase did not reach significance [10]. Growth differentiation
factor 15 (GDF-15) is a member of the transforming growth factor β (TGFβ) family and another
regulator of energy homeostasis and potent promoter of oxidative metabolism and lipolysis [35].
Growth differentiation factor 15 levels are increased in patients with mitochondrial defects, hence it has
been put forward as a valuable biomarker for oxidative phosphorylation deficiencies [36]. Our own
studies recently revealed an increase of GDF-15 levels in IBM sera (Figure 3), suggesting this mitokine
as a novel biomarker for this disorder as well.
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Figure 3. Serum growth differentiation factor 15 (GDF-15) levels in patients with sporadic inclusion
body myositis. The Human XL Cytokine Proteome Profiler Array (Bio-Techne, Abingdon, UK)
visualizes double spots representing GDF-15 levels in serum (underlined). NOR: Normal commercial
control sample (Sigma, Overijse, Belgium); IBM1–3: Patients diagnosed with sporadic inclusion
body myositis—IBM1 (female of 70 years); IBM2 (male of 72 years); and IBM3 (male of 67 years);
DMD: Patient with Duchenne muscular dystrophy due to DYS deletion of exons 48–50 (male of
9 years); MITO1–3: Patients diagnosed with primary mitochondrial diseases—MITO1 (patient with
homoplasmic MT-ND4 mutation; male of 49 years); MITO2 (patient with heteroplasmic MT-TL1
mutation; female of 54 years); and MITO3 (patient with POLG mutation; female of 51 years).

7. Mitochondrial Defects in other Muscle Diseases

Mitochondrial dysfunction is not unique to IBM but has been shown to associate also to
varying degrees with other idiopathic inflammatory myopathies [37]. A subset of patients with
polymyositis have been described to display fulminant mitochondrial abnormalities, forming an
IBM-like syndrome designated as polymyositis with mitochondrial pathology (PM-Mito). However,
the diagnosis of polymyositis in these patients is contested by many experts, as they regard
subsequent response to immunosuppressive therapy as a diagnostic criterion. Similar to IBM,
PM-Mito patients are most often poorly responsive to corticosteroid treatment [38]. A cohort
of patients with anti-3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR) autoantibody
positive immune-mediated necrotizing myopathy also show clear signs of mitochondrial degeneration,
with loss of cristae in the vast majority and mitophagy with abundant autophagic vacuoles often
containing remnants of mitochondria [39]. The latter study found mitochondrial aberrations at a
higher frequency even than in the included IBM controls. In evidence, miR-1 and miR-133 reduction
was also found in other inflammatory myopathies, although the decrease remained more profound
in IBM. Transcriptome analysis in dermatomyositis revealed a major cluster of downregulated genes
related to mitochondrial activities, translating into mitochondrial abnormalities, increased ROS and
decreased OXPHOS [40]. In addition, the prominently affected perifascicular areas of dermatomyositis
muscle are also the site where most mitochondrial alterations can be observed [41]. Mitochondrial
damage has also been observed in medication-related muscle disorders. Statin-induced myopathy is
associated with mitochondrial dysfunction [42] and mtDNA depletion [43]. The effect statins exert on
mitochondrial OXPHOS capacities could be established by a randomized controlled trial, that showed
a reduction of respiratory chain enzyme and citrate synthase activities [44]. It appears that the crucial
role played by mitochondria in the energy-demanding skeletal muscle tissue makes them highly
vulnerable to dysfunction.
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8. Consequence for Therapeutic Intervention

Patients with IBM are poorly responsive to classical immune-suppressants including
prednisone. Also, clinical improvement under other immunomodulatory drugs such as intravenous
immunoglobulin G (IgG), methotrexate, the T-cell depleting monoclonal antibody alemtuzumab are
generally disappointing [3]. Alternative routes for therapy are therefore badly needed.

An anti-myostatin approach has been tested in the RESILIENT trial but did not improve the
patients’ performance in the 6 min walk test and did not increase muscle strength [45]. The benefits of
physical activity to IBM have, however, generated more hopeful results. Exercise helps to maintain
muscle function in general, improves aerobic capacity [46] and increases muscle strength. Exercise
training stimulates not only the biogenesis of mitochondria but also stimulates the removal of old
and unhealthy mitochondria through mitochondrial dynamics and autophagy [47]. The positive
effects of exercise are multifaceted but mitochondrial biogenesis may be controlled primarily by
targeted activation of peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) via p38
mitogen-activated protein kinase activation [48].

Therapies supporting mitochondrial activities represent an attractive novel route in IBM and
compounds that protect mitochondrial integrity are an alternative therapeutic avenue to be explored.
Anti-oxidants and vitamins, co-factors and nutritional supplements can be administered, for which
vitamin C, vitamin K, thiamine, folic acid, L-carnitine and creatine are plausible candidates. Though
these approaches usually lack a major therapeutic impact in primary mitochondrial disease [49],
they might still be of benefit to IBM patients. Another approach could focus on restoring or bypassing
defective mitochondrial components. The use of supplements to treat mitochondrial disease caused by
defective biosynthesis of coenzyme Q10 and riboflavin has been tried. In addition, compounds that
increase mitogenesis are a possibility. Pioglitazone, which was approved by the U.S. Food and Drug
Administration (FDA) in 1999 for treating diabetes, was shown to improve mitochondrial function in
the skeletal muscles of diabetic patients. An open-label pilot study of pioglitazone in 15 IBM patients
is currently undertaken at Johns Hopkins University (Baltimore, MD, USA), to see if PGC-1α levels
and muscle strength can be increased by the treatment regimen.

9. Conclusions

Muscle of IBM patients seems to display exaggeration of normal aging-associated degenerative
changes, which includes mitochondrial decline. The clinical importance of mitochondrial dysfunction
is difficult to evaluate, as it cannot be separated from the other pathological changes that occur in IBM
muscle. However, it appears the disease-related fatigue and exertion in IBM patients reflects their
mitochondrial impairment [50]. In many aspects, the mitochondrial dysfunction of IBM resembles
findings in primary mitochondrial myopathies and changes found in the blood metabolome are
strikingly similar [14]. We can thus conclude that, although mitochondrial alterations are not the
genetic origin, they nonetheless represent an important aspect of IBM disease mechanisms and
represents a druggable and valid therapeutic target.
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